
MINI REVIEW
published: 27 February 2019

doi: 10.3389/fimmu.2019.00321

Frontiers in Immunology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 321

Edited by:

Scott D. Gray-Owen,

University of Toronto, Canada

Reviewed by:

Sukanya Narasimhan,

Yale University, United States

Gary Jarvis,

University of California,

San Francisco, United States

*Correspondence:

Peter A. Rice

peter.rice@umassmed.edu

Specialty section:

This article was submitted to

Microbial Immunology,

a section of the journal

Frontiers in Immunology

Received: 01 September 2018

Accepted: 07 February 2019

Published: 27 February 2019

Citation:

Gulati S, Shaughnessy J, Ram S and

Rice PA (2019) Targeting

Lipooligosaccharide (LOS) for a

Gonococcal Vaccine.

Front. Immunol. 10:321.

doi: 10.3389/fimmu.2019.00321

Targeting Lipooligosaccharide (LOS)
for a Gonococcal Vaccine
Sunita Gulati, Jutamas Shaughnessy, Sanjay Ram and Peter A. Rice*

Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School,

Worcester, MA, United States

The increasing incidence of gonorrhea worldwide and the global spread

of multidrug-resistant strains of Neisseria gonorrhoeae, constitute a public health

emergency. With dwindling antibiotic treatment options, there is an urgent need

to develop safe and effective vaccines. Gonococcal lipooligosaccharides (LOSs)

are potential vaccine candidates because they are densely represented on the

bacterial surface and are readily accessible as targets of adaptive immunity. Less

well-understood is whether LOSs evoke protective immune responses. Although

gonococcal LOS-derived oligosaccharides (OSs) are major immune targets, often

they undergo phase variation, a feature that seemingly makes LOS less desirable as

a vaccine candidate. However, the identification of a gonococcal LOS-derived OS

epitope, called 2C7, that is: (i) a broadly expressed gonococcal antigenic target in

human infection; (ii) a virulence determinant, that is maintained by the gonococcus

and (iii) a critical requirement for gonococcal colonization in the experimental setting,

circumvents its limitation as a potential vaccine candidate imposed by phase variation.

Difficulties in purifying structurally intact OSs from LOSs led to “conversion” of the

2C7 epitope into a peptide mimic that elicited cross-reactive IgG anti-OS antibodies

that also possess complement-dependent bactericidal activity against gonococci.

Mice immunized with the 2C7 peptide mimic clear vaginal colonization more rapidly

and reduce gonococcal burdens. 2C7 vaccine satisfies criteria that are desirable in a

gonococcal vaccine candidate: broad representation of the antigenic target, service as

a virulence determinant that is also critical for organism survival in vivo and elicitation of

broadly cross-reactive IgG bactericidal antibodies when used as an immunogen.
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INTRODUCTION

Gonococcal vaccine development is challenging because the correlates of immune protection
are not fully known (1); mechanisms of protective immunity against gonococcal infection
in humans are also unknown. Potential mechanisms focus on: (1) antibody (Ab) binding
to Neisseria gonorrhoeae (Ng) together with complement activation that results in direct
killing (bactericidal activity) of the organism (2, 3); (2) Ab binding and complement
activation to enable opsonophagocytic killing (2); (3) Ab binding to prevent adhesion
or invasion (4) and (4) T cell help. Beneficial TH1 responses predominate in several
successful vaccine approaches that use a female mouse model of gonococcal infection (5–7).
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Gonococcal surface molecules that may be appropriate
vaccine targets often are antigenically variable and modify
epitopes by antigenic or phase variation (8), which complicates
vaccine development by creating an ever-changing bacterial
surface. The ability to modify surface determinants is beneficial
for gonococci and results in evasion strategies to increase fitness
and facilitate adaptation of organisms to their environment.
Unfortunately, in human infection, adaptive immune responses
directed against conserved antigens fail to elicit protection
against future bouts of infection; in fact, repeat infections
are common, not only because of re-exposure to unidentified
infected partners (9) but also because robust protective immune
responses are not elicited. Immune responses that do occur may
contain subversive elements that enhance the risk for future
infection (10, 11). In female mice, experimental gonococcal
infection can suppress the development of adaptive immune
responses by inducing regulatory cytokines TGF-β and IL-10 and
type 1 regulatory T (Treg) cells (12). Intravaginal treatment of
infected mice with IL-12 induces persistent immunity against
gonococcal reinfection, which is dependent on the production
of IFN-γ and antibodies (13) that results in an enhanced TH1
response, accelerates clearance of infection and elicits a memory
response that results in protection (14).

A number of gonococcal surface components that elicit
bactericidal antibodies are under examination as vaccine
candidates [reviewed and tabulated (15)]. Immunization with
gonococcal outer membrane elicits diverse vaginal and serum
antibodies, which can be bactericidal and accelerate clearance of
experimental infection (16); however, this approach is not always
reproducible (5). An alternative successful approach that favored
a TH1 response, employed mice immunized (primed) with PorB
(the gonococcal major outer membrane protein)-expressing
Venezuelan equine encephalitis (VEE) virus replicon particles
(VRPs), followed by boosting with recombinant Por B (rrPorB)
(5, 17). However, elicited antibodies were non-bactericidal.

Several promising vaccine candidates do not elicit bactericidal
antibody activity in natural infection but were predicted to be
potential vaccine candidates because a more robust immune
response may be forced by vaccination that does not occur in
natural infection. In addition, bactericidal antibody responses to
several antigens may target important physiologic functions that,
if disrupted, could compromiseN. gonorrhoeae further, including
colonization and invasion (4, 18–27), nutrient acquisition (28–
35), and immune evasion (36–42). Vaccine candidates that elicit
bactericidal antibodies have also been identified by proteomic
analysis ofN. gonorrhoeae surface proteins (43) and, for example,
by bioinformatic analysis, in N. gonorrhoeae, of an adhesin
complex protein (ACP) homolog, originally identified in N.
meningitidis (4). Other vaccine candidates that target function
but are not known to elicit bactericidal activity are also discussed
in two reviews (44, 45). A recent study surrounding the
epidemic of group B N. meningitidis infection in New Zealand
calculated cross-protective efficacy of 31% against gonorrhea
in persons, aged 15–30, who were administered a Group B
meningococcal outer membrane vesicle (OMV) vaccine (46),
which subsequently has formed the basis of a licensed Group
B meningococcal vaccine. Human vaccination with the licensed

vaccine elicits antibodies againstN. gonorrhoeae (47) but they are
non-bactericidal (48).

A successful vaccine candidate(s) may exhibit: i) a broadly
representative antigenic target(s); ii) a virulence determinant(s)
(for example a determinant(s) that facilitates host evasion) that
can be neutralized and iii) a determinant(s) that is critical for
gonococcal survival. Such a “triple threat” candidate may prove
to be a useful strategy to “corner” a skillful organism that employs
numerous mechanisms to escape selective pressure. Successful
single antigens used as vaccines against bacteria are the capsular
polysaccharides (49–52). While these are not present in N.
gonorrhoeae, saccharide determinants are present in gonococcal
lipooligosaccharides (LOSs).

LIPOOLIGOSACCHARIDE (LOS)
STRUCTURE

Gonococcal LOSs consist of three oligosaccharide (OS) chains,
attached to a lipid A core. The OS chains branch from
two heptose residues attached to lipid A via two 2-keto-3-
deoxy-mannooctulosonic acid (KDO) molecules. One OS chain
elongates from the first heptose (Hep I); the 2nd and 3rd chains
are connected to the second heptose (Hep II) (Figure 1). The
number of branches and the length of OSs in each branch vary
among gonococcal strains and, indeed, in the same strain during
growth in vitro and in vivo. The rfaC gene that encodes heptosyl
transferase is required for the addition of Hep I to KDO (53)
(rfa genes encoding heptosyl transferases are blocked in yellow
in Figure 1).

The rfaF gene product, also a (different) heptosyl transferase,
adds Hep II to Hep I and is required for elongation (schematically
depicted as outward in Figure 1) of the Hep I chain (54,
55). The synthesis of OS chains is modulated by a series of
LOS glycosyl transferases (products of lgt genes). lgtF, lgtE,
lgtA, lgtB, and lgtD genes are required for stepwise addition
of each hexose [or hexosamine in the case of lgtA and lgtD
(shown in Figure 1)] to extend the Hep I chain (Figure 1)
(56, 57). In place of full extension, the lgtC gene encodes α-
galactosyl transferase that terminates Hep l with galactose (Gal),
that can undergo sialylation (shown as Neu5Ac in the orange
boxes in Figure 1), creating a shorter chain (Galα1-4Galβ1-
4Glcβ1-4-) attached to -Hep I (also called the PK-like LOS)
(58). Expression of distinct LOS structures on the gonococcal
surface is controlled by the phase variable expression of the
LOS glycosyltransferases genes lgtG, lgtA, lgtC, and lgtD (54, 59)
(indicated in red in Figure 1). These genes (lgtA, lgtC, and lgtD)
contain homopolymeric tracts of guanine poly (G), and in the
lgtG gene, a cytosine poly (C) tract (56, 59–62). Slipped strand
mispairing during DNA replication can result in alteration in
coding sequences, which leads to premature termination of the
corresponding genes and loss of function of the encoded glycosyl
transferase proteins resulting in truncated LOS structures. Phase
variation of LOS results in changes in size of the predominant
LOS structures that are expressed both in vitro and in vivo.
LOS undergoes phase variation at a frequency of 10−2-10−3

when gonococci are grown in culture (63, 64). Identification of
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FIGURE 1 | General structure of gonococcal lipooligosaccharide (LOS). Gonococcal LOS consists of three oligosaccharide (OS) chains. The OS chains branch from

two heptose residues attached to lipid A via two 2-keto-3-deoxy-mannooctulosonic acid (KDO) molecules. One OS chain elongates from the first heptose (Hep I)

outward; two chains extend from the second heptose (Hep II). Lacto-N-neotetraose structure (Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-4-) or Pk (Galα1-4Galβ1-4Glcβ1-4-)

extend outward from Hep I. Phase variable genes involved in LOS biosynthesis (lgtA, C, D, and G) are shown in red; non-variable genes (lgtF, lgtE, and B) in blue.

Neu5Ac (sialic acid) is shown in the orange boxes. Sialylation of LOS occurs via α2-6 or α2-3 linkage to galactose (Gal) residues. LOS branching is terminated

(“capped”) either by Neu5Ac (sialic acid) or otherwise extend(s) outward by adding hexose(s). LOS epitopes are defined by mAbs 2C7, L8, 3F11, L1, and 1-1M.

FIGURE 2 | Mechanisms of complement regulation by sialic acid on gonococcal lacto-N-neotetraose (LNnT). Gonococci can add N-acetylneuraminic acid (Neu5Ac;

the form of sialic acid found in humans) to the terminal Gal of the lacto-N-neotetraose (LNnT) LOS structure (a schematic of sialylated LNnT is shown on the left side of

the Figure). The presence of Neu5Ac on LNnT LOS reduces the binding of IgG to select targets. As an example, binding of mAbs to PorB, but not to Opacity protein

(Opa), is inhibited (79). Sialylation of LNnT also inhibits binding of “natural” IgG in NHS to the gonococcal surface (80). Binding of mannan binding lectin (MBL) to the

surface of gonococci is inhibited by LNnT LOS sialylation (81). MBL binds to gonococcal LOS that terminates in GlcNAc (82), which is elongated (“capped”) by Gal

and Neu5Ac (shown on the left side of the Figure) and to Opa and PorB (83) [Opa and PorB (shown in the Classical Pathway frame to the left of the Lectin Pathway

frame in the Figure)]. Neu5Ac that caps LNnT also regulates the alternative pathway of complement by enhancing binding of factor H (FH; shown as a “string of

beads” in the Alternative Pathway frame) (40). Enhanced FH binding to sialylated gonococci is restricted to the LNnT structure; sialylation of the Pk-like LOS (84), or

lactose on HepII (78) does not enhance FH binding. Binding of FH is also dependent on expression of PorB (85) and occurs through the C-terminal domains of FH

(SCR18-20) (86). Bound FH acts as a cofactor in the factor I (FI) cleavage of C3b to iC3b (cofactor activity) and also irreversibly dissociates the C3 convertase, C3bBb

(decay accelerating activity).
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several of these individual structures on the surface of Ng can be
demonstrated by reactivity with LOS-specific mouse monoclonal
antibodies (mAbs) (depicted by colored boxes in Figure 1 and
in the legend). Several of the antigenic determinants share
structure with human glycosphingolipids (GSLs) (58, 65, 66).
The lacto-N-neotetraose structure (four sugars extending from
-Hep I: [Galβ1-4GlclNAcb1-3Galβ1-4Glcβ1-4-]) recognized by
mAb 3F11, is identical to human erythrocyte GSLs (67–
69). The alternative Hep I structure, digalactoside (Galα1-
4Galβ1-4Glcβ1-4-, the PK structure or the L1 meningococcal
serotype (Figure 1), is recognized by mAb L1 and is similar in
structure to human paraglobosides (58). The fully extended Hep
I, a pentasaccharide (GalNAcβ1-3Galβ1-4GlclNAcβ1-3Galβ1-
4Glcβ1-4-), defined by mAb 1-1-M (70, 71), has a structure
identical to human asialo-G3 ganglioside (Figure 1) (69). This
mimicry may enable Ng to avoid immune recognition; antigenic
determinants that share structure with human GSLs, therefore,
may not be suitable to elicit a response that is specific for
the organism, nor would a response to shared human antigens
be desirable.

Nevertheless, Ng LOSs possess two epitopes, which do not
cross react with human GSL antigens. The first comprises
Galβ1-4Glc (lactose), the first two hexoses that are β-linked to
Hep I (72–74). Together with a phosphoethanolamine (PEtn)
substitution at the 3- (cyclic) position on Hep II (as occurs
when lgtG is OFF and Hep II is not substituted at the 3-
position with glucose [Glc]), this structure is recognized by
mAb L8 (75). The second epitope is a composite of the
first epitope (L8) plus a Galβ1-4Glc (also lactose) that is
α-linked to Hep II (area shaded in blue in Figure 1) and
represents the minimal structure [N-linked fatty acids in lipid
A are required for maximal expression (66)] of the epitope
recognized by mAb 2C7 (66, 76), called the 2C7 epitope.
Absence of Hep II linked lactose (and therefore the complete
2C7 structure/epitope) severely attenuates gonococcal infection
in the mouse cervico/vaginal colonization model (7, 77, 78).
2C7 expression therefore, may be an important virulence
factor that enhances or may be required for survival and
productive infection in humans. Despite phase variation of
the lgtG gene, that initiates production of the 2C7 epitope
(expression is completed by lgtE, which is constitutively
expressed and adds Gal to Hep II linked Glc) the epitope is
widely shared and expressed by most gonococci including 95%
of minimally passaged Ng clinical isolates (Boston) (2) and in
100% of isolates in Nanjing, China (78). In Nanjing, female
subjects who were exposed and infected with Ng developed
significantly higher levels of 2C7 Ab compared with control
women who possessed minimal or no measurable 2C7 Ab.
Furthermore, as expected, there was no difference in 3F11 (a
self-antigen) antibody levels in infected women vs. controls;
neither were there differences in L8 antibody levels between
the two groups, all of whom possessed either minimal or
no measurable antibody to 3F11 and L8 epitopes. The 2C7
epitope, therefore, is immunogenic in natural infection, more
so than at least two other LOS structures that have been
antigenically defined.

LOS SIALYLATION AND COMPLEMENT
RESISTANCE

Gonococci “cap” LOS molecules in which Hep I terminates with
the lacto-N-neotetraose structure (four sugars extending outward
from Hep I [the LNnT structure]; Figure 1). Sialylation can
occur using the organism’s own endogenous sialyltransferase and
appropriate sialic acid substrate(s) present in the mammalian
genital tract. In vitro (exogenous) cytidine monophospho-
N-acetylneuraminic acid (CMP-Neu5Ac) serves as a suitable
substrate. Sialylated gonococci are endowed with several means
to enhance pathogenicity. Sialylation of gonococcal LOS inhibits
all three pathways of complement through several independent
mechanisms: the classical pathway is inhibited by reducing
antibody binding and possibly by reducing C1q (the first
component of complement) engagement by bound antibody;
the lectin pathway is inhibited by reducing mannose binding
lectin (MBL) binding; the alternative pathway is inhibited by
increased binding of FH, a major soluble down-regulator in
the alternative pathway (Figure 2). Sialylation of gonococcal
LOS also decreases opsonic killing of gonococci (87–89) in
part, because of decreased complement activation and C3
fragment deposition on the surface of sialylated bacteria (38,
40). Sialylation of gonococcal LOS markedly reduces opacity-
associated protein (Opa)-mediated invasion of N. gonorrhoeae
into human epithelial cell lines (90–92). Finally, sialylation of
LNnT LOS occurs in organisms present in infected male urethral
secretions [by electron microscopy (93)]. The importance of
LNnT sialylation for virulence in humans was demonstrated in
the experimental model of human infection that used a variant
strain of N. gonorrhoeae that in vitro expressed predominantly
Hep I linked lactose (Galβ1-4Glc; L8) but upon recovery from
active infection, the sialylatable LNnT species predominated (65,
94). The terminal Gal of the PK-like structure from Hep I can
also be sialylated (84) and recently, Hep II lactose has been
shown to accept sialic acid (Figure 1) (78), which also inhibits
complement deposition and engages Siglec (sialic acid-binding
immunoglobulin-type lectin) receptors to down-regulate the host
inflammatory response, thereby facilitating host immune evasion
(95). Sialylation of the Hep II-attached lactose component of
the 2C7 structure/epitope and sialylation (78) may contribute
to gonococcal virulence provided by sialylation. Of note, mAb
2C7 continues to bind to Ng LOS even when the Hep I
chain is extended beyond the minimal lactose structure (66),
including binding to sialylated LNnT but less so when the PK

structure/epitope is expressed (96). Glycan extensions beyond
lactose on Hep II, for example with GalNAc-Gal seen in a mutant
strain selected under pyocin pressure called JW31R, abrogated
mAb 2C7 binding (66). However, sialylation of Hep II lactose
(78) variably affects binding of mAb 2C7 to gonococcal strains
(78). Gonococcal strains that express the PK structure/epitope are
rare/absent in vivo (80, 97). Hep II extension beyond lactose, to
our knowledge, has not been identified in strains isolated from
humans, however, the recently identified additional acceptor site
for sialic acid on Hep II lactose (78), suggests that strains bearing
sialic acid at this site are likely to be present in vivo.
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FIGURE 3 | Schematic representation of the conversion of carbohydrate (OS) epitopes into peptide mimotopes. Peptide mimics of the 2C7 epitope were identified

using a random FliTrx (Flagellin-Thioredoxin) peptide display library that were screened (Biopanned) using mAb 2C7 (98). The peptide–containing clones that bound to

mAb 2C7 were eluted and sequenced. An optimal peptide that contained the consensus motif was synthesized as an octameric peptide (shown here as a

multiantigenic peptide [MAP]) on a lysine backbone (TetraMAP), which is the currently used configuration.

THE 2C7 EPITOPE AND ITS PEPTIDE
MIMIC

The 2C7 OS epitope has been examined as a potential gonococcal
candidate. Carbohydrate (OS) immunogens, themselves,
evoke thymus-independent (TI) responses; they stimulate
the production of low affinity IgM antibodies predominantly
and there is no affinity maturation. Purification of OS from
LOS may result in a change in configuration and thereby
modify immunogenicity. Because the precise configurations
of OS structures within intact LOSs are not known, synthesis
would be difficult and optimizing the production of the
correct isomers may not be possible without advance structural
knowledge. The conversion of carbohydrate (OS) epitopes
into peptide mimotopes having similar configuration (defined
by recognition of the appropriate mAb, e.g., mAb 2C7 in the
case of N. gonorrhoeae) is a means to overcome the TI nature
of carbohydrate antigens (Figure 3). Peptide mimics of the
2C7 epitope were identified using a peptide display library
that was screened using mAb 2C7 [a monoclonal Ab with
complement-dependent bactericidal and opsonophagocytic
activities (2)] and identified peptide mimics were down-
selected immunochemically and for immunogenicity (98).
Carbohydrates may contain multiple identical antigenic
epitopes that provides a molecular configuration allowing
carbohydrate to cross-link antigen to their cognate receptors
on B cells. To emulate such configurations, an optimal peptide
mimotope was chosen and a multiple antigen peptide (MAP)
synthesized (Figure 3). Immunization of mice with peptide
vaccine elicited cross-reactive anti-LOS antibodies that possessed

dose responsive direct complement dependent bactericidal
activity against gonococci (98). More recent refinements of
the peptide building block have been directed: at stabilization
to ensure homogeneity; optimization of synthesis to produce
high yields and pairing of peptide vaccine with adjuvants that
have been approved and used for human vaccination. Further
characterization of vaccine induced immune responses evoked
by the 2C7 peptide were enlisted to correlate efficacy of active
vaccination with MAP in mice followed by experimental vaginal
challenge with Ng. Mice immunized with MAP combined with
monophosphoryl lipid A (MPL), a toll-like receptor 4 (TLR4)
agonist, elicited a predominant complement-activating IgG
subclass (IgG2a) response resulting from TH1-biased immune
stimulation (7), similar to other vaccine strategies that have
proved efficacious in the experimental murine model of Ng
vaginal/cervical colonization (3, 5). Clearance of Ng infection
was hastened in vaccinated mice and reduction of bacterial
burdens occurred throughout the period of colonization
(7). The level of vaccine induced 2C7 immune antibodies
in the vaginas of mice correlated directly with reduction in
bacterial burden (80). Results of active immunization with
the peptide mimic were paralleled by similar results obtained
with passive immunization of mAb 2C7 (7). These results
strongly support a vaccine antibody-mediated effect that was
dependent on the presence of local IgG antibody in mouse
vaginas (80). 2C7 vaccine satisfies the three criteria proposed
above for a gonococcal vaccine: (i) similar antigenic target
representation across strains; (ii) a representative virulence
determinant and (iii) a critical determinant for organism
survival in vivo.
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CONCLUSION

Evidence that gonococcal vaccination can succeed in humans
is encouraging. Although field trials with whole cell and pilus
vaccines have been unsuccessful (99, 100), this occurred,
in part, because of exposure of vaccine recipients to
heterologous strains in the wild, different than were used
to prepare vaccines. Homologous protection in human
experimental infection was also shown to be possible in men
with favorable antibody ratios directed against the strain
used in experimental infection suggesting that protective
immunity against broadly cross-reactive antigens will be
necessary (15) while avoiding subversive effects that might
otherwise undermine protective immune responses (101).
Adaptation of such an antigen(s) could result in a successful
vaccine. Recent epidemiologic evidence indicates that cross-
reactivity between N. meningitidis and N. gonorrhoeae antigens
induces a measurable level of cross protection (46), fulfilling,

perhaps, the “triple threat” criteria indicated above that

also applies to 2C7 vaccine: (i) broad representation; (ii)
service as a virulence determinant and (iii) a critical role in
organism survival.
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