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Abstract

With the increasing role of computational tools in the analysis of sequenced genomes, there is an 

urgent need to maintain high accuracy of functional annotations. Misannotations can be easily 

generated and propagated through databases by functional transfer based on sequence homology. 

We developed and optimized an automatic policing method to detect biochemical misannotations 

using context genomic correlations. The method works by finding genes with unusually weak 

genomic correlations in their assigned network positions. We demonstrate the accuracy of the 

method using a cross-validated approach. In addition, we show that the method identifies a 

significant number of potential misannotations in B. subtilis, including metabolic assignments 

already shown to be incorrect experimentally. The experimental analysis of the mispredicted genes 

forming the leucine degradation pathway in B. subtilis demonstrates that computational policing 

tools can generate important biological hypotheses.

Introduction

As genomic and proteomic databases continue to expand at an accelerating rate, the 

challenge to accurately annotate gene functions grows in scale and importance. Homology-

based methods are now routinely used to annotate protein function in sequenced genomes1–

3. Unfortunately, homology methods generate a large number of misannotations due to a 

relatively high sequence identity (>40%–60%) required for an accurate functional transfer. 

Sequence-based misannotations can also quickly spread through functional databases based 

on homology to misannotated genes4–6.

Several ontology-based algorithms have been previously developed to detect potential 

misannotations. The system Xanthippe7 was used to detect inconsistencies between 

functional keywords and annotated protein domains. Errors in protein motif (PROSITE 

patterns) assignments8 were identified by comparing Gene Ontology (GO9) and Swiss-
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Prot10 annotations. Ambiguous and incomplete EC numbers were identified and shown to 

result in erroneous functional assignments11.

Context genomic correlations such as chromosomal gene clustering12–14, phylogenetic 

profiles15, 16, and gene fusion17–19 can provide functional clues even if sequence 

homology information is remote or absent. We rationalized that the context-based 

correlations can be used not only to predict gene function, but also to efficiently detect 

inaccurate annotations. In this paper we develop such a method and demonstrate its ability to 

identify suspicious functional assignments. In contrast to aforementioned methods, our 

approach is not based on inconsistencies between several annotations, but rather between 

annotations and multiple genomic correlations. Therefore, the developed method is able to 

automatically detect incorrect functional assignments even if only a single annotation is 

available, or if annotations from several sources are in agreement. Our method can be also 

used to select the correct assignment among conflicting annotations. In the paper we first 

demonstrate the power of the method using artificial errors generated in silico, and then 

apply the algorithm to detect misannotations in the B. subtilis metabolic network.

Results

Strategy of the computational approach

The algorithm presented in this study identifies genes that have either unusually poor 

genomic correlations with their network neighbors, or alternative network locations with 

significantly better correlations. The problems of assigning the correct function and 

identification of misannotations have different objectives and require different algorithms. In 

many cases, it is possible to reject an existing annotation based on poor genomic 

correlations, while these correlations are not strong enough, or unique, to accurately predict 

the correct function.

Similar to our previous studies20–22, we represent the metabolic network as a graph with 

nodes being metabolic genes and edges being connections established by shared metabolites 

(see Methods). Suppose two genes X and Y in different organisms are annotated to catalyze 

the metabolic activity specified by the Enzyme Commission (EC) number 1.2.3.4 (Figure 1). 

The developed approach will suggest that the annotation of the gene X is likely to be correct 

due to strong context-based correlations with neighboring genes. On the other hand, the gene 

Y displays poor genomic correlations to its network neighbors, and its annotation is likely to 

be an error.

To predict potential misannotations we integrated sequence and context correlations using 

the AdaBoost algorithm with alternating decision trees23, 24. AdaBoost has been 

successfully applied to several large-scale integration problems in biology, including 

prediction of gene regulatory response25 and identification of genes responsible for orphan 

metabolic activities26. The AdaBoost algorithm was trained with a collection of context 

genomic descriptors: phylogenetic profiles, mRNA co-expression, chromosomal distance 

between genes, gene clustering across genomes, and protein fusion. For each descriptor, we 

considered two different scores: the largest pair-wise correlation between the target gene and 
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its direct network neighbors and the average fitness score in the assigned network location 

calculated as described in Methods.

The average fitness score quantifies the overall context correlations of the target gene with 

all its network neighbors20, 22. To represent the relative fitness of the existing annotation 

the AdaBoost score for the best alternative location was also supplied to the algorithm. The 

highest sequence identity to a Swiss-Prot protein known to catalyze the assigned metabolic 

activity in another organism was used as the single sequence-based descriptor.

Importantly, the presented approach does not assume a one-to-one relationship between a 

gene and its function (network location). In cases where a gene is annotated with multiple 

enzymatic functions, the method calculates, one by one, the likelihoods of each annotation. 

Only annotations with the likelihood below a certain optimized threshold are marked as 

potential misannotations. Consequently, multiple annotations are allowed for each gene, as 

long as they all have good genomic correlations in the assigned network locations.

Method training and optimization

We used the S. cerevisiae metabolic model iLL67227 to train and benchmark the algorithm. 

The well-curated yeast network allowed us to optimize parameters and evaluate the 

prediction accuracy using cross-validation. Because the yeast metabolism is relatively well 

known, we assumed that the vast majority of the network functional assignments are correct, 

i.e. they represent true positives (TP). To simulate true negative (TN) examples we 

artificially generated incorrect functional assignments using the three different methods 

described below. We calculated the ROC curves by sorting the annotations based on their 

classification scores; annotations with lowest classification scores are more likely to 

represent true misannotations,

In the first method (TN1), we randomly assigned new metabolic functions to a large fraction 

(33%) of network genes. The AdaBoost classifier was then trained using TN1 and TP 

examples (see Methods). The resulting ROC curve for the 50/50 cross-validation is shown in 

Figure 2a. Due to the random nature of the functional reassignments, the TN1 examples 

rarely have high sequence identities to the newly assigned functions. Consequently, the 

algorithm relied primarily on the sequence identity and easily identified the misannotations.

In the second method (TN2), to simulate misannotations due to a residual sequence 

homology to nonnative metabolic activities, genes were only reassigned to incorrect 

activities for which they had >30% sequence identity . A random choice was made if several 

reassignments were possible for a gene. The classification algorithm was then independently 

trained using TN2 examples (Figure 2a). The mean area under the ROC curve for the TN2 

set, based on four independent reassignment experiments, was 0.93 (95% CI: 0.90 – 0.95). 

In spite of the large fraction (40%) of misannotations in the reassigned network, the 

algorithm identified about 90% of true misannotations with only 20% of correct annotations 

misclassified as misannotations.

Finally, in the third method (TN3), the genes were reassigned only if they had similar 

(within 10%) or even higher sequence identities to the newly assigned (incorrect) activities. 
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This test simulated misannotation especially difficult to detect using sequence homology. In 

total 26% of the network genes were reassigned using the third method. The mean area 

under the ROC curve for the TN3 examples (Figure 2a), based on four independent 

reassignment runs, was 0.87 (95% CI: 0.86 – 0.88). The algorithm identified about 80% of 

misannotations while misclassifying 20% of correct annotations. Because many metabolic 

assignments in existing databases have been made based primarily on sequence homology, it 

is likely that the errors simulated using the second and the third methods dominate real 

world misannotations.

To understand the transferability of our approach to other species we repeated the analysis 

using the curated E. coli metabolic model iJR90428. The negative examples TN2 and TN3 

for the bacterial metabolic model were generated in the same way as for the yeast network. 

The classifiers optimized for the yeast network were directly applied to the bacterial model 

without further modification or optimization. The resulting performance for the E. coli 

network was similar to S. cerevisiae (Supplementary Fig. 1). Consequently, the optimized 

method is able to detect misannotations in different species. The policing approach should 

be also quite effective in non-model organisms because the context correlations, with the 

exception of co-expression, can be calculated directly from genomic sequences; the decrease 

in sensitivity without expression information was less than 3% (at 25% false positive rate). 

The accuracy of other context correlations will only improve as more genomes are 

sequenced.

Potential misannotations in B. subtilis metabolic network

To test our algorithm on a less-studied network we applied it to the model gram-positive 

bacterium B. subtilis. We investigated the B. subtilis metabolic annotations available in 

KEGG29 (655 genes), Swiss-Prot10 (528 genes), and MetaCyc30 (369 genes). The different 

number of annotated genes in these databases is a consequence of different annotation 

strategies. While some databases strive for maximum coverage, others focus on the most 

accurate annotations. There are 277 B. subtilis annotations shared by all three databases and 

additional 122, 10 and 20 unique annotations in KEGG, MetaCyc and Swiss-Prot, 

correspondingly. We applied the developed algorithm to all B. subtilis metabolic 

assignments in the three databases using the parameters optimized for the TN3 yeast 

examples. The cumulative distributions of the AdaBoost classification scores for B. subtilis 

annotations (Figure 2b) show that the metabolic assignments shared by all databases (red 

curve) are on average more accurate compared to annotations present exclusively in a single 

database (black curve, Kolmogorov-Smirnov test P=2*10−19). Nevertheless, the database-

unique annotations display, on average, significantly better scores compared to the scores of 

misannotated genes (TN3 yeast examples, blue curve, P=2*10−4). This demonstrates that it 

is not possible to detect potential misannotations simply by identifying database-unique 

functional assignments.

Based on the ROC characteristics (Figure 2a) the most efficient part of the TN3 curve allows 

to identify 70% of misannotations, while classifying only about 5% of correct assignments 

as misannotations. Considering the total number of analyzed B. subtilis metabolic 

assignments (679) and assuming that about 10% of the database assignments are 
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misannotations4, 5, the red point in Figure 2a corresponds to the analysis of 80 genes with 

the worst classification scores; about half of these genes should represent true 

misannotations. Indeed, we manually analyzed the list of 80 genes with the worst 

classification scores and for 34 cases we either found counter-evidence or could not identify 

any experimental study supporting the annotations (Table 1). Although the potential 

misannotations usually have weak sequence homology (usually <40% identity) to known 

enzymes, the classifier is not simply relying on homology to identify misannotations. For 

about 35% of the annotations with good classification scores sequence identity was also 

weak (<40%), but these metabolic assignments are supported by good context-based 

correlations.

For each potential misannotation we show in Table 1 the gene name, annotation source, the 

highest sequence identity to enzymes responsible for the annotated activity in other species, 

the relative strength of various context-based correlations, and the existence of good 

alternative network locations (see Supplementary Methods). In the table the context 

correlation values are represented by their relative percentile ranks based on the average 

fitness scores (see Methods). For example, the “expression profile” rank of 10% indicates 

that the target gene has better co-expression scores in 10% of all possible network locations 

compared to the location assigned in the database. Overall, the results in Tables 1 suggest 

that Swiss-Prot and MetaCyc are more conservative in their functional assignments 

compared to KEGG, which has the largest number of annotations as well as potential 

misannotations. We want to emphasize that the majority of KEGG-unique annotations 

displayed good confidence scores, indicating that only a fraction of them is likely to be 

incorrect.

The B. subtilis gene dgkA is a typical example of a potential misannotation. The gene is 

annotated in all considered databases as “diacylglycerol kinase” (DagK, EC 2.7.1.107), 

possibly based on weak sequence homology. However, dgkA has poor context-based 

correlations with the network neighbors of the EC 2.7.1.107 activity (Table 1). In a recent 

study31, the authors confirmed that dgkA is not a diacylglycerol kinase but rather an 

undecaprenol kinase. Another example is the B. subtilis gene ywrD which is annotated in 

KEGG as an ortholog of the gamma-glutamyltransferase (EC 2.3.2.2). Weak context-based 

correlations (Table 1) with neighboring network genes suggest that ywrD is unlikely to 

catalyze the EC 2.3.2.2 function. The gamma-glutamyltransferase activity (EC 2.3.2.2) is 

required for growth on extracellular glutamyl compounds, such as glutathione (GSH) (1), as 

the source of sulfur. However, it was demonstrated32 that ywrD- mutant grows well on 

minimal media with GSH as the sole sulfur source. In addition, His-tag purified ywrD could 

not hydrolyze GSH. These findings strongly suggest that ywrD is not gamma-

glutamyltransferase. Further analysis of each case in Table 1 is presented in Supplementary 

Table 1.

Leucine degradation pathway in B. subtilis

The developed method can be used to identify suspicious functional assignments for several 

genes in a pathway. An interesting example is the yngJIHGFE gene cluster in B. subtilis 

(Figure 3a). The yngJ gene is listed in KEGG as a hypothetical protein, yngI as acyl-CoA 
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synthetase (EC 2.3.1.86) (until recently as long-chain-fatty-acid---CoA ligase, EC 6.2.1.3), 

yngH as acetyl-CoA carboxylase biotin carboxylase subunit (EC 6.4.1.2/6.3.4.14), yngG as 

hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4), yngF as enoyl-CoA hydratase (EC 

4.2.1.17), and yngE as propionyl-CoA carboxylase beta chain (EC 6.4.1.3). In MetaCyc 

yngE is listed as similar to propionyl-CoA carboxylase and yngF as enoyl-CoA hydratase 

(EC 4.2.1.17). In Swiss-Prot, yngJ is listed as probable acyl-CoA dehydrogenase (EC 

1.3.99.-), yngH as biotin carboxylase 2 (EC 6.3.4.14/6.4.1.2), yngG as 

hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4), and yngF as putative enoyl-CoA hydratase/

isomerase.

Our algorithm predicted as potential misannotations the assignments of the EC 6.4.1.3 

function to yngE, EC 4.2.1.17 to yngF, and EC 6.2.1.3 to yngI. These genes have 

significantly better genomic correlations in different network locations (functions): yngE in 

EC 6.4.1.4, yngF in EC 4.2.1.18, and yngI in EC 6.2.1.16. Overall, the yng genes form the 

consecutive reactions in the leucine (2) degradation pathway33. Based on the corrected 

functional assignments we can also suggest the likely functions for yngJ (EC 1.3.99.10) and 

yngH (EC 6.4.1.4 subunit, forming the enzyme complex with yngE). Consequently, the yng 

cluster forms a complete degradation pathway from 3-methylbutanoyl-CoA (3) to 

acetoacetyl-CoA (4), which can be further catabolized through the bacterial TCA cycle.

What is the biological role of the leucine degradation pathway in B. subtilis? In early stages 

of sporulation B. subtilis cells divide into two unequal compartments. The smaller 

compartment develops into a bacterial spore, and the larger compartment forms the mother 

cell which protects and nurtures the spore until the spore is fully developed. Interestingly, 

the yng genes are under transcriptional control of the σE sigma factor and are primarily 

expressed early in the mother cell during sporulation34, i.e. when extracellular nutrients are 

limited. The expression of the gene mmgA responsible for the last step of the leucine 

catabolism, acetoacetyl-CoA to Acetyl-CoA (5) conversion (EC 2.3.1.9, see Figure 3a), is 

also controlled by the σE factor.

Due to the structure of its TCA cycle, B. subtilis cannot grow on leucine as the sole carbon 

source35. Nevertheless, the catabolism of the leucine and fatty acids through the TCA cycle 

can provide additional energy during early sporulation stages. The selection of the energy 

source becomes logical if one considers the membrane and amino acid composition of B. 

subtilis. Leucine is one of the most abundant amino acid in logarithmically growing B. 

subtilis cells36, responsible for about 8–10% of all protein residues (see also Supplementary 

Fig. 2). In addition, B. subtilis lipids are predominantly (>90%) composed of branched chain 

fatty acids35, 37; odd-iso fatty acids can be oxidized to 3-methylbutanoyl-CoA. It is likely 

that during sporulation branched chain fatty acids and amino acids are present in the 

extracellular media due to the bacterial cannibalism process38, 39, which allows a fraction 

of B. subtilis cells to kill their non-sporulating siblings and feed on the released nutrients.

To experimentally investigate the role of the yng cluster during sporulating we used 13C 

labeling experiments. First, we analyzed B. subtilis 168 cells in non-sporulating minimal 

medium supplemented with [U13C]-L-Leucine (see Methods). Because the degradation 

pathway leads from leucine to Acetyl-CoA (Figure 3a), we measured the fractional labeling 
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of the Acetyl-CoA m2 mass isotopomer using liquid chromatography-tandem mass 

spectroscopy (see Methods) and calculated the fraction of Acetyl-CoA originating directly 

from leucine. No 13C labeling above the natural abundance of the m2 isotopomer (8%) was 

detected in cell during vegetative growth. This result confirmed that the leucine degradation 

pathway is not active during favorable environmental conditions34.

Next, we investigated the activity of the leucine pathway during sporulation. It was 

previously shown that 2.5 hours after the start of sporulation the activity of σE-regulated 

genes is at the highest34. We inoculated bacterial cells into sporulation medium 

supplemented with [U13C]-Leucine, and extracted metabolites after 2.5 hours. In sporulating 

cells the fraction of Acetyl-CoA derived from leucine was about 2.5–3 times higher than 

background, while all yng mutants displayed essentially background labeling levels (Figure 

3b). Consequently, the yng pathway is indeed active during sporulating.

Several genes from the yng cluster have been assigned in KEGG to isoleucine (6) 

degradation pathway: yngE as an ortholog of EC 6.4.1.3, yngF as an ortholog of EC 

4.2.1.17. To investigate the possibility that the yng genes also play a role in the isoleucine to 

Acetyl-CoA degradation we tested the activity of the isoleucine degradation pathway during 

sporulation. Similar to the leucine experiments, we measured the labeling of Acetyl-CoA in 

sporulation conditions supplemented with [U13C]-L-Isoleucine. No labeling above 

background was detected (Supplementary Fig. 3). Consequently, the yng genes are unlikely 

to participate in the isoleucine degradation. Although B. subtilis can utilize isoleucine and 

valine (7) as the sole nitrogen source40, our experiments demonstrate that the isoleucine 

pathway is either not active during sporulation or its products are not primarily degraded to 

Acetyl-CoA.

Discussion

The main idea of the presented approach is to employ functional genomic correlations 

essentially in reverse. Instead of using them to assign protein function41, 42, we utilize the 

correlations to predict potential misannotations. The developed method, or similar 

approaches, can be automatically applied to many thousands of metabolic assignments in 

various functional databases. Based on this analysis the potential misannotations can be 

marked with corresponding confidence scores. As topologies of protein-protein interaction 

networks are discovered, similar methods can be also developed and optimized to identify 

misannotations in the context of molecular interaction networks. Importantly, the developed 

method was not conceived as a criticism of such valuable resources as Swiss-Prot, KEGG, 

and MetaCyc. Our results clearly demonstrate that the majority of annotations in these 

databases are correct. Nevertheless, we think that the method can help the existing resources 

to improve the annotation quality and reduce the spread of misannotations.

Methods

Metabolic networks construction

The metabolic networks were constructed using known enzymatic reactions for the 

considered organisms: the iLL672 model27 for S. cerevisiae, iJR904 model28 for E. coli, 
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and B. subtilis metabolic reactions from KEGG43, MetaCyc30 and Swiss-Prot10. Only 

genes with assigned EC numbers were considered; activities representing non-metabolic 

reactions, such as EC 2.7.11.1 (non-specific serine/threonine protein kinase) or EC 2.7.7.6 

(RNA polymerase) were excluded. Each metabolic network was represented as a graph with 

nodes as metabolic genes and edges as functional connections established by metabolites 

shared between enzymes20–22. The shortest path between a pair of nodes was used as the 

metabolic network distance between the corresponding genes. The 40 most connected co-

factors and metabolites were not considered in calculating metabolic 

distances22(Supplementary Table 2).

Context genomic correlations

We used the following context correlations: phylogenetic profiles15, 16, mRNA co-

expression44, 45, chromosomal distance, gene clustering (chromosomal co-localization 

across a set of genomes)12, 14, fusion of protein domains17, 18. The phylogenetic profile 

correlations were constructed using BLASTP searches, using E-value cutoff 10−3, against a 

collection of 70 evolutionary distinct genomes22; pair-wise phylogenetic profiles were 

calculated using Pearson's correlation coefficient. The co-expression values were calculated 

using Spearman's rank correlation between expression profiles obtained from the Rosetta 

Compendium dataset for S. cerevisiae46, Stanford Microarray Database (SMD) for E. coli 

and the GEO database47 for B. subtilis. The physical distance between genes from target 

genomes was used as chromosomal distance. To calculate the chromosomal clustering of 

genes across genomes orthology mapping was established using the KEGG SSDB 

database29; the chromosomal clustering values were calculated based on a collection of 105 

diverse genomes26. A pair of genes was considered fused if at least 70% of each protein 

could be aligned to non-overlapping regions of a third protein in the NCBI NR database 

(using BLAST E-value cutoff 10−3). A detailed description of the data sources and the 

methods used to calculate the context-based correlations are given in our previous 

publications22, 26.

Context-based fitness functions

We calculated the “fitness” of every gene in its assigned network position using the 

following equation:

(1)

where x is the gene to be tested at the target network position, y is a neighboring gene from 

the ith network Layeri, c(x, y) is a context-based correlation between genes x and y, wi is the 

weight factor for Layeri, and p is the optimized power factor for the context-based 

correlation. The summation in Equation 1 is, first, over all genes in a given Layeri around 

the network position of the tested gene and, second, over all layers up to the layer R (R = 3 

in our calculation). |N| is the total number of genes in all considered layers. The parameters 

for each context-based method were optimized using simulated annealing (SA) algorithm48 

so that the log sum of the ranks of the correct functions for all known metabolic genes were 

minimized.
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Sequence homology information

The sequence homology descriptor of protein function was represented as the highest 

sequence identity to a Swiss-Prot protein (using BLAST E-values cutoff 5*10−2) annotated 

to carry out the target function excluding genes that are 1) from the query genome or 2) 

likely annotated based on computational methods, i.e., genes with keywords probable, like, 

by similarity, hypothetical, or putative in their annotations.

Combining sequence-based and context-based descriptors

All context and sequence homology descriptors were combined using the AdaBoost 

algorithm with alternating decision trees (ADT)23, 24. For each classification the algorithm 

also generates a confidence measure (classification score).

The highest sequence identity to a protein known to catalyze the target enzymatic activity in 

other species was supplied to the classification algorithms as the sequence-based descriptor. 

The context-based descriptors were supplied to the classification algorithm as the gene-

specific ranks, i.e. context correlation ranks of the target gene at the annotated location 

compared to all other network positions. For each context descriptor, we consider two 

separate ranks. First, the rank based on the overall fitness of the target gene in the annotated 

location calculated using Equation 1. Second, the rank based on the largest pairwise 

correlation of the target gene and its immediate network neighbors. For each target gene, we 

also supplied the classification algorithm with two additional AdaBoost scores: 1) the total 

score for the target gene in the annotated location, and 2) the score in best alternative 

network location.

Cross-validation

The performance of the method was benchmarked using the S. cerevisiae networks using the 

50/50 cross validation in which all samples were randomly divided into two sets with 

approximately equal number of TN and TP cases. Results from the two sets were pooled to 

estimate the overall performance. We also applied multivariable logistic regression to 

combine the different descriptors and predict misannotations. Although the AdaBoost 

algorithm tends to slightly outperform logistic regression, a comparable performance was 

observed for the two methods (Supplementary Fig. 4). All results reported in the paper are 

based on the AdaBoost algorithm.

Labeling experiments

B. subtilis 168 mutants (yngE-, yngF-, yngG-, yngH-, yngI-, and yngJ-) were obtained from 

the Medicago Main Collection. Growth of these strains was tested using the minimal 

medium M9 supplemented with various carbon sources. The strains were grown on 

sporulation agar medium (DSM) and incubated overnight at 37°C. On the following day, 

cells were inoculated into sporulation medium (Schaeffer et al., 1965) supplemented with 5 

mM of [U13C]-L-Leucine or [U13C]-LIsoleucine (Cambridge Isotope Laboratories) at the 

beginning of the growth curve. The cells were harvested 2.5 hours after the onset of the 

sporulation.
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Cellular metabolites were extracted using EtOH:H2O (60:40) and 10mM ammonium acetate 

solution at 70°C. Cell debris was removed from the extract by centrifugation and the 

supernatant was completely dried. Samples were injected in a liquid chromatography-

tandem mass spectrometer (LC-MS/MS, Agilent) with a C18 column (Waters Atlantis T3 

150×2.1×3). The identity of the peaks was establishes by verifying the peak retention time 

and mass spectrum for each mass isotopomer of Acetyl-CoA. The natural (background) 

abundance of the m2 isotopomer of Acetyl-CoA (8%) was calculated by the Analyst 

software (Agilent).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the developed approach. In the figure network nodes represent metabolic 

genes and edges represent connections established by shared metabolites. Using sequence 

homology, genes X and Y from different organisms have been assigned to EC 1.2.3.4. Gene 

X displays strong context-based correlations (darker blue indicating stronger correlations) 

with neighboring network genes. Consequently, the annotation of X is likely to be correct. In 

contrast, gene Y does not fit well in the assigned network position and is likely to be 

misannotated.
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Figure 2. 
Performance on identifying misannotations. a) The ROC curves on different types of 

artificially generated misannotations in the yeast network. The True Negative set 1 (TN1) 

was generated by randomly assigning incorrect metabolic functions to a fraction of network 

genes. The TN2 set was generated by reassigning network genes to new metabolic activities 

only if they had at least 30% sequence identities to newly assigned (incorrect) activities. The 

TN3 was generated by assigning genes to new activities only if they had similar (within 

10%) or higher sequence identities to the reassigned (incorrect) activities. In all cases the 

remaining (not reassigned) activities were used as true positive examples. For realistic 

misannotation models, simulated by the sets TN2 and TN3, the method correctly identifies 

about 70%–90% of misannotations at 5%–15% false positive rate. The red dot in the figure 

approximately corresponds to 70% true positives and 5% false positives. b) The cumulative 

distributions of the classification confidence scores for B. subtilis metabolic assignments. 

The B. subtilis annotations made simultaneously by all analyzed databases (KEGG, 

MetaCyc and Swiss-Prot) are shown in red, annotations unique to KEGG, MetaCyc, or 

Swiss-Prot, are shown in black. For comparison we also show the true negative set TN3 

from S. cerevisiae in blue. The cumulative distributions demonstrate that the consensus 

annotations (red) are, on average, more accurate than the ones unique to individual databases 

(blue, Kolmogorov-Smirnov test P=2*10−19). However, on average, database-specific 

annotations still score significantly better than true misannotations (KS P=2*10−4).
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Figure 3. 
Function of genes forming the yng cluster in B. subtilis. a) The genomic positions of the yng 

genes are shown in green. The detected misannotations are indicated in red. The predicted 

functions, forming the degradation pathway, are shown in blue. The expression of all yng 

gene is controlled by the σE transcription factor34; the gene mmgA is also under the σE 

control and is responsible for the last step of the leucine catabolism. b) Fractional 13C 

labeling of Acetyl-CoA in the wild type sporulating cells and in the sporulating yng mutants. 

The 13C labeling in the figure indicates the fraction of the Acetyl-CoA isotopomer 

generated from leucine in sporulating cells only (see Methods). The errors in the figure 

represent SEM. The background Acetyl-CoA isotopomer labeling is shown by the dash line.
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Figure 4. 

Hsiao et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2010 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hsiao et al. Page 17

T
ab

le
 1

Po
te

nt
ia

l m
is

an
no

ta
tio

ns
 in

 th
e 

B
. s

ub
ti

li
s 

m
et

ab
ol

ic
 n

et
w

or
k.

 A
nn

ot
at

io
n 

so
ur

ce
: K

: 
K

E
G

G
, M

: 
M

et
aC

yc
, a

nd
 S

: 
Sw

is
s-

Pr
ot

. H
om

ol
og

y 
sc

or
e 

is
 th

e 

hi
gh

es
t p

ro
te

in
pr

ot
ei

n 
se

qu
en

ce
 id

en
tit

y 
to

 a
no

th
er

 S
w

is
s-

Pr
ot

 p
ro

te
in

 w
ith

 th
e 

ta
rg

et
 a

ct
iv

ity
; t

he
 c

or
re

sp
on

di
ng

 B
L

A
ST

 E
-v

al
ue

 is
 a

ls
o 

sh
ow

n.
 T

he
 

co
nt

ex
t g

en
om

ic
 c

or
re

la
tio

ns
 a

re
 r

ep
re

se
nt

ed
 a

s 
th

e 
re

la
tiv

e 
pe

rc
en

til
e 

ra
nk

s.
 F

or
 e

xa
m

pl
e,

 th
e 

“e
xp

re
ss

io
n 

pr
of

ile
” 

ra
nk

 o
f 

20
%

 in
di

ca
te

s 
th

at
 th

e 
ta

rg
et

 

ge
ne

 h
as

 b
et

te
r 

co
-e

xp
re

ss
io

n 
va

lu
es

 in
 2

0%
 o

f 
al

l o
th

er
 p

os
si

bl
e 

ne
tw

or
k 

lo
ca

tio
ns

 c
om

pa
re

d 
to

 th
e 

lo
ca

tio
n 

as
si

gn
ed

 in
 th

e 
da

ta
ba

se
. L

ow
er

 p
er

ce
nt

ile
 

ra
nk

s 
in

di
ca

te
 b

et
te

r 
co

ns
is

te
nc

ie
s 

w
ith

 g
en

om
ic

 c
on

te
xt

 c
or

re
la

tio
ns

. F
or

 th
e 

pr
ot

ei
n 

fu
si

on
, “

Y
” 

(“
N

”)
 in

di
ca

te
s 

th
at

 f
us

io
n 

ev
en

t(
s)

 b
et

w
ee

n 
an

 o
rt

ho
lo

g 

of
 th

e 
ca

nd
id

at
e 

ge
ne

 a
nd

 a
 n

et
w

or
k 

ne
ig

hb
or

 w
as

 d
et

ec
te

d 
(n

ot
 d

et
ec

te
d)

. T
he

 p
re

se
nc

e 
of

 a
 s

ig
ni

fi
ca

nt
ly

 b
et

te
r 

al
te

rn
at

iv
e 

lo
ca

tio
n 

(“
Y

”/
“N

”)
 w

as
 

de
te

rm
in

ed
 b

y 
th

e 
A

L
R

 r
at

io
 a

s 
de

sc
ri

be
d 

in
 S

up
pl

em
en

ta
ry

 M
et

ho
ds

.

G
en

e 
na

m
e

A
nn

ot
at

ed
 f

un
ct

io
n 

(E
C

 n
um

be
r)

H
om

ol
og

y 
Sc

or
e

P
hy

lo
ge

ne
ti

c 
pr

of
ile

 r
an

k 
(%

)
E

xp
re

ss
io

n 
pr

of
ile

 r
an

k 
(%

)
C

lu
st

er
in

g 
pr

of
ile

 r
an

k(
%

)
G

en
e 

di
st

an
ce

 
ra

nk
 (

%
)

P
ro

te
in

 f
us

io
n?

Si
gn

if
ic

an
tl

y 
be

tt
er

 a
lt

er
na

ti
ve

 
lo

ca
ti

on
?

ad
hB

1.
1.

1.
28

4 
(K

)
40

.7
/3

E
-7

4
90

90
91

83
N

Y

al
aT

2.
6.

1.
17

 (
K

)
48

.5
/3

E
-9

8
58

23
28

72
N

Y

bc
sA

2.
3.

1.
74

 (
K

, S
, M

)
29

.7
/1

E
-0

4
74

79
73

84
N

Y

bs
aA

1.
11

.1
.9

 (
K

, S
, M

)
55

/2
E

-5
1

47
57

55
52

N
Y

C
ad

4.
1.

1.
18

 (
M

)
22

.8
/2

E
-1

4
45

80
60

84
N

Y

dg
kA

2.
7.

1.
10

7 
(K

, S
, M

)
32

.3
/2

E
-1

1
64

21
55

81
N

N

hi
pO

3.
5.

1.
32

 (
K

, M
)

35
.9

/6
E

-5
9

45
64

54
8

N
N

P
ps

2.
7.

9.
2 

(K
, M

)
43

.5
/0

.0
02

44
38

71
30

N
Y

xp
t

2.
4.

2.
7 

(M
)

29
.2

/5
E

-0
7

4
1

7
12

N
N

yb
bD

3.
2.

1.
52

 (
K

)
34

.2
/1

E
-2

7
49

1
54

36
N

N

yc
gT

1.
8.

1.
9 

(K
)

29
.8

/2
E

-2
5

50
21

33
16

N
N

yh
cV

1.
1.

1.
20

5 
(K

)
37

/0
.0

02
22

68
44

46
Y

N

yh
dR

2.
6.

1.
1 

(K
)

30
.1

/3
E

-3
0

2
1

9
25

N
Y

yh
fR

5.
4.

2.
1 

(K
)

38
.3

/1
E

-1
2

22
65

22
17

N
N

yi
sP

2.
5.

1.
32

 (
K

)
27

.8
/8

E
-2

4
87

49
60

73
N

Y

yi
tC

3.
1.

3.
71

 (
K

, S
)

38
.7

/4
E

-1
8

87
42

72
10

N
N

yj
m

C
1.

1.
1.

37
 (

K
)

39
.8

/2
E

-6
0

68
30

48
37

N
Y

yk
tC

3.
1.

3.
25

 (
K

,S
)

38
.1

/2
E

-2
8

73
49

49
61

N
N

yk
uR

3.
5.

1.
47

 (
K

)
35

.6
/3

E
-4

3
75

70
50

79
N

Y

yn
gE

6.
4.

1.
3 

(K
)

40
.1

/8
E

-9
2

1
4

2
12

Y
Y

Nat Chem Biol. Author manuscript; available in PMC 2010 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hsiao et al. Page 18

G
en

e 
na

m
e

A
nn

ot
at

ed
 f

un
ct

io
n 

(E
C

 n
um

be
r)

H
om

ol
og

y 
Sc

or
e

P
hy

lo
ge

ne
ti

c 
pr

of
ile

 r
an

k 
(%

)
E

xp
re

ss
io

n 
pr

of
ile

 r
an

k 
(%

)
C

lu
st

er
in

g 
pr

of
ile

 r
an

k(
%

)
G

en
e 

di
st

an
ce

 
ra

nk
 (

%
)

P
ro

te
in

 f
us

io
n?

Si
gn

if
ic

an
tl

y 
be

tt
er

 a
lt

er
na

ti
ve

 
lo

ca
ti

on
?

yn
gF

4.
2.

1.
17

 (
K

, M
)

38
.9

/5
E

-3
9

1
2

2
14

Y
Y

yn
gI

6.
2.

1.
3 

(K
)

31
/6

E
-6

3
1

10
56

31
Y

Y

yo
aD

1.
1.

1.
95

 (
K

)
33

.8
/1

E
-3

9
1

1
24

74
N

Y

yo
gA

1.
1.

1.
1 

(K
)

29
.7

/2
E

-2
1

39
81

71
30

N
Y

yq
hT

3.
4.

11
.9

 (
K

)
34

.9
/4

E
-2

2
50

54
11

78
N

Y

yr
hE

1.
2.

1.
2 

(K
)

37
.5

/1
E

-1
29

2
60

58
51

Y
Y

ys
fC

1.
1.

3.
15

 (
K

)
27

.3
/4

E
-1

0
55

66
76

34
N

Y

yu
m

B
1.

6.
99

.3
 (

K
)

26
.6

/3
E

-2
5

1
18

26
18

N
Y

yu
m

C
1.

8.
1.

9 
(K

)
29

.3
/1

E
-2

1
81

32
35

52
N

Y

yv
cN

2.
3.

1.
5 

(K
)

28
.6

/6
E

-1
3

78
36

77
78

N
N

yv
cT

1.
1.

1.
21

5 
(K

, S
)

47
.3

/8
E

-7
9

53
59

47
49

N
Y

yw
rD

2.
3.

2.
2 

(K
)

31
.4

/9
E

-5
5

25
85

43
27

N
N

Nat Chem Biol. Author manuscript; available in PMC 2010 September 08.


