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Thermal grill conditioning: Effect 
on contact heat evoked potentials
Catherine R. Jutzeler1,2,3, Freda M. Warner1,2, Johann Wanek1, Armin Curt1 & 
John L. K. Kramer2,3

The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through 
the application of interlacing warm and cool stimuli. While previous studies have investigated optimal 
parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating 
effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing 
sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, 
while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), 
warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials 
(i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm 
conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential 
amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, 
and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of 
contact heat evoked potentials.

In 1896, Torsten Thunberg first described the paradoxical sensation of heat in response to interlaced warm and 
cool stimulation. Since these seminal observations, the “thermal grill illusion” (TGI) has been described exten-
sively using various modern stimulating devices. Of defining characteristics, the TGI is reported as a uniquely 
“unpleasant” somatosensory experience1–8. Central disinhibition related to persistent activation in polymodal 
nociceptive spinothalamic cells, coupled with reductions of activity in innocuous thermoreceptive spinothalamic 
cells has been proposed as underlying the unpleasantness of the TGI6,9,10. Neuroimaging investigations have 
demonstrated activation in prominent brain areas, including the anterior cingulate cortex (ACC)11. Activation in 
the ACC during the TGI is notable because this area has been implicated in processing unpleasant visual, audi-
tory, and olfactory stimuli12–15.

Investigating the conditioning effects of afferent stimuli on responses to noxious input has generated a wealth 
of knowledge regarding endogenous pathways modulating pain. The notion of “anti-nociception” has been largely 
explored using conditioning somatosensory input, which is typically perceived as both painful and unpleasant16–19. 
In contrast, “pro-nociception” has been demonstrated using unpleasant auditory, visual, and olfactory condition-
ing (i.e., special senses)12,14,20–24. To our knowledge, no studies have bridged anti- and pro-nociception using a 
purely unpleasant somatosensory conditioning stimulus (i.e., not perceived as painful).

The objective of the current study was to address the heterotopic conditioning effect of an unpleasant soma-
tosensory afferent stimulus (i.e., interlaced hot and cool bars) on responses to noxious contact heat stimulation. In 
line with other forms of unpleasant sensory conditioning, we hypothesized that the TGI would result in increased 
responses to noxious afferent stimulation. To explore changes in cortical activity, the conditioning effect of the 
TGI was examined using contact heat evoked potentials (CHEPs).

Material and Methods
Subjects. A total of 32 healthy control individuals (31.2 ±  6.9 years; gender: 13 female, 19 male) were recruited. 
Inclusion criteria were (1) age between 18–40 years, (2) being naïve to TGI and CHEPs, and (3) fluent in English 
or German. Exclusion criteria comprised pregnancy, intake of any medication (except birth control), and previ-
ous participation in a TGI or CHEPs study. All participants provided written informed consent and all proce-
dures described below were in accordance with the Declaration of Helsinki and approved by the local ethics board 
‘Kantonale Ethikkommission Zürich, KEK’ (ref. number: EK-04/2006; cinicaltrial.gov number: NCT02138344).
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Study protocol. Prior to the commencement of the study, all individuals were interviewed to measure pain 
catastrophizing using the German or English version of the pain catastrophizing scale (PCS)25. The PCS inves-
tigates individuals catastrophic thinking related to painful experiences. The overall reliability and validity of the 
PCS has been demonstrated in earlier studies26–29. Previous studies have demonstrated significant correlations 
with endogenous pain modulation and PCS30–32, and the TGI and PCS33.

The study consisted of three different testing days differing only by the conditioning stimulation applied (Fig. 1). 
On the first day, all individuals were familiarized with the stimulation devices (CHEPS Stimulator and Thermal Grill 
device) and the temperatures (i.e., neutral, warm, cool, and interlaced cool/warm) that would be used for condi-
tioning. All stimulation conditions were delivered using an identical device. Bars were set to either 32 °C (neutral), 
20 °C (cool), 40 °C (warm), or alternating 20/40 °C (i.e., the TGI). Each condition was presented to the individuals 
for 30 s followed by a short interview to assess whether the conditions were perceived as unpleasant or painful (yes/
no). If, and only if, a subject indicated unpleasantness or pain, they were then asked to rate the pain/unpleasantness 
by means of a numeric rating scale ranging from 0 (not unpleasant/painful at all) to 10 (very unpleasant or most 
unbearable pain). We believe that this is an important distinction from studies that cue subjects to rate unpleasant-
ness/pain without first identifying if the sensation was unpleasant/painful34. Independent of their reported percep-
tion, all individuals were asked to describe the various modalities from a list of descriptors (e.g., warm, burning, 
cool, freezing, sharp, itching, and unpleasant). The goal of the familiarization phase was to reduce the novelty factor 
and potential anxiety during the experiment. To avoid thermal carry-over effects, a 30-minute break followed the 
familiarization phase before commencing the first conditioning experiment. Half of the subjects were randomized 
to warm (all bars 40 °C) and the other half were randomized to cool (all bars 20 °C). On the second experimental day, 
all subjects underwent TGI conditioning. On day 3, subjects crossed-over into warm and cool conditions.

Figure 1. Experimental design. The study comprised of three different testing days differing only by the 
conditioning modalities applied. On the first day, all individuals were familiarized with the stimulation devices 
(CHEPS Stimulator (Pathway, Medoc, RamatYishai, Israel) and customized Thermal Grill device (http://www.
sms.hest.ethz.ch/; Engineering Department)) and the temperatures (i.e., neutral, warm, cool, and interlaced 
cool/warm) that would be used as conditioning modalities. Employing the thermal grill device, all bars were 
set to either 32 °C (neutral), 20 °C (cool), 40 °C (warm), or alternating 20/40 °C (i.e., the TGI). The individuals 
were also exposed to three contact heat stimulations delivered by the CHEPS thermode. A 30-minute break 
followed the familiarization phase upon the commencement of the first experimental session to avoid thermal 
carry-over effects. The experiment consisted of three measurement blocks of combined conditioning and 
contact heat stimulation separated by breaks of 5 minutes. For the first two blocks, neutral (32 °C) was chosen 
as the conditioning modality, while either warm (W), cool (C), or interlaced cool/warm (TGI) (i.e., pseudo-
randomized order over the three days: C/TGI/W or W/TGI/C) was presented in the third block. Each block was 
initiated with a 30 s exposure to the conditioning modality (i.e., neutral, cool, warm, or interlaced cool/warm) 
by placing the left hand on the thermal grill. Subsequently, individuals were instructed to keep the left hand on 
the thermal grill device, to fix on a point on the ceiling with their eyes, and to remain relaxed and quiet while 
recording of the 15 contact heat evoked potential stimulations (CHEPS) applied on the contralateral right hand. 
All contact heat stimulations were made from a baseline temperature of 42 °C to a peak temperature of 52 °C. 
The nominal heating rate was 70 °C/s and the cooling rate was 40 °C/s.

http://www.sms.hest.ethz.ch/
http://www.sms.hest.ethz.ch/
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During the experiment, subjects were lying in a supine position with eyes open. The experiment consisted of 
three measurement blocks of combined conditioning and contact heat stimulation separated by 5-minute rest 
breaks. The first two blocks of contact heat stimulation were delivered to the right hand during neutral (32 °C) 
conditioning. In a previous study, we observed significant reductions in CHEPs following repetitive stimulation 
in the same cutaneous area35. Based on these observations, we applied two neutral conditions to establish a stable 
CHEPs baseline from which to measure changes during conditioning. Warm, cool, or interlaced cool/warm (TGI) 
was presented in the third block to the left hand. Each block was initiated with a 30 s exposure to the conditioning 
modality (i.e., neutral, cool, warm, or interlaced cool/warm) by placing the left hand on the thermal grill stimula-
tor. Subjects were instructed to keep the left hand on the thermal grill device, to fix on a point on the ceiling with 
their eyes, and to remain relaxed and quiet while recording of the CHEPs. Examiners noted if subjects withdrew 
their hand entirely from the thermal grill for all of the conditions. A total of 15 contact heat stimuli were delivered 
at an interpulse interval of 8 to 12 seconds. Individuals were asked to rate the perceived intensity of each stim-
ulus from 0 (no pain) to 10 (most unbearable pain) two seconds after stimulation in response to an audio cue. 
To reduce receptor fatigue or sensitization by overheating of the skin36, the thermode was slightly repositioned 
following each stimulus within the right C6 dermatome (an area of approximately 4 ×  4 cm).

Stimulating device and recording. Responses to noxious stimuli were examined using a contact heat 
stimulator (Pathway, Medoc, RamatYishai, Israel). The thermode surface (diameter: 27 mm) consists of a heating 
thermo-foil covered with a layer of thermos-conductive plastic. The nominal heating rate of this device is 70 °C/s 
(thermo-foil), with a cooling rate of 40 °C/s (peltier element). From peak temperature, the thermode immediately 
returned to baseline. All measurements of contact heat stimulation were made from a baseline temperature of 
42 °C to a peak temperature of 52 °C37, yielding a pulse duration of approximately 393 ms (baseline to peak tem-
perature =  143 ms, peak temperature to baseline =  250 ms).

CHEPs were recorded with 9 mm Ag/AgCl surface disc electrodes filled with conductive adhesive gel. Scalp 
recording sites were prepared with Nuprep (D.O. Weaver & Co. Aurora, CO) and alcohol. In brief, CHEPs are 
an electrophysiological approach to explore cortical responses to A-delta afferents activated by rapid heat stimuli 
delivered peripherally. The early CHEPs component (N1) represents a direct measure of nociceptive input at 
the primary somatosensory cortex38,39. The late waveform (N2P2) reflects later stage processing of the noxious 
stimulus in the anterior cingulate gyrus and secondary somatosensory cortex38,39. Cortical recording electrodes 
were positioned according to the International 10–20 system based on available guidelines40. N2P2 was acquired 
from an active vertex recording electrode (Cz) referenced to linked earlobes (A1-A2)41–46. A contralateral tem-
poral active recording electrode (Tc) referenced to Fz was used to acquire N1 as described previously37. All sig-
nals were sampled at 2000 Hz using a preamplifier (20000x, bandpass filter 1–300 Hz, ALEA Solutions, Zurich, 
Switzerland). Data were recorded with 100 ms pre-trigger and a one second post-trigger in a LabView based pro-
gram (V1.43 CHEP, ALEA Solutions, Zurich, Switzerland). The N2P2 and N1 waveforms were visually detected 
based on the average of the 15-recorded trials.

Thermal Grill device. A customized thermal grill device was built by Sensory-motor system labora-
tory at the Swiss Federal Institute of Technology (ETH) Zurich (http://www.sms.hest.ethz.ch/; Engineering 
Department). The device is equipped with 10 bars (bar dimensions: length 99 mm, diameter 13 mm) each con-
sisting of three Peltier elements, all of which capable of dynamic cooling and heating within a minimum range 
between 18 and 42 °C. All thermoelectric bars were individually controlled by LabVIEW (LV) software (LV2010, 
Austin, TX, USA). The software was developed at the Spinal Cord Injury Center (Balgrist University Hospital, 
Zurich, Switzerland).

Statistical analysis. The statistical analysis focused on addressing changes in CHEP outcomes (rating 
and N1/N2P2 amplitude) from the neutral condition to warm, cool, and interlaced cool/warm conditioning. 
“Neutral” CHEPs outcomes were examined to determine their distribution (i.e., normality). Based on an evalu-
ation of skewness and kurtosis parametric statistics were planned. An unstructured linear mixed effects model 
was applied to examine the main effect of repeated stimulation (second neutral and conditioned) and interaction 
effect with different condition modalities (warm, cool, interlaced warm and cool). The advantage of the LMM 
is that one can account for missing data when analyzing longitudinal data47. From this model, we were most 
interested to determine if conditioning differentially impacted CHEPs outcomes (i.e., interaction effect). In the 
case of a significant interaction effect, pair-wise comparisons (t-tests) were planned to examine changes in the 
corresponding CHEPs outcome.

We next considered the relationship between rating of unpleasantness and changes in CHEP outcomes dur-
ing TGI conditioning. Changes in N1/N2P2 amplitude and pain rating (from the second neutral condition to 
TGI conditioning) were examined using separate analysis of variance (ANOVA) for N1 and N2P2. The effect of 
unpleasantness was first examined by way of dichotomizing subjects as “responders” and “non-responders”. TGI 
responders were defined as any subject that reported the TGI as more unpleasant than warm and cool conditions. 
Non-responders perceived the TGI as equally or less unpleasant than warm or cool conditioning. Responders/
Non-responders was treated as a between subject factor in the models. In order to further explore the relationship 
between perception and changes in CHEPs outcomes, a second ANOVA explored the effect of TGI unpleasant-
ness as a covariate.

All statistical testing was performed in SPSS (V. 23) and statistical significance was set at p <  0.05.

http://www.sms.hest.ethz.ch/
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Results
Subjects. Out of 32 healthy subjects enrolled in the study 4 had to be excluded due to: 1) technical problems 
during data acquisition (n =  2) and 2) intolerance of the contact heat stimuli applied (n =  2). The remaining 28 
subjects comprised of 11 men and 17 women (mean age: 29.4 ±  6.3 years). The mean score of the PCS question-
naire was 11.9 ±  7.7. Participants’ characteristics are summarized in Table 1.

Perception of neutral, cool, warm, and interlaced cool/warm. During exposure to the neutral con-
dition (32 °C), no unpleasantness or pain was reported. The cool modality was reported to be unpleasant by five 
individuals (NRSunpleasantness =  3.2 ±  2.8) and painful by one individual (NRSpain =  2 ±  0). In response to warm 
conditioning, four individuals reported unpleasantness (NRSunpleasantness =  1 ±  0) and one pain (NRSpain =  1). The 
descriptors used for cool stimulation were cool (n =  18), cold (n =  9), and freezing (n =  1). The warm modality 
was described as warm (27) and burning (1). A total of 13 individuals indicated the interlaced application of cool/
warm to be unpleasant (NRSunpleasantness =  3.7 ±  2.1) (summarized in Table 1). The descriptors used by the indi-
viduals during the TGI were unpleasant (n =  13), weird (n =  6), confusing (n =  5), hot (n =  4), burning (n =  4), 
painful (n =  3), and irritating (n =  2). Fourteen individuals spontaneously withdrew their hand in relation to the 
TGI. All individuals who initially withdraw were able to return their hand for measurement of CHEPs. None of 
the subjects withdrew their hand to warm or cool conditions. Overall, 10 subjects reported higher unpleasantness 
during the TGI compared to warm and/or cool conditions (i.e., TGI responders).

Effects of heterotopic conditioning on CHEPs (warm, cool, TGI). Summary N1 and N2P2 ampli-
tudes, latencies for N1 as well as N2 and P2, and pain ratings of three different conditions (i.e., warm, cold, and 
TGI) are presented in Table 2.

N2P2 amplitude was significantly affected by the heterotopic conditioning stimulation (main effect: df =  23.7, 
F =  23.70, p <  0.001), which depended on the conditioning modality (interaction effect: df =  27.3, F =  9.16, 
p <  0.001). Significant decreases were observed between during warm (t =  6.02, p <  0.001) and cool conditioning 
(t =  4.97, p <  0.001). In contrast, N2P2 amplitude was significantly increased during interlaced warm and cool 
conditioning (t =  3.05, p =  0.005) (Fig. 2).

There was no significant effect of repeated stimulation on N1 amplitude (main effect: df =  20.0, F =  0.02, 
p =  0.89). The modulation of N1 amplitude was, however, dependent on the conditioning modality (interaction 
effect: df =  19.4, F =  8.32, p =  0.002). During cool conditioning, N1 amplitude significantly decreased (t =  2.52, 
p =  0.02). While warm conditioning had no significant effect (t =  0.14, p =  0.892), TGI conditioning significantly 
increased N1 amplitude (t =  2.54, p =  0.021) (Fig. 2). There was no main effect of stimulation or interaction effect 
for ratings to CHEP stimulation.

Relationship between TGI unpleasantness and changes in N1/N2P2 amplitude. “Responders” 
and “non-responders” yielded similar changes in N1 (df =  18, F =  0.017, p =  0.899) and N2P2 amplitudes (df =  26, 
F =  0.911, p =  0.349). As a covariate, there was no effect of “unpleasantness” rating on N1 (df =  18, F =  1.148, 
p =  0.298) or N2P2 amplitude (df =  26, F =  2.721, p =  0.111).

Parameter

N 28

Gender [male:female] 11:17

Age [years] 29.4 ±  6.3

Height [cm] 171.7 ±  8.7

Pain Catastrophizing Score 11.9 ±  7.7

Neutral unpleasantness [yes:no] 0:28

Neutral pain [yes:no] 0:28

Cold unpleasantness [yes:no] 5:23

 Rating [NRS]* 3.2 ±  2.8

Cold pain [yes:no] 1:27

 Rating [NRS]* 2 ±  0

Warm unpleasantness [yes:no] 4:24

 Rating [NRS]* 1 ±  0

Warm pain [yes:no] 1:27

 Rating [NRS]* 1 ±  0

TGI unpleasantness [yes:no] 13:15

 Rating [NRS]* 3.7 ±  2.1

TGI pain [yes:no] 3:25

 Rating [NRS]* 3.7 ±  2.5

Table 1.  Demographic and clinical details of the study sample. *Rating was only given by those individuals 
who indicated unpleasantness or pain, respectively. NRS: Numeric rating scale (0 =  no pain, 10 =  most 
bearable pain). TGI: Thermal Grill Illusion (interlaced application of cold and warm). Results are displayed as 
mean ±  standard deviation.
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Discussion
In the 100-year history of the TGI, research has focused primarily on establishing the quality of sensation 
unmasked by stimulating with interlaced, innocuous warm and cool stimuli3,5,6,48. Others have examined factors 
that influence the perception of unpleasantness resulting from the thermal grill (e.g., spatial representation)7,49–51. 
In the present study, we applied the TGI as a heterotopic conditioning stimulus and revealed the discrete facilita-
tion of cortical responses to noxious afferent input.

Several lines of converging evidence indicate an important distinction between early and late CHEP wave-
forms, whereby N1 represents a direct measure of nociceptive input and activation in the primary somatosensory 
cortex, and N2 and P2 represents later stage processing in the ACC and secondary somatosensory cortex38,52–54. 

Group Time-point of Stimulation

Cold Neutral 32 °C Cold 20 °C

N2 Latency [ms] 267.5 ±  24.1 268.2 ±  26.3

P2 Latency [ms] 394.8 ±  51.7 391.8 ±  45.4

N2P2 Amplitude [μ V] 34.5 ±  12.9 30.1 ±  11.7

Pain rating (NRS) 4.2 ±  2.7 4.0 ±  1.7

N1 Latency [ms] 210.9 ±  48.8 214.3 ±  31.5

N1 Amplitude [μ V] − 7.8 ±  3.1 − 6.2 ±  3.5

Warm Neutral 32 °C Warm 40 °C

N2 Latency [ms] 275.8 ±  26.7 275.8 ±  11.3

P2 Latency [ms] 393.63 ±  38.8 397.5 ±  35.1

N2P2 Amplitude [μ V] 33.3 ±  12.1 28.9 ±  11.3

Pain rating (NRS) 3.5 ±  1.6 3.5 ±  1.6

N1 Latency [ms] 231.38 ±  26.4 219.7 ±  23.6

N1 Amplitude [μ V] − 6.8 ±  2.6 − 6.9 ±  3.1

TGI Neutral 32 °C TGI 20/40 °C

N2 Latency [ms] 273.2 ±  36.3 267.9 ±  25.5

P2 Latency [ms] 388.2 ±  45.0 384.6 ±  42.4

N2P2 Amplitude [μ V] 33.0 ±  12.7 36.2 ±  13.6

Pain rating (NRS) 4.0 ±  1.6 4.3 ±  1.8

N1 Latency [ms] 222.0 ±  20.5 223.3 ±  24.5

N1 Amplitude [μ V] − 6.8 ±  1.8 − 8.0 ±  2.6

Table 2.  Contact heat evoked potentials: Summary of N2 and P2 latencies, N2P2 amplitude, N1 latency, N1 
amplitude, and pain rating. Results are displayed as mean ±  standard deviation. ‡Bonferroni corrected.

Figure 2. Effect of the condition modalities (cool, warm, TGI) on cortical responses to noxious heat 
stimulation (N2P2 and N1 amplitudes). (A) N2P2 and (B) N1 changes in amplitude during cool, warm, and 
TGI conditioning (+ /− standard error). Only TGI conditioning resulted in facilitation of cortical responses 
to noxious heat stimulation. Averaged N2P2 and N1 waveforms (C,D), demonstrating facilitation of CHEPs 
during TGI conditioning.
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Based on this physiological distinction, CHEPs have the potential to differentiate modulation occurring at dif-
ferent levels along the neuroaxis. Cortical modulation has been proposed based on reduced N2P2 amplitude in 
the absence of N1 changes (e.g., placebo analgesia)55. In contrast, changes in N1 and N2P2 amplitude have been 
purported as evidence of subcortical modulation (e.g., caloric vestibular stimulation and touch)56,57.

Based on increases in both N1 and N2P2 amplitude during TGI conditioning, it is intriguing to consider that 
responses to noxious heat were modulated sub-cortically. One potential explanation is that modulation occurs 
at the spinal level. Previous investigations have demonstrated increases in nociception during unpleasant audi-
tory22,58, visual12,15,23,24,59, and olfactory conditioning60. Closely related to our observations, unpleasant visual stim-
uli have been shown to increase perception and the amplitude of electrical evoked pain related potentials23. In 
line with facilitation of N1 and subcortical modulation, the nociceptive flexion reflex is enhanced by unpleasant 
visual conditioning12,24,59,61–63. The facilitation of unpleasant visual stimuli at the spinal level has been attributed 
to activation in the amygdala, which projects to structures involved in descending control64.

Interestingly, however, TGI related unpleasantness did not have a significant effect on the magnitude of 
changes in CHEPs – that is, TGI responders demonstrate increases comparable to non-responders. In our 
study, 10/28 healthy subjects described the TGI as more unpleasant than warm and cool conditioning (respond-
ers =  36%). This number is somewhat lower than previous studies3, and may be related to differences in stimu-
lation protocol (e.g., 40/16 °C versus 40/20 °C), how unpleasantness was assessed, and/or variable pressures that 
subjects manually applied to the thermal grill.

The lack of a relationship between unpleasantness and the facilitation of CHEPs may be a function of under-
powered statistics (i.e., only 10 subjects reporting TGI as distinctly unpleasant). More generally, problems may 
arise from defining “responders”. In the current study, a responder had to identify the TGI as more unpleas-
ant than either warm or cool conditions. Some subjects did not report TGI as “unpleasant” but still physically 
removed their hand during presentation with interlaced warm and cool bars. This reflexive motor response 
could be construed, at some level, as evidence of discomfort or unpleasantness associated with the thermal grill. 
Alternatively, withdrawal (and other descriptors commonly applied, e.g., “weird”) may reflect the TGI as a “met-
aesthesic” sensation65 – that is, sensation before pain, which is sometimes (but not always) described as unpleas-
ant2. At the core of the problem are confounding variables that contribute to whether an individual reports the 
thermal grill as unpleasant. Regardless, the ubiquitous facilitation of CHEPs suggests that processes (e.g., central 
disinhibition) underlying the TGI are independent of subjective perception.

Future directions and limitations. The current study was designed with all subjects undergoing the TGI 
on the second day of testing. Subjects were randomly assigned to cool or warm for the first session, and crossed 
into the other condition at the third session. This design was intended to overcome the problem that varying the 
time from the original familiarization period could influence future responses to the TGI. One potential problem 
with this approach is that the conditioning effect of TGI on CHEPs may depend on whether the warm or the cool 
condition came first. We also cannot rule out that the “TGI-effect” on CHEPs was related to being tested on day 2.

Another limitation is that we did not specifically assay changes in arousal. Previous studies demonstrate a 
strong attention/vigilance component for N2P2, and, to a lesser extent, N139,66–68. Increased arousal related to the 
TGI may then explain, in part, facilitated CHEPs. Increased arousal has been reported in response to the TGI34. 
In this previous study, greater arousal was related to more unpleasantness34. In order to explain the facilitation of 
CHEPs, because there was no relationship between unpleasantness and increases in N1 and N2P2 amplitude, the 
TGI would have had to increase arousal in “non-responders”. Otherwise, the effect of arousal on CHEPs would be 
bundled into the effect of unpleasantness. Additional investigation is warranted to clarify the effect of the TGI on 
arousal. Examining cortical responses to other forms of non-noxious stimulation (e.g., electrical) should also be 
considered to determine if the effect of TGI is specific to noxious stimulation.

Conclusion
In summary, this is the first study providing evidence that heterotopic TGI conditioning facilitates nociceptive 
evoked potentials. Based on the pattern of facilitation (i.e., both N1 and N2P2), the TGI modulated CHEPs 
sub-cortically (e.g., spinal cord). Facilitation occurred independently of reported unpleasantness, suggesting that 
the TGI has a similar pro-nociceptive effect regardless of how it is perceived. Future studies are warranted to 
further examine the somatosensory conditioning effects of the TGI on cortical responses to afferent stimulation.
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