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Abstract: Prenatal nutrient exposures can impact on brain development and disease susceptibility
across the lifespan. It is well established that maternal macronutrient intake during pregnancy
influences foetal and infant development. Therefore, we hypothesise that macronutrient intakes
during pregnancy are correlated with cognitive development during early childhood. The current
study aimed to investigate the relationship between maternal macronutrient intake during pregnancy
and child cognitive and behavioural outcomes at age 4 years. We analysed prospective data from a
cohort of 64 Australian mother–child dyads. Maternal macronutrient intake was assessed using a
validated 74-item food frequency questionnaire at 2 timepoints during pregnancy. Child cognition
and behaviour were measured at age 4 years using the validated Wechsler Preschool and Primary
Scale of Intelligence, 3rd version (WPPSI-III) and the Child Behaviour Checklist (CBC). Linear
regression models were used to quantify statistical relationships and were adjusted for maternal
age, education, pre-pregnancy BMI, breastfeeding duration and birthweight. Child Performance
IQ was inversely associated with maternal starch intake (b = −11.02, p = 0.03). However, no other
associations were found. Further research is needed to explore the association between different
types of starch consumed during pregnancy and child cognitive development.

Keywords: pregnancy; nutrition; cognition; behaviour; development; macronutrients

1. Introduction

The Developmental Origins of Health and Disease (DOHaD) hypothesis postulates
that environmental exposures in utero or during the postnatal period may alter develop-
mental physiology and susceptibility to disease across the lifespan [1]. Inadequate nutrition
during pregnancy and the first 3 years of life may result in permanent functional changes
in the brain and lead to psychopathology including schizophrenia [2] and antisocial ex-
ternalizing behaviour, as this period is critical for brain growth [3,4]. Approximately 2 to
3 weeks after conception, foetal brain growth commences with the formation of the neural
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tube [5]. This is followed by significant neuronal proliferation, differentiation and migra-
tion during early gestation (8–22 weeks) [5]. Synaptogenesis, apoptosis and myelination are
life-long neurological processes that commence during late gestation (24–35 weeks gesta-
tion) [5]. Adequate nutrients are necessary for the functioning of these neurodevelopmental
processes [6].

The link between maternal nutrition and foetal brain development is clearly estab-
lished from the analyses of offspring from the Dutch Winter Hunger famine of 1944–
1945 [7,8]. These studies report that the risk of a psychiatric disorder during adulthood
was higher in the offspring that were exposed to severe prenatal famine [7,8]. Emerg-
ing evidence also suggests that maternal overnutrition, an energy imbalance resulting
in overweight and obesity, is associated with behavioural disorders in the offspring in-
cluding attention deficit-hyperactivity disorder and autism spectrum disorder [9–11]. The
functional changes in the brain caused by maternal nutritional insults maybe partially
explained by epigenetic mechanisms including DNA methylation [12–14]. Studies con-
ducted in the Gambia, a country in West Africa, indicate that seasonal fluctuations in
maternal nutrient intake are correlated with DNA methylation patterns in the offspring at
2–8 months [15,16]. These findings suggest that adequate maternal nutrition is important
for preventing aberrant DNA methylation patterns and phenotypes.

Maternal macronutrient intake is known to impact on foetal and infant growth [17–20].
Sloan et al. (18) reported that both low-protein (<50 g) and high-protein (≥85 g) during
pregnancy has a quadratic (U-shaped) relation with foetal growth. Evidence suggests that
impaired placental transport and umbilical uptake of amino acids may explain this rela-
tionship [21–23]. The Women and Their Children’s Health (WATCH) study, a prospective
longitudinal birth cohort of 156 mother–child dyads, previously reported that maternal
macronutrient profile was associated with foetal body composition [24]. Higher foetal
abdominal fat was correlated with low maternal protein intake (<16% of total energy),
while mid-thigh fat was highest at intermediate protein (18–21% of total energy), high fat
(>40% of total energy) and low carbohydrate (<40% of total energy) intake [24]. While
analysing the impact of maternal macronutrient intake on foetal and infant brain com-
position is not ethical in living human subjects, animal models have shown that protein
restriction during pregnancy impairs the micro-structure of the foetal brain rather than al-
tering the total brain weight [25]. A low protein intake during pregnancy adversely affects
dendrite numbers [26], morphology of hippocampal cells [27], mossy fibre (MF) axonal
area [28,29], synaptic spine complexity [27,30] and polyunsaturated fatty acid (PUFA) brain
content [31,32]. Furthermore, animal studies have shown that maternal protein restriction
is correlated with deficits in cognitive and behavioural function in offspring [30,33–35].

Currently, at a global and national scale, there is a lack of public health strategies
for the prevention neurodevelopmental disorders [36]. Given the known link between
maternal nutrition during pregnancy and future of health of the offspring [1], nutrition
is one area that could be targeted. To date, human studies have primarily focused on the
consequences of maternal micronutrient intake rather than macronutrient profile on child
cognitive and behavioural function [37,38]. This is important as macronutrients (carbo-
hydrates, protein and fat) are the main contributors to maternal and foetal energy intake,
which is essential for foetal cellular and tissue growth [17–19]. In the human brain, glucose
derived from dietary carbohydrates is the primary energy source; protein is required for
the synthesis of neurotransmitters, enzymes and cell membranes; fat is abundant in the
structural matrix of cell membranes, as well as myelin [39,40]. These roles and functions
indicate that macronutrients are essential for optimal brain development and function.
We hypothesise that maternal macronutrient profile during pregnancy is associated with
child cognitive outcomes. This evidence will be important for informing dietary recom-
mendations during pregnancy for supporting optimal child cognitive development and
preventing neurodevelopmental disorders. Therefore, the aim of the current study was to
investigate the relationship between maternal macronutrient intake during pregnancy on
child cognitive and behavioural outcomes at age 4 years in an Australian population.
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2. Materials and Methods
2.1. Study Population

The current study analysed prospective data from pregnant women and their children
enrolled in The Women and Their Children’s Health (WATCH) study [41]. Pregnant women
were recruited from the antenatal clinic at the John Hunter Hospital (JHH), New South
Wales (NSW), Australia, from July 2006 to December 2008. Women were eligible for this
study if they were: (1) less than 18 weeks pregnant, (2) lived in the local or neighbouring
areas, and (3) were able to attend the JHH for study visits. Women were recruited by
midwives, local media coverage, or by word of mouth. A consent rate of 61% was achieved
for the pregnant women who were approached to participate in this study and 182 women
were enrolled [42]. The recruitment, withdrawals and attendance of study participants
have been described previously [43]. Women attended study visits during pregnancy at
approximately 19, 24, 30 and 36 weeks gestation. Women and their children attended
postnatal study visits at 3-monthly intervals during the first 12 months after birth, and then
annually until the age of 4 years. Study visit attendance and participant withdrawals are
reported in Figure 1. The WATCH study received ethics approval from the Hunter New
England Research Ethics Committee (06/05/24/5.06) and therefore has been performed in
accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its
later amendments. All participants gave written informed consent prior to their inclusion
in this study. The reporting of this study adheres to The Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting
observational studies [44].

2.2. Dietary Assessment

Dietary assessment methods used in the WATCH study have been described in detail
elsewhere [24,41,45]. Briefly, dietary data during pregnancy were collected between 18
and 24 weeks and again between 36 and 40 weeks gestation. Dietary data were collected
using the validated food frequency questionnaire (FFQ) and the Dietary Questionnaire for
Epidemiological studies (DQES) version 2 [46]. The DQES has previously demonstrated an
acceptable level of accuracy for estimating nutrient intake compared to 7 day weighed food
records in women (n = 63) of child-bearing age [47]. The self-administered questionnaire
required the women to use a 10-point frequency scale to report usual consumption of
74 foods (excluding vitamin and mineral supplements) and 6 alcoholic beverages over
the previous 3 months. The 10-point frequency scale using categories ranged from never
to three or more times per day. Photographs were used to represent different serving
sizes for vegetables, potatoes and meat casserole dishes [46]. These photographs enabled
the calculation of a portion factor to account for variations in serving size. The dietary
data collected between 18 and 24 weeks and again between 36 and 40 weeks of gestation
are referred to as reference periods of 6–24 weeks of gestation (early pregnancy) and
24–40 weeks of gestation (late pregnancy), respectively. The WATCH cohort has previously
reported positive pairwise correlations between all dietary variables in early and late
pregnancy (0.46 < r < 0.78; p < 0.001) [24]. Therefore, maternal dietary intakes during
pregnancy were expressed as the mean of intakes during early and late pregnancy.
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Figure 1. Flowchart of mother–child pairs enrolled in the WATCH cohort and included in the
statistical analysis.
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2.3. Dietary Analysis

The DQES is a computer-scannable questionnaire purchased at a price that includes
dietary analysis by the FFQ distributor, Cancer Council Victoria. Nutrient intakes were
quantified from the Nutrient Tables-1995 (NUTTAB-1995) database. Dietary analysis results
were provided in a Microsoft Excel format to facilitate data importation for statistical
analysis.

2.4. Cognition and Behavioural Assessment
2.4.1. Cognition

Child cognition was assessed using the Wechsler Preschool and Primary Scale of
Intelligence (WPPSI-III Australian) [48] which is suitable for children aged 4 to 7.3 years
(PsychCorp, Sydney, Australia). The cognitive assessments were individually administered
by a research psychologist at the 4 year study visit. The WPPSI-III is widely cited for
preschool children and has satisfactory criterion validity, correlating with the Wechsler
Preschool and Primary Scale of Intelligence, revised version (WPPSI-R), the Wechsler
Intelligence Scale for Children, 3rd edition (WISC-III) and the Wechsler Intelligence Scale
for Children, 4th edition (WISC-IV) [49,50]. The scale produces 3 main composite scores—
the Full Scale Intelligence Quotient (FSIQ), the Performance Intelligence Quotient (PIQ)
and the Verbal Intelligence Quotient (VIQ)—as well as 2 additional composite scores, the
Processing Speed Quotient (PSQ) and the General Language Composite (GLC). The PIQ
is derived from the scores of 5 subtests, which include Block Design, Matrix Reasoning,
Picture Concepts, Picture Completion and Object Assembly. The VIQ is derived from scores
of 5 subtests, which include information, vocabulary, word reasoning, comprehension and
similarities. The PSQ is derived from the scores of 2 subtests— symbol search and coding.
The GLC is derived from the scores of 2 subtests— receptive vocabulary and picture
naming. The raw scale scores were converted to standardised scores according to the
child’s age. The Full Scale IQ is the combined standardised scores derived from both the
Performance IQ and Verbal IQ. All composite scores have a mean of 100 and a standard
deviation of 15.

2.4.2. Behaviour

Child behaviour was assessed using the Child Behaviour Checklist (CBC) for children
aged 1.5 to 5 years [51], which has demonstrated internal accuracy of the scale across
22 countries, including Australia [52]. The behaviour assessments were completed by
the primary caregiver of the child during their 4 year study visit. The checklist contains
113 behavioural/emotional problem items (questions) in 8 syndrome scales. The syndrome
scales include anxious/depressed, withdrawn/depressed, somatic complaints, social prob-
lems, thought problems, attention problems, rule-breaking behaviour, and aggressive
behaviour. The first 3 syndrome scales (anxious/depressed, withdrawn-depressed, and
somatic complaints scores) combined to produce the internalizing problems score (inter-
nalizing broadband scale), and the last 2 syndrome scales (rule-breaking and aggressive
behaviour) produce the externalizing problems score (externalizing broadband scale). The
Total Behaviour Problem Scale summarises the scores obtained across all scale scores.
The checklist items are rated by the child’s parent on a 3-point scale, ‘not true’ (0 point),
‘sometimes true’ (1 point) and ‘often true’ (2 points). Scores of the scales are interpreted as
normal, borderline or clinical behaviour.

2.4.3. Participant Characteristics

Sociodemographic, maternal, and medical data were collected from WATCH pregnant
women during their first study visit, as previously reported [43].

2.5. Statistical Analysis

Maternal and child characteristics were summarised using median and interquartile
range (IQR) for continuous variables, and frequencies and percentages for categorical
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variables. The maternal characteristics of the WATCH women (n = 69) included in this study
were compared to women that were excluded due to missing dietary and/or cognition
and behaviour data (n = 113) using Fisher’s exact tests. Further comparisons were made
between the maternal age of both groups using a two-sample t-test. During early and late
pregnancy, mean maternal intakes of energy, protein, total fat, saturated fatty acids (SFA),
monounsaturated fatty acids, PUFA, omega-3 (n − 3) fatty acids, omega-6 (n − 6) fatty acids,
total carbohydrate, total sugars (including fructose, glucose, sucrose, maltose, lactose and
galactose), starch (polysaccharides including amylose, amylopectin, glycogen and dextrins)
and fibre (souble and non-souble sources including non-starch polysaccharides and lignin)
were expressed as kilojoules (KJ), total intakes (grams), percentage of total energy intake
(%E), and the ratio of protein to carbohydrate (P:C) and ratio of fatty acids n − 6:n − 3.
Nutrient intakes were adjusted for energy using the residual method [53]. Child body mass
index (BMI) was converted to z-scores using the World Health Organization (WHO) Child
Growth Standard references data [54]. To address potential misreporting of dietary intake,
the pregnancy energy cut-off values recommended by Meltzer et al. [55] were applied which
excluded women who reported daily energy intakes <4.5 or >20.0 MJ/day. Robust linear
regression models were developed to determine the association of maternal macronutrient
intake on child cognitive and behavioural outcomes. Maternal macronutrient intake data
were transformed (natural logarithm) to achieve linearity. Analyses were adjusted for
maternal age, education, pre-pregnancy BMI, birthweight and duration of breastfeeding
(weeks) as they are significant predictors for child cognitive and behavioural outcomes.
Sensitivity analyses were conducted using linear regression models that were not adjusted
for total energy intake nor confounders to assess the impact on the study results. All tests
assumed a 5% significance level. All statistical analyses were performed using STATA 13
(Stata, College Station, TX, USA).

3. Results

Of the 182 women recruited, 69 women provided dietary data during early (6–24 weeks
gestation) and late pregnancy (24–40 weeks gestation) (Figure 1). Five women reported
implausible dietary intakes and were excluded from the analysis. Maternal dietary data
and child cognition data were available from 58 mother–child dyads, while maternal di-
etary data and child behavioural data were available from 51 mother–child dyads. The
characteristics of the WATCH mother–child dyads are summarised in Table 1. In summary,
the characteristics of the women were median (IQR) 29 (7) years of age, married (63%),
with 36% having attained a university degree and 89% were non-smokers. Birthweights
were median (IQR) 3590 (770) grams.

Sociodemographic, maternal, and medical data were self-reported by the participants
in a questionnaire.

Cognition scores at age 4 years were: Full Scale IQ 108 (99–114), Verbal IQ 105 (98–111),
Performance IQ 107 (100–118), PSQ 108 (101–114) and GLC 108 (97–117). For Full Scale IQ
66% of the WATCH children exceeded the mean ± SD of Australian norms (100 ± 15) [51].
The median(IQR) behaviour scores at age 4 years were: emotionally reactive 54 (50–81),
anxious/depressed 54 (50–73), somatic complaints 50 (50–62), withdrawn 73 (54–84), sleep
problems 54 (50–73), attention problems 54 (50–76), aggressive behaviour 50 (50–73), and
stress 62 (54–90), total problems 50 (17–69), internalizing 46 (24–79) and externalizing 38
(16–76). For total problems, internalizing and externalizing behaviour, 38%, 39% and 33%
of the WATCH children exceeded the American norms (50 ± 10), respectively [51].

The maternal macronutrient composition of the dietary intakes of the pregnant women
are summarised in Table 2. Carbohydrate intake (median: 42% of total energy intake) of
the WATCH cohort was within the acceptable macronutrient distribution range (AMDR)
of 45–65% of total energy intake [56]. Median starch intake was 99.2 g per day. Currently,
there is no nutrient reference value (NRV) set for starch intake and, therefore, low, medium
and high consumers could not be determined. Protein intake (median: 19% of total energy
intake) was within the AMDR of 5–20% of total energy intake [56]. Total fat intake (median:
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37% of total energy intake) of the WATCH women was above the AMDR of 20–35% of
total energy intake [56]. Maternal saturated fat intake (median: 16% of total energy intake)
exceeded the AMDR of ≤10% of total energy intake, consistent with other studies [57–59].

Table 1. Characteristics of the WATCH mother–child dyads included in the analysis (n = 64).

Characteristics

Pregnant Women Median (IQR) 1 Range Difference

Maternal Age (y) 29 (7) 22.4
Education n %

No formal qualification 1 1.6
Year 10 or equivalent 10 16
Year 12 or equivalent 11 17
Trade/apprenticeship 2 3.1
Certificate/diploma 14 22
University degree 23 36

Higher university degree 3 4.7
Missing 0 0

Household Weekly Income n %
No income 0 0

$AUD 1 1–299 4 6
$AUD 1 300–699 13 20
$AUD 1 700–999 13 20

$AUD 1 1000 or more 30 47
Unsure 4 6
Missing 0 0

Marital Status n %
Never married 20 32

Married 40 63
Separated/divorced 3 4.8

Widowed 0 0
Missing 1 1.6

Maternal Smoking n %
Yes 7 11
No 57 89

Missing 0 0
Maternal Depression n %

Yes 17 27
No 46 72

Missing 1 1.6
Maternal Anxiety n %

Yes 9 14
No 54 84

Missing 1 1.6
Previous Live Births(>37 Weeks Gestation) n %

None 34 53
1–2 26 41
3–4 4 6.2
>5 0 0

Missing 0 0
1 $AUD, Australian dollars; IQR, interquartile range.
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Table 2. Maternal dietary composition * during pregnancy (n = 69).

Nutrients Daily NRVs Daily Intake % of Energy

Energy (KJ) 7095.7 (5860.3,
8610.73) n/a

Protein (g) 5–20 † 78.5 (66.0, 101.7) 19.4 (17.8, 21.1)
Total fat (g) 20–35 † 71.2 (58.1, 85.9) 37.3 (34.2, 39.7)

SFA (g) ≤10 † 29.4 (23.2, 36.9) 15.9 (13.1, 17.7)
PUFA (g) 10.9 (8.1, 13.0) 5.2 (4.4, 6.5)
MUFA (g) 24.5 (19.9, 29.4) 12.7 (11.8, 13.9)

Total carb. (g) 45–65 † 181.8 (153.7, 234.3) 42.1 (39.5, 44.8)
Sugars (g) ≤25% † 89.9 (72.3, 110.6) 19.9 (17.3, 22.0)
Starch (g) 96.9 (79.6, 118.2) 21.3 (20.0, 23.6)
Fibre (g) 25 (AI) § 19.4 (15.1, 23.7) 4.3 (3.7, 4.9)

P:C ratio (g) 2.0 (1.0, 3.0) n/a
Energy-adjusted
values (n = 64)

Energy (KJ) 7317.0 (5984.2, 8706.3) n/a
Protein (g) 5–20 † 81.1 (69.2, 103.6) 19.2 (17.7, 21.0)
Total fat (g) 20–35 † 72.3 (60.4, 87.4) 37.3 (34.7, 40.0)

SFA (g) ≤10 † 30.3 (25.0, 38.8) 16.0 (13.4, 17.8)
PUFA (g) 11.2 (8.8, 13.1) 5.2 (4.4, 6.6)
MUFA (g) 24.9 (20.9, 31.4) 12.6 (11.8, 13.9)

Total carb. (g) 45–65 † 186.1 (156.8, 237.6) 42.0 (39.5, 44.7)
Total Sugars (g) ≤25% † 92.6 (74.3, 113.2) 19.9 (16.6, 22.0)

Starch (g) 99.2 (80.4, 120.9) 21.3 (19.8, 23.7)
Fibre (g) 25 (AI) § 20.9 (15.7, 24.3) 4.2 (3.6, 4.9)

P:C ratio (g) 2.0 (1.0, 3.0) n/a
* All values are medians (25th and 75th percentiles). AI, adequate intake; carb., carbohydrate; P:C, protein-to-
carbohydrate; SFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty acids;
NRVs, nutrient reference values. All values are medians (25th and 75th percentiles). † Food and Nutrition Board:
Institute of Medicine (FNB: IOM) reference values used for adults—carbohydrates: 45–65% energy intake, added
sugar: ≤25% of total energy intake, protein: 5–20% energy intake, total fat: 20–35% energy intake, and saturated
fatty acids: ≤10% energy intake. § National Health and Medical Research Council (NHMRC) Nutrient Reference
Values for women aged 19–50 years.

Results of the mixed-models regression analyses examining the association between
macronutrient composition during pregnancy and child cognitive and behavioural out-
comes are provided in Tables 3 and 4. There was a non-significant trend indicated for each
log-transformed additional gram of total carbohydrate intake consumed during pregnancy,
child Performance IQ decreased (worsened) by approximately 15% (25 points out of a
maximum score of 160). The log-transformed maternal starch intake during pregnancy was
negatively associated with performance IQ (b = −11.02, p = 0.03). For each log-transformed
additional gram of starch consumed during pregnancy, child performance IQ was lower by
approximately 11 points out of a maximum score of 160. Based on the R-squared value,
26% of the variation in the outcome was accounted for in the linear regression model.
Although this association was not statistically significant when maternal starch intake was
not adjusted for energy intake (b = −8.06, p = 0.07 (Table S1)). We have estimated that the
Australian Guide to Healthy Eating (AGHE) [60] core food groups (i.e., bread and cereals,
vegetables, fruit, dairy and alternatives, meat and alternatives) and the non-core foods (i.e.,
energy-dense nutrient poor foods that provide 600 KJ per serve) contributed to 76% and
24% of maternal starch intake per day (data not shown).
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Table 3. Association of maternal dietary composition during pregnancy with child cognition out-
comes up to age 4 years (n = 58).

Variables 1 Beta-Coefficient 95% Confidence Interval p-Value 2 R-Value

Full Scale IQ

Energy −1.27 −11.45 to 8.91 0.80 0.15

Protein (% E) 5.29 −19.53 to 30.10 0.68 0.16

Total fat (% E) 14.01 −9.19 to 37.20 0.23 0.18

PUFA (% E) 1.70 −6.96 to 10.37 0.70 0.15

CHO (% E) −20.55 −46.12 to 5.01 0.11 0.19

P:C ratio −0.73 −7.20 to 5.75 0.82 0.15

Protein (g) 0.33 −9.79 to 9.13 0.94 0.15

PUFA (g) 0.53 −6.61 to 7.67 0.88 0.05

Total sugars (g) −0.51 −8.50 to 7.49 0.90 0.15

Starch (g) −6.81 −16.02 to 2.40 0.14 0.19

Verbal IQ

Energy 3.79 −9.73 to 17.31 0.58 0.06

Protein (% E) −1.51 −34.61 to 31.59 0.93 0.05

Total fat (% E) 19.83 −10.80 to 50.45 0.20 0.08

PUFA (% E) 0.20 −11.21 to 11.61 0.97 0.05

CHO (% E) −19.41 −53.73 to 14.91 0.26 0.07

P:C ratio −3.56 −12.12 to 5.00 0.41 0.06

Protein (g) 3.05 −9.51 to 15.62 0.63 0.05

PUFA (g) 1.98 −7.45 to 11.41 0.68 0.05

Total sugars (g) 2.46 −8.16 to 13.09 0.64 0.05

Starch (g) −2.23 −14.75 to 10.27 0.72 0.05

Performance IQ

Energy −5.75 −17.14 to 5.64 0.32 0.20

Protein (% E) 14.14 −13.68 to 41.96 0.31 0.20

Total fat (% E) 11.70 −14.69 to 38.11 0.38 0.20

PUFA (% E) −0.39 −10.19 to 9.42 0.94 0.19

CHO (% E) −24.67 −53.48 to 4.14 0.09 0.23

P:C ratio 1.85 −5.46 to 9.15 0.61 0.19

Protein (g) −2.91 −13.56 to 7.74 0.59 0.19

PUFA (g) −3.09 −11.12 to 4.93 0.44 0.20

Total sugars (g) −3.78 −12.71 to 5.16 0.40 0.20

Starch (g) −11.02 −21.19 to −0.84 0.03 0.26

Processing Speed Composite

Energy 0.92 −9.83 to 11.67 0.86 0.18

Protein (% E) 2.73 −20.56 to 26.03 0.81 0.18

Total fat (% E) 6.14 −16.24 to 28.52 0.58 0.19

PUFA (% E) −0.13 −8.09 to 7.84 0.98 0.18

CHO (% E) −12.23 −36.63 to 12.17 0.32 0.20

P:C ratio 3.17 −2.72 to 9.05 0.28 0.20

PUFA (g) 0.31 −6.90 to 7.52 0.93 0.18

Protein (g) 1.14 −8.22 to 10.49 0.81 0.18

Total sugars (g) 0.80 −6.86 to 8.47 0.83 0.18

Starch (g) −4.69 −15.57 to 6.19 0.39 0.20
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Table 3. Cont.

Variables 1 Beta-Coefficient 95% Confidence Interval p-Value 2 R-Value

General Language Composite

Energy 2.86 −12.76 to 18.49 0.72 0.06

Protein (% E) 4.05 −34.13 to 42.24 0.83 0.05

Total fat (% E) 22.65 −12.72 to 58.01 0.20 0.09

PUFA (% E) 4.01 −9.11 to 17.14 0.54 0.06

CHO (% E) −24.03 −63.56 to 15.51 0.23 0.08

P:C ratio −1.88 −11.82 to 8.05 0.71 0.06

Protein (g) 3.05 −11.46 to 17.56 0.68 0.06

PUFA (g) 4.14 −6.71 to 14.98 0.45 0.07

Total sugars (g) 3.04 −9.21 to 15.30 0.62 0.06

Starch (g) −6.11 −20.47 to 8.24 0.40 0.07
CHO, carbohydrates; P:C, protein to carbohydrate; PUFA, polyunsaturated fatty acids; % E, percentage of energy.
Analysis models were adjusted for energy intake, maternal age, education, pre-pregnancy BMI, breastfeeding
duration (weeks) and birthweight. 1 The natural logarithm transformation of the nutrient variable was used for
the linear regression models to meet normality assumptions. 2 p-values were derived by linear regression models.

Table 4. Association of maternal dietary composition during pregnancy with child behaviour
outcomes up to age 4 years (n = 51).

Variables 1 Beta-Coefficient 95% Confidence Interval p-Value 2 R-Value

Total Problems Score

Energy 15.02 −15.61 to 45.66 0.33 0.25

Protein (% E) 18.11 −56.01 to 92.22 0.63 0.23

PUFA (% E) −19.98 −47.31 to 7.34 0.15 0.27

Total fat (% E) −14.87 −90.95 to 61.21 0.70 0.13

CHO (% E) 26.5887 −57.25 to 110.42 0.53 0.24

P:C ratio 12.88 −6.93 to 32.69 0.20 0.26

Protein (g) 15.55 −12.71 to 43.81 0.27 0.25

PUFA (g) −4.60 −26.18 to 16.98 0.67 0.23

Total sugars (g) 17.51 −6.50 to 41.51 0.15 0.27

Starch (g) 12.0573 −18.14 to 42.2 0.43 0.24

Internalizing Broad Band Score

Energy −1.47 −32.06 to 29.13 0.92 0.27

Protein (% E) 4.11 −69.30 to 77.52 0.91 0.27

Total fat (% E) −10.67 −85.89 to 64.54 0.78 0.27

PUFA (% E) −21.99 −48.82 to 4.84 0.11 0.32

CHO (% E) 23.54 −59.35 to 106.44 0.57 0.28

P:C ratio 11.54 −8.10 to 31.18 0.24 0.30

Protein (g) −0.64 −28.95 to 27.66 0.96 0.27

PUFA (g) −13.84 −34.79 to 7.11 0.19 0.30

Total sugars (g) 4.56 −19.69 to 28.81 0.71 0.27

Starch (g) −0.26 −30.30 to 29.79 0.99 0.27
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Table 4. Cont.

Variables 1 Beta-Coefficient 95% Confidence Interval p-Value 2 R-Value

Externalizing Broad Band Score

Energy 23.00 −7.57 to 53.58 0.14 0.22

Protein (% E) 18.93 −56.11 to 93.97 0.61 0.19

Total fat (% E) 1.68 −75.49 to 78.86 0.97 0.18

PUFA (% E) −17.55 −45.39 to 10.29 0.21 0.21

CHO (% E) −0.52 −88.14 to 87.11 0.99 0.11

P:C ratio 11.48 −8.67 to 31.63 0.26 0.21

Protein (g) 22.50 −5.70 to 50.70 0.12 0.23
CHO, carbohydrates; P:C, protein to carbohydrate; PUFA, polyunsaturated fatty acids; % E, percentage of energy.
Analysis models were adjusted for energy intake, maternal age, education, pre-pregnancy BMI, birthweight and
breastfeeding duration (weeks). 1 The natural logarithm transformation of the nutrient variable was used for the
linear regression models to meet normality assumptions. 2 p-values were derived by linear regression models.

Child externalizing behaviour did show a positive trend with log-transformed mater-
nal protein (b = 27.71, p = 0.05) and sugar intake (b = 24.19, p = 0.05) but was not statistically
significant. However, when the data were adjusted for breastfeeding duration (weeks),
the strength of these associations was reduced (p ≥ 0.05). The associations between crude
maternal nutrient intake and child behavioural outcomes are provided in Table S2. Anal-
ysis models without adjustments for confounding factors are provided in Tables S3 and
S4. These sensitivity analyses did not detect any significant differences compared to the
study findings presented. Maternal P:C ratio was not associated with child cognitive or
behavioural outcomes, p > 0.05. The R-squared values for the linear regression models
indicated that each adjusted model accounted for between 5 to 32% of the total variance in
the child cognitive or behavioural outcomes.

4. Discussion

To our knowledge, this is the first human study that has evaluated the association
between macronutrient profiles during pregnancy on subsequent child cognitive and
behavioural outcomes at age 4 years. This study identified increasing carbohydrate intake
during pregnancy was negatively associated with child Performance IQ, a measure of
non-verbal reasoning, attention and visuo-spatial processing. However, this relationship
was not significant. Although there is evidence to support that an abnormal carbohydrate
metabolism during pregnancy such as impaired glucose tolerance (IGT) and gestational
diabetes mellitus (GDM) is adversely associated with child cognitive outcomes [61–63].
For example, Xu et al. [62] reported that children born to mothers with GDM (n = 1421)
had lower total wide-range assessment of visual motor abilities scores (WRAVMA), a
measure of visual-spatial and fine motor ability, at 3 years of age compared with children
born to mothers with normal glucose tolerance (n = 1187) (−3.09 points; 95% confidence
interval (CI) −6.12, −0.05). Interestingly, child Performance IQ was negatively associated
with maternal starch intake during pregnancy in which the relationship was statistically
significant (p = 0.03). Starch is a complex carbohydrate that consists of polysaccharides,
consumed from plant-based foods (e.g., oats, rice, potato) [64]. In the WATCH cohort,
maternal starch intake (median: 99.2 g per day) only varied by 2% compared to the 2011–
2012 national averages reported in women 19–50 years [65]. The current study reported
that non-core foods significantly contributed (24%) to maternal starch intake [65]. These
findings are supported by national data which indicated that processed cereal products and
dishes (e.g., biscuits, pastries, pizza) are a major contributor (31%) to daily starch intake in
women aged 19–50 years [65]. This is concerning as these foods contain a higher proportion
of rapidly digested starches and significantly less resistant starches which are lost during
various food processing methods (e.g., milling, cooking, high-pressure processing) [66,67].
A higher consumption of rapidly digested starches contributes to increased de novo
lipogenesis and attenuates the deposition of triglycerides into adipocytes throughout the
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body [68]. Triglycerides are chemically stable when stored in adipocytes [69–71]. However,
once storage is at saturation, triglycerides may be deposited in non-adipose tissues such
as the liver, heart and pancreas, which can lead to lipotoxicity and inflammation [69–71].
In the current study, it could be hypothesised that higher intakes of rapidly digested
starches alters lipid metabolism and adversely impacts on cell, tissue and organ structure
and function in the central nervous system, potentially contributing to a decline in child
Performance IQ. This could not be evaluated in the current study, as specific types of
starch could not be quantified using NUTTAB-95 data. Therefore, further investigation is
warranted in future studies where detailed information on types of starch is available.

Resistant starch is the portion of starch that is resistant to degradation by the enzyme
α-amylase in the small intestine [72]. Instead, it is fermented in the colon by several bacteria
groups (e.g., amylolytic gut bacteria) releasing fermentation products including short-chain
fatty acids (acetate, propionate, butyrate, and valerate), branched-chain fatty acids (isova-
leric and isobutyric acids), ammonia, amines, phenolic compounds and gases (methane,
hydrogen, carbon dioxide) [72]. Colonic metabolites including short-chain fatty acids
(acetate, propionate, butyrate, and valerate) are associated with a number of health benefits
on gastrointestinal health, insulin sensitivity and weight management [72,73]. For example,
short-chain fatty acids propionate stimulates the secretion of gut hormone peptides YY
(PYY) and glucagon-like peptide 1 (GLP-1) which are essential for appetite regulation and
glucose homeostasis [74]. Butyrate is associated with being an anti-inflammatory agent
by inhibiting the activation of transcription factors, NF-kB which regulates the expression
of genes associated with inflammation (e.g., cytokines, adhesion molecules, acute-phase
proteins) [75].

The impact of resistant starch on brain function and cognition has not been well
explored [76–78]. However, emerging evidence suggests that resistant starch may impact
on cognitive function by altering the serotonergic (5-HT) system that controls the activity
of neurotransmitters [79,80]. Animal studies have shown that a high fat diet in rats during
adulthood alters the density of serotonergic receptors in the brain [81,82] and such adverse
changes can be reversed by the intake of resistant starch and galacto-oligosaccharides [76].
Further research is greatly needed in this area, especially during pregnancy, to provide
further insight in relation to these findings. This evidence will be important as modifying
resistant starch intake could potentially be used as a therapeutic intervention for improving
brain function and cognition.

Limitations in the current study need to be acknowledged and include the use self-
reported dietary data. Therefore, the possibility of mis-reporting cannot be excluded. To
improve the validity of reported total energy intakes, the pregnancy energy cut-off values
recommended by Meltzer et al. [55] were applied (<4.5 or >20.0 MJ/day). Dietary data are
further strengthened by similarities between the WATCH median energy-adjusted intake
(7317 KJ) and the Australian Longitudinal Study on Women’s Health (ALSWH) mean
energy intake (7795 KJ) [83]. Maternal macronutrient profile was similar to the 2011–2012
national averages reported in women aged 19–50 years [65]. The most variation can be
seen in the median maternal fat intake, which was 5% higher compared to the national
average [65]. While median protein and carbohydrate intake only varied by 1% compared
to the national average [65]. These findings indicate that the dietary intake of this cohort is
generalizable to women in the Australian population. The WATCH study has previously
demonstrated a positive correlation between all dietary variables during early and late
pregnancy [24]. Maternal nutrient intake was quantified using NUTTAB-1995 which was
the most comprehensive database at the time of the study. However, specific data were
not available for new food products produced after 1995. While study findings may be
confounded by postnatal diet which was not explored in the current analyses. Although
the regression models were adjusted for breastfeeding duration. Previously analyses from
the WATCH cohort demonstrated that maternal diet during 2–3 years of the postnatal
period was correlated with the overall dietary quality in the offspring (p < 0.001) [84].
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The measurement of cognition and behaviour are known to be affected by a child’s
mood, motivation, anxiety, energy levels, and personal effort [85]. To address this, the
WATCH study monitored the children’s energy levels and mental concentration and
prioritized the cognition subsets that were necessary to produce IQ scores. Furthermore,
child cognitive function is also influenced by genetics, biomedical, social and environmental
factors that have not been explored in the current analyses [86,87]. Child cognitive and
behavioural outcomes were not deemed the primary outcomes when the WATCH study
was established. Due to the extended length of follow up, attrition was high and the sample
size was small (n = 64). This study is likely to be underpowered to detect the associations
between maternal macronutrient intake and child cognition and behavioural outcomes.
The analysis of this study was exploratory and therefore multiple variables were used to
provide a wide scope of data and inform future research in this area. However, the use of
multiple predictors within a small sample size may have increased the risk of type I error
within the dataset. Lastly, causality cannot be inferred as this is a prospective cohort study.
Therefore, the observed relationships require further investigation in experimental studies.

5. Conclusions

This prospective cohort study found that child Performance IQ at 4 years was inversely
associated with maternal starch intake. There is an opportunity for future cohort studies to
investigate the relationship between intake of different types of starch consumed during
pregnancy with lipid metabolism and child cognitive development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/children8050425/s1, Table S1: Association of maternal dietary composition during pregnancy
with child cognition outcomes up to age 4 years (n = 58); Table S2. Association of maternal dietary
composition during pregnancy with child behaviour outcomes up to age 4-years (n = 51); Association
of maternal dietary composition during pregnancy with child cognition outcomes up to age 4-
years (n = 58) without adjustment for covariates; Association of maternal dietary composition during
pregnancy with child behaviour outcomes up to age 4-years (n = 51) without adjustment for covariates
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