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Abstract

Background: Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in
current research. It is broadly accepted that cognition declines with a continuum between MCl and dementia. As such,
cohorts of MCl patients are usually heterogeneous, containing patients at different stages of the neurodegenerative
process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire
cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to
predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis
regarding the time to conversion.

Methods: In the proposed Time Windows approach, we grouped patients based on the clinical information of
whether they converted (converter MCl) or remained MCI (stable MCI) within a specific time window. We tested
time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and
neuropsychological data and compared this approach with the commonly used in the literature, where all
patients are used to learn the models, named as First Last approach. This enables to move from the traditional
question “Will a MCI patient convert to dementia somewhere in the future” to the question "Will a MCl patient
convert to dementia in a specific time window”.

Results: The proposed Time Windows approach outperformed the First Last approach. The results showed that we
can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set
and 0.76 in an independent validation set.

Conclusions: Prognostic models using time windows have higher performance when predicting progression from
MCl to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the
proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a
temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical
appointments.
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Background

Decline in cognitive functions, together with other evi-
dences of neurological degeneration, become increasingly
likely as people age (some at an earlier age others at a faster
rate) [1]. Therefore, distinguishing normal aging from
cognitive decline due to pathological processes and un-
derstanding the individualized disease diagnostic and
prognostic patterns are ongoing research challenges.
Neurodegenerative diseases causing cognitive impairment,
such as Alzheimer’s disease (AD) and other forms of de-
mentia (dementia with Lewy Bodies (DLB), frontotem-
poral dementia (FTD), Vascular dementia (VaD)) are
amongst the best studied diseases of the central nervous
system due to its devastating effects on patients and their
families, and to the socio-economic impact in modern so-
cieties [2]. Nowadays, over 46 million people live with de-
mentia (mostly AD) worldwide and this number is
estimated to increase to 131.5 million by 2050 [2]. Unfor-
tunately, by the time patients meet criteria for dementia,
the brain has suffered sufficient damage to severely impact
cognition and autonomy. With this in mind, recognizing
putative progress to dementia when patients experience
only mild cognitive deficits, at a stage of Mild Cognitive
Impairment (MCI), is paramount to develop disease-
modifying therapies and identifying appropriate thera-
peutic windows [3-9]. Clinical studies with MCI patients
have reported higher risk rates of conversion to dementia
(in particularly to AD) than community studies, sug-
gesting these patients as a group of singular interest to
follow-up studies and interventions [10, 11]. In a recent
systematic review [12], MCI diagnosis was associated
with an annual conversion rate up to 20%, however
with substantial variation in risk estimates.

In this context, researchers have followed a number of
different directions for prognostic prediction in MCL
Some explored biological markers, such as those in cere-
brospinal fluid (CSF) or brain imaging (using magnetic
resonance imaging (MRI) or positron emission tomog-
raphy (PET) technologies) [3, 13-20]. Others used
neuropsychological tests (NPTs) alone [8, 10, 11, 21-25]
or in combination with biological markers [9, 26-31].
The latter strategy seems to achieve better predictive
performances than using the markers independently
[3, 9, 15, 30-32]. Despite the efforts, to date, no single
biomarker to predict conversion from MCI to demen-
tia with high accuracy was yet found [9].

Furthermore, it is widely recognized that neurodegen-
erative diseases take many years to manifest, slowly
draining the cognitive capabilities of those they afflict.
This makes it hard to ascertain where a given MCI pa-
tient stands in the continuum of the disease. As such,
cohorts of MCI patients are usually very heterogeneous,
with patients at different stages of the neurodegenerative
process. This patients’ heterogeneity, if not considered,
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introduces noise in the prognosis methods, decreasing
their reliability [16, 31, 33]. To our knowledge few
studies take this issue into consideration [33, 34].
Some addressed this question [16, 35] by performing
an a posteriori evaluation of the results, looking for
differences induced by the conversion time. Doyle et al.
[16] developed a continuous index of disease progression
based in multivariate ordinal regression and showed that
patients considered as “late converters” (converting in a
24-36 months follow-up) were characterized by a differ-
ent distribution from those that converted within a
12 months follow-up. Adaszewski et al. [35] tested diag-
nostic accuracy at different points of conversion to AD
(4 years before dementia to 2 years of clinical dementia)
using Support Vector Machines (SVMs) classification with
structural magnetic resonance imaging. However, a het-
erogeneous cohort of MCI patients is used to learn the
model and the emergent differences putatively caused by
the time a patient takes to convert are evaluated a poster-
iori. We name this approach as First Last (FL) approach,
as it combines the baseline and the clinical outcome at the
last evaluation of each patient when building the learning
examples, regardless their time to conversion.

In this work, we propose a Time Windows approach
to tackle the MCI-to-AD conversion problem. We used
NPTs and the time to conversion of MCI patients is
handled during the construction of machine learning
examples, where the set of patients is divided into sub-
groups according to their conversion time and later
used by classifiers. As such, unlike other studies, the
prognostic model is trained with time-homogeneous
MCI groups and thus learns already from putatively dif-
ferent progression patterns of disease. Two precedent
works used temporal approaches to study progression
to Alzheimer’s disease using neuroimaging data [33, 34].
Different groups of converting MCI patients were created
by using scans (from FDG-PTE [33] or MRI [34]) col-
lected at 6 to 36 months before the subjects fulfill the AD
criteria. Then, distinct prognostic models were learned
for each of those groups and the single group of non-
converting MCI patients. Although this case constructs
learning examples differently and uses other data types,
the results corroborate our hypothesis that prognostic
predictions can be improved by learning with subjects
at similar stages of the disease. Our approach is differ-
ent from the already proposed [33, 34] since we stratify
both stable and converter MCI patients while in the
previous studies only the converting group is homoge-
nized. We note that in this context a stable MCI patient
in a time window may become a converter MCI patient
in a larger time window as happens in clinical practice.
We also emphasize that the follow-up time used in our
work is longer (time windows of 4 and 5-years were
studied). Furthermore, we tested the Time Windows
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approach with neuropsychological data, which to our
knowledge was not done so far. The reason behind this
decision is the fact that we believe it is fundamental to
study the predictive power of NPTs, since they are
widely used in clinical practice in alternative to more
expensive and often invasive approaches and these tests
are still a hallmark for diagnosis of dementia and MCI.
In fact, the technology required for PET imaging and
other biomarkers may not be widely available, while
NPTs are routinely used in clinical practice. In addition,
current theoretical models suggest that neuropsycho-
logical data may be more important in identifying MCI
patients who are closer to convert to dementia, while
neuroimaging and biological markers may identify the
presence of neurodegenerative pathology in subjects
that will develop dementia in the future [8, 36]. More-
over, although machine learning approaches are gaining
relevance in dementia research [15, 33], studies includ-
ing only NPTs are mostly based on traditional statistical
analysis instead of machine learning.

Another advantage of the proposed approach, learning
with homogeneous groups instead of learning with het-
erogeneous groups as it is widely performed using the
FL approach, concerns the relevance of the clinical ques-
tion addressed. From a clinical standpoint, knowing that
a MCI patient will convert to dementia but not knowing
if this will happen in the following year or in the next
20 years is not particularly useful. However, knowing
that the conversion will occur in a particular time
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window, for instance within 5 years, is clearly useful.
This allows the clinicians to adjust the therapeutics to
match the effective progression of the disease and to
schedule clinical appointments accordingly.

Figure 1 illustrates the problem addressed in this work:
using neuropsychological data to predict whether a patient
with MCI will convert to dementia using specific time
windows (2, 3, 4 and 5 years) and comparing it with the
First Last approach, where time windows are not used.

Methods

We start by describing the data. Then, we describe each
step of the proposed supervised learning approach using
learning examples with time windows (illustrated in Fig. 2).
This approach comprises four steps, further discussed in
the following subsections: 1) Creating learning examples
using time windows, 2) Learning the prognostic model, 3)
Validating the prognostic model and 4) Using the model.

Data

Participants were selected from the Cognitive Complaints
Cohort (CCC) [23], a prospective study conducted at the
Faculty of Medicine of Lisbon to investigate the progres-
sion to dementia in subjects with cognitive complaints
based on an extensive neuropsychological evaluation at
one of the participating institutions (Laboratory of Lan-
guage Studies, Santa Maria Hospital, and a Memory
Clinic, both in Lisbon, and the Neurology Department,
University Hospital in Coimbra).

First Last approach
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Time Windows approach
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~
Stable MCI
-- (smcl)
m?‘?’

Converter MCI
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Fig. 1 Creation of learning examples following either the First Last approach or the Time Windows approach. A new class is created to define the
type of patient’s progression (converting (cMCl) or non-converting (sMCl)) in the interval of k years from the baseline assessment (Time Windows
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The inclusion criteria for admission to CCC were pres-
ence of cognitive complaints and completing assessment
with a neuropsychological battery designed to evaluate
multiple cognitive domains and validated for the Portu-
guese population (Bateria de Lisboa para Avalia¢do das
Demeéncias — BLAD [37]). The exclusion criteria for the
admission to CCC were diagnosis of dementia (according
to DSM-1V [38]) or other disorders that may cause cogni-
tive impairment, namely stroke, brain tumor, significant
head trauma, epilepsy, psychiatric disorders (such as se-
vere depression), uncontrolled medical illness, sensory
deficit or medical treatments interfering with cognitive
function, and alcohol or illicit drug abuse. For the purpose
of this study, participants were diagnosed with Mild
Cognitive Impairment when fulfilling the criteria of the
MCI Working Group of the European Consortium on
Alzheimer’s disease [39]:

(1)Cognitive complaints coming from the patients or
their families;

(2)Report of decline in cognitive functioning relative to
previous abilities during the past year by the patient
or informant;

(3)Presence of cognitive impairment (1.5 standard
deviations below the reference mean) in at least one
neuropsychological test;

(4) Absence of major repercussions on daily life
activities.

At follow-up, participants could also be diagnosed
with dementia according to the DSM-IV [38] criteria.
The study was conducted in accordance with the Declar-
ation of Helsinki, and was approved by the local ethics
committee. Informed consent to participate in the study
was obtained from all participants.

From the CCC cohort of 915 patients, 803 cases ful-
filled the criteria for MCI diagnosis at baseline (Fig. 3a).
Only patients with follow-up were selected, which was
the case for 719 patients, who had mean age (M + SD)
of 69.4 + 8.5 vyears, formal education (M + SD) of
8.2 + 4.7 years, follow-up (M £ SD) of 3.3 + 2.8 years
and, gender distribution (male/female) of 289/430. 257
(36%) patients converted to dementia (converter MCI)
and the remaining 462 (64%) cases did not convert
throughout the study (stable MCI). Demographic and clin-
ical characterization data is presented in Table 1. Differ-
ences among converting and non-converting MCI patients
were assessed by independent samples t-tests for numerical
data (age and years of formal education) and by the x*2
Pearson Chi-Square for nominal data (gender), using
IBM SPSS Statistics 24 (released version 24.0.0.0). A
p-value <0.05 was assumed as statistically significant.
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Fig. 3 Flow chart of the final number of Cognitive Complaints Cohort (CCC) participants: a complete cohort; b cohort of patients recruited in

The dataset includes 129 variables covering clinical,
demographic and neuropsychological data. These vari-
ables are further described in appendix by means of two
tables: one describes the cognitive domains assessed by
each measure and the other reports the mean average and
missing values percentage for each feature and group of
patients used in this study [See Additional files 1 and 2].
The neuropsychological assessment was standardized ac-
cording to age and education norms for the Portuguese
population and z-scores were calculated.

Since subjects were evaluated by different clinicians in
two Portuguese hospitals (in Lisbon and Coimbra) we
may distinguish two independent cohorts of patients
from this cohort (Fig. 3b and c). For the purpose of the
proposed supervised learning approach, the patients
recruited in Lisbon (n = 604) constitute the cross-
validation (CV) set and are used to learn the prognostic
prediction model, while the patients recruited in Coim-
bra (n = 115) are subsequently used as an independent
validation set to validate the model.

Table 1 Baseline demographic and clinical characterization data

Converter MCl Stable MCI p-value
(n=257) (n =462)
Age, years (M + SD) 717478 681+86 <10°
Gender (male/female) 93/164 196/266 0.102*
Formal education, years (M + SD) 89 + 49 88 +47 0612
Follow-up time, years (M + SD) 29+23 35+ 30 0.007

Group comparisons (converter MCl vs. stable MCI) were performed with
independent samples t-tests (or A2 Pearson Chi-Square test when appropriate®).
Statistically significant (p < 0.05)

Supervised learning approach using learning examples
created with time windows

The first step of the proposed supervised learning ap-
proach consists in creating the learning examples using
time windows. Then, the model and parameters are
tuned to the CV set under a cross-validation scheme
(Learning the model, Fig. 2) and finally validated using
an independent validation set (Validating the model,
Fig. 2). The model predicts whether a patient diagnosed
with MCI at baseline converts to dementia (or remains
MCI) at time baseline + k. The time k (in years) corre-
sponds to the considered time window. The model may
then be used in clinical practice (Using the model, Fig. 2).
This process is repeated for each time window and FL
datasets. The prognostic prediction approach was im-
plemented in Java using WEKA functionalities (version
3.7.1) [40].

Creating learning examples using time windows

The original data must be transformed to create learning
examples to be used by supervised learning techniques.
A learning example depends on the changes in the pa-
tients’ diagnostic between the baseline and a follow-up
evaluation (prognosis). It is composed by: 1) the baseline
assessment of a MCI patient (first evaluation), and 2) a
new attribute representing the type of progression of
that patient (conversion or non-conversion), computed
using the clinical diagnosis at a follow-up evaluation
(usually called class label). This latter evaluation (used to
compute the class) is the last evaluation in the FL ap-
proach and an evaluation inside the time window in the
proposed approach. We note that since we are perform-
ing prognostic prediction, NPTs used to learn the model
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are never used to compute de class. We propose a new
strategy to create learning examples using time to con-
version to pool patients in similar stages of disease
(termed Time Windows approach). Figure 1 illustrates
the creation of learning examples using the Time Win-
dows approach in comparison with the widely used in
the literature, the First Last approach. Follows a descrip-
tion of learning example creation for these approaches.

(1) First Last approach: Combines the baseline with
the last evaluation of each patient. If the patient was
diagnosed as MCI at the last evaluation, a learning ex-
ample labelled as stable MCI (sMCI) is created. If the
final diagnostic is dementia the learning example is la-
belled as converter MCI (cMCI). The features (clinical
and neuropsychological measures) are taken from the
baseline evaluation while the class is computed using
the clinical information in the last evaluation from the
patient. Note that this evaluation might be close to the
baseline for some patients and years later for others.
This approach aims to answer the question: “Will a
patient convert to dementia somewhere in the fu-
ture?”. Besides being the prevalent strategy in the field,
it does not deal with the heterogeneity of the MCI
population [27].

(2) Time Windows approach: Reduces the time span of
the FL approach to a specified temporal frame. A ¢cMCI
learning example is created whenever the patient is diag-
nosed with dementia in a follow-up evaluation whose
distance from the baseline is less than the predefined
time window (Fig. 1, example A). Patients who remain
MCI after the time window period lead to a sSMCI learn-
ing example (Fig. 1, example B). Patients may originate
learning examples assigned to different classes depend-
ing on the time windows width. A given patient may be
sMCI in a smaller window and originate a converting
learning example in a larger window. This is actually
what mimics real world situations: a clinician assigns the
most likely prognostic for a given patient and this prog-
nostic may change in a later follow-up assessment. We
note, however, that not considering these cases would be
incoherent as there is no guarantee that a stable MCI
would never convert to dementia. In this context, the
prognostic refers to a specific time windows and may
change if the window changes. Some cases must be dis-
regarded per time window, due to lack of temporal in-
formation. For instance, if in the last evaluation the
patient remains MCI, but the distance between evalua-
tions is shorter than the time window, he/she is dis-
carded since we cannot guarantee that this patient will
not convert until the end of the considered time window
(Fig. 1, example C). Similarly, if the patient is diagnosed
with dementia in an evaluation outside the window, we
cannot guarantee that he/she had already converted
within the predefined time window (Fig. 1, example D).
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In this scenario, the proposed Time Windows approach
reduces the heterogeneity in MCI population caused by
the slow cognitive decline characteristic in dementia. As a
result, we foresee more accurate prognostic models, as
classifiers learn from a set of patients with similar disease
progression patterns. In addition, we highlight the clinical
relevance of this approach, which allow clinicians to
timely adequate treatments to patients and schedule ap-
pointments at the hospital.

Learning the prognostic model

A prognostic model is trained for each time window and
FL dataset following a grid-search strategy, where a set
of classifiers and respective parameters, as well as prepro-
cessing options, are tuned (Fig. 2, Learning the model). A
cross-validation (CV) procedure is repeated with fold
randomization for each classification experiment in order
to access model generalization. A grid search is performed
to find the optimal set of parameters per classifier. The
best parameters are those that achieve the best average on
a given evaluation metric across the cross-validations re-
sults. The proposed supervised learning approach using
time windows may be used with any classifier, preprocess-
ing options and/or types of data.

In this study, we tested the approach with the settings
described below and using the cohort of patients re-
cruited in Lisbon (CV set). A 5-fold cross-validation pro-
cedure was repeated 10 times with fold randomization
for each classification experiment. In order to access the
robustness of our hypothesis, we used classifiers that rely
on different approaches to the classification problem:
Naive Bayes classifier (NB), Decision Tree (DT) with J48
algorithm as well as Random Forest (RF), Gaussian
(SVM RBF) and Polynomial-kernel (SVM Poly) Support
Vector Machines (SVMs) using SMO implementation,
k-Nearest Neighbor classifier (with IBK implementation,
kNN), and Logistic Regression (LR). Table 2 shows the
parameters and corresponding ranges tested for each clas-
sifier. The grid search criterion was the maximization of

Table 2 Set of parameters and corresponding ranges tested for
each classifier within the grid search scheme

Classifier Parameters and respective range

NB Gaussian or Supervised Discrimination or Kernel
DT Confidence € [0.05,0.5]

SVM RBF Complexity € [107',10'] and y € [1072, 10]
SVM Poly Complexity € [1 07'.10" and Degree €{1,2, 3}
kNN #Neighbors € [1,11]

RF #lterations € [5, 30]

(R Ridge € [107°,1079]

Note: DT: Decision Tree classifier, KNN: k-nearest neighbor classifier, SVM Poly:
polynomial-kernel Support Vector Machines, SVM RB: Gaussian-kernel Support
Vector Machines, NB: Naive Bayes classifier, LR: Logistic Regression and
RF: Random Forest



Pereira et al. BMC Medical Informatics and Decision Making (2017) 17:110

the value of the Area Under the ROC Curve [41], as this
metric is widely used in binary classification and is appro-
priate to deal with class imbalance. For simplicity, this
metric is referred to as AUC throughout the text. The sen-
sitivity (proportion of actual converting patients (cMCI)
which are correctly classified) and specificity (proportion
of non-converting patients (SMCI) which are correctly
identified) evaluation metrics are also reported.

Since the use of preprocessing techniques to deal with
a large number of (possibly irrelevant) features, missing
values or imbalanced classes may have a significant im-
pact on both classification performance and model sim-
plification and interpretability, the worth of using/not
using feature selection and/or dealing with missing
values and/or class imbalance should be tested.

In this study, we used Correlation-based (CFS) feature
selection [42] to obtain a relevant feature subset. CFS is
a filter feature selection (FS) algorithm as the value of a
features’ subset is evaluated without taking into account
the learning algorithm that is applied afterwards. The
method evaluates the worth of a subset of features by
resorting to heuristics that consider both the usefulness
of individual features to predict the class (in this case,
whether the patient converts to dementia (cMCI) or main-
tains the MCI diagnostic (sMCI)) and the correlation be-
tween them.

Although attenuated by feature selection, the problem
of missing data still demanded attention and thus missing
values were replaced by their mean or mode, whether the
attribute was numerical or nominal (Missing Value
Imputation, MVI). In addition, class imbalance was
tackled with the Synthetic Minority Over-sampling
Technique (SMOTE) [43]. SMOTE is an oversampling
technique that generates synthetic samples from the
minority class by choosing a set of similar instances
and perturbing the attributes by a random amount.
SMOTE percentages ranged from 0% to the inversion
of the class proportions. In order to ensure the validity
of the results, all preprocessing techniques (FS, MVI
and SMOTE) were only applied to the training data
within each cross-validation fold.

The statistical significance of the classification results
was evaluated on the averaged AUC across the 10x5-fold
CV. The worth of using FS and/or MVI was assessed by
the Wilcoxon Signed Rank Test [44], per time window
and classifier. Friedman Tests [44] were used to infer
whether the results obtained across different classifiers
(per time window) have statistical significant differences.
Pairwise comparisons (using the Wilcoxon Signed Rank
Test) were then performed (with Bonferroni correction
for multiple testing) to assess which of those classifiers
performed significantly better. To infer whether the pre-
dictions made with the Time Windows approach were
significantly different from those obtained with the FL
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approach we used the McNemar’s Test [44]. In this case,
the null hypothesis regards the number of correct pre-
dictions made by the Time Windows and the FL ap-
proaches. We used IBM SPSS Statistics 24 (released
version 24.0.0.0) to execute the statistical tests.

Validating the prognostic model

An independent validation set (Fig. 2, Validating the
model) is used to validate the classification model ob-
tained with the CV set and the subset of features and pa-
rameters that best performed in the learning step (Fig. 2,
Learning the model). The validation set is independent
from the CV set, thus providing a good assessment of
model generalization and, simultaneously, a simulation
of real world results. In our case, the parameters and
preprocessing options were selected exclusively using
the Lisbon dataset, which was then used to obtain the
prognostic model we validate using the Coimbra dataset.

Using the prognostic model in clinical settings

The learned prognostic model can then be used to pre-
dict conversion to dementia of new MCI patients. The
proposed supervised learning approach using time win-
dows may be integrated in a medical decision support
system to be used in clinical settings. This clinical deci-
sion support system would predict the most likely prog-
nostic for a new MCI patient based on the past history
of a cohort of patients with known prognostics. This
prognostic may support the decision of clinicians in real
world situations and be useful to adjust treatments and
the frequency of the medical appointments.

Results

We reported the results organized in sections as in the
Methods section: 1) Creating learning examples using
time windows, 2) Learning the prognostic model and 3)
Validating the prognostic model.

Creating learning examples using time windows

The time windows used in this work are constrained by
the follow-up of the cohort under use. In order to avoid
skewed class proportion, we were confined to a time span
between 1 to 5 years. However, from a clinical point of
view, prediction of dementia within 1 year is not very
relevant, since by that time, clinicians can easily attain
a prognosis. Since many related studies predict 3-year
conversion to dementia, including those using ADNI
data [8], we decided to consider this window. We thus
studied time windows ranging from 2 to 5 years. Table
3 shows the proportion of learning examples in the CV
set (patients recruited in Lisbon) and validation set (pa-
tients recruited in Coimbra), for each time window and
FL datasets. It is expected that as time increases the
number of converting patients also increases while the
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Table 3 Details on CV and validation sets for time windows of
2 to 5 years and the First Last approach

CV set Validation set

sMCl cmdcl sMCl cmdcl
FL approach 377 (62%) 227 (38%) 85 (74%) 30 (26%)
2-Year window 280 (75%) 94 (25%) 53 (80%) 13 (20%)
3-Year window 206 (60%) 137 (40%) 34 (61%) 22 (39%)
4-Year window 146 (47%) 166 (53%) 22 (47%) 25 (53%)
5-Year window 106 (36%) 190 (64%) 10 (28%) 26 (72%)

Note: sMCI- stable MCI; cMCI - converter MCI

number of patients that remains stable (sMCI) de-
creases. Datasets built for smaller (2 years) or larger
(5 years) time windows have therefore a higher-class
imbalance whereas the remaining datasets have minor
imbalance. Class imbalance was tackled by using
SMOTE in the grid search as aforementioned.

Learning the prognostic model

Regarding the benefit of using missing value imputation,
we noticed that Decision Tree, Naive Bayes and RF classi-
fiers performed better when no imputation was performed
(p <0.016,Wilcoxon Signed-Rank Test [44]), considering
mean AUC, while kNN benefited from using an imputed
version of data (p < 0.05,Wilcoxon Signed-Rank Test [44]).
We note that in Weka both SVMs (Poly and RBF) and LR
already perform MVI internally. Selecting the most
relevant set of features achieved significantly better re-
sults in most classifiers (kNN, SVM Poly, SVM RBF
and LR; p < 0.03, Wilcoxon Signed-Rank Test [44]), for
all time windows and FL approaches. Although no statis-
tical difference was found for the DT classifier (p < 0.269)
we decided to proceed with feature selection for the sake
of model interpretability. For further analysis, only NB
and RF classifiers proceed without FS as their classification
performance was significantly improved when using the
original set of features (p =0.00,Wilcoxon Signed-Rank
Test [44]), considering mean AUC.

The selected subset of features, presented in Table 4,
was different for each time window and FL dataset. Par-
ticularly, a larger set of features (n = 35) was used in
the First Last approach when comparing to the Time
Windows approach (n = 29, in average). From the overall
selected features, 14 were commonly chosen throughout
all datasets (FL and Time Windows approaches) and 15
within the time windows. This supports the expected
differences between datasets comprising patients with
distinct times to conversion.

Table 5 shows the results of the stratified 10 x 5-fold
CV in the CV set (Lisbon dataset), with the optimized
parameters and preprocessing options, for the Time Win-
dows and FL approaches. According to the results, using
the Time Windows approach proved to be advantageous

Page 8 of 15

over the FL approach (p < 0.05, McNemar’s Test [44]). Su-
perior results (in terms of AUC) were reached for the
Time Windows approach in all classification experiments
and across all classifiers, showing that the conclusions are
not dependent on a particular classifier. Sensitivity, which
reflects the ability to predict conversion cases, reached
better performances within the Time Windows approach,
even in the 2-years windows, which has a marked class
imbalance. We note that since sensitivity and specificity
are sensitive to the number of examples labelled as cMCI
and sMCI, respectively, and due to the class imbalance,
we expected an increase on the sensitivity and a decrease
on the specificity with the widening of the temporal win-
dow. Despite this tendency was in general verified excep-
tions occurred. In the 5-years windows, for instance, some
classifiers (DT, kNN, NB and LR) outperformed the speci-
ficity reached with the same classifiers on both the 2-years
window and FL datasets (where sMCI is the class in ma-
jority). In fact, the highest specificity values obtained with
the FL approach were achieved at the cost of much lower
sensitivity values. The results corroborate the advocated
idea: using groups of homogenized MCI patients regard-
ing the time to conversion, and therefore at similar stages
of the disease, leads to better performance of the prognos-
tic models.

Within the Time Windows approach, the best results
were achieved for larger time windows, namely the 4
and 5-years windows, for all classifiers. Although the
highest AUC is consecutively obtained with the 5-years
window it might be worth using the 4-years window,
since higher values of specificity are obtained without
compromising the sensitivity. This may be justified by
the inexistence of class imbalance on the 4-years win-
dow dataset.

Best prognostic model
The AUC values were statistically different (p =0.00)
across classifiers as assessed by the Friedman Test [44].
Therefore, we selected the classifier (with optimized pa-
rameters) that gave the best prognostic model to use in
further analysis. Following an analysis of pairwise compar-
isons (with significance values corrected for multiple test-
ing), we concluded that Naive Bayes was significantly
better than the remaining classifiers (for the Time Win-
dows and FL approaches; p < 0.002,Wilcoxon Signed-Rank
Test [44]). NB is a simple probabilistic classifier, yet robust
to class imbalance [45], which has the advantage of
returning a numerical confidence of the results, that in
turn, can be used as a risk measure by the clinicians.
Figure 4 shows the performance obtained with the
Naive Bayes using the CV set.

Once more, we noticed the superiority of the results
when using the Time Windows approach instead of the
FL approach (p<0.039, McNemar’s Test [44]) and,
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Table 4 Subset of selected features for each time window and FL dataset

Features FL approach  2-Year window  3-Year window  4-Year window  5-Year window
Age X X X X X

Age of first symptons X X X X
Cancelation Task- A’ time X X X
Cancelation Task — A’ total X X

Digit Span - Forward

Digit Span - Backward

Verbal Paired-Associate Learning — Easy
Verbal Paired-Associate Learning —Difficult

Verbal Paired-Associate Learning — Total

<X X X X X

Logical Memory Immediate A free recall

Logical Memory - A Immediate Cued

X X X X X X X X

Word Recall - Free recall
Word Recall —Total

Logical Memory with Interference-A

X X X X X X X X

Orientation (Total)

<X X X X X X X X X X X

Orientation — Personal X
Orientation - Spatial X
Orientation — Temporal X X X X X
Orientation- MSQ X

Verbal Fluency X X X
Token Orders (total) X

Cube Draw X

Calculation X

Interpretation of Proverbs — (Verbal Abstraction)

Raven Progressive Matrices X X X X X
Trail Making Test (Part B) - time

CVLT A list (1sttrial) X X
CVLT A list (3thtrial) X

CVLT A list (4thtrial) X X

CVLT A list (five learning trails total) X X X X
CVLT A list (Total intrusions in 5 recalls) X

Blessed Dementia Scale (Total of Part 1 - Daily living activities) X

Fi_LM_a X X

Fi_LM_a_m100 X X

Cancelation Task — A’s total (Z-score) X X

Digit Span — Forward (Z-score) X X
Digit Span — Backward (Z-score)
Digit Span — Total (Z-score)

>

Verbal Paired-Associate Learning (Z-score)
Informatio (Z-score)

Orientation (Total) (Z-score)

<X X X X X X
< X X X X

Orientation- MSQ (Z-score)
Word Recall —Total (Z-score)

<X X X X X X
<X X X X

Verbal Fluency (Z-score) X
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Table 4 Subset of selected features for each time window and FL dataset (Continued)

Interpretation of Proverbs — (Verbal Abstraction) (Z-score)
Raven Progressive Matrices (Z-score)

Cancelation task -Toulouse- Pierén (concentration index) (Z-score)

< X X X

CVLT A list (five learning trails total) (Z-score)
CVLT A list (5sttrial) (Z-score)
Logical Memory Immediate A free recall (Z-score) X

Logical Memory with Interference-A (Z-score)

X X

X X X
X

X X

X X X X

X X X X

The neuropsychological assessment was standardized according to the age and education norms for the Portuguese population and z-scores were calculated

within those, when larger time windows were used. The
FL approach had the lowest performance in all evalu-
ation metrics, with an absolute mean difference of 0.14
(0.14), 0.18 (0.23) and 0.07 (0.001) when comparing to
our best results 5 (and 4)-years window in the AUC,
sensitivity and specificity, respectively.

Comparing the time windows, we may observe an in-
crease in the AUC as the time window grow, suggesting
that the larger the window the more reliable the prog-
nostic model is. However, the drop in the specificity
values, mainly observed in the 5-years window, requires
attention. As aforementioned, it may be worth using the
4-years window, which despite having lower values of
AUC and sensitivity has superior specificity values. The
best outcome was then achieved for the 4 and 5-years
windows approach (AUC: 0.87 + 0.01/0.88 + 0.00, sensi-
tivity: 0.82 + 0.01/0.88 + 0.01, specificity: 0.78 + 0.01/
0.71 + 0.01; 4/5-years windows). To evaluate the impact
of patients who converted between 4 and 5 years regard-
ing the other patients, we inspected how many of these
patients had a correct prognostic prediction. 20 (average
of the 10x5 CV) out of the 24 converting patients were
correctly classified as such. This shows the ability of the
Time Windows approach to predict conversion as earlier
as 5-years before dementia is present.

Despite the class imbalance of the 5-years window
dataset (Table 3), it performed better than similarly im-
balanced datasets (for instance, the 3-year window). This
lead us to the idea that learning the disease patterns of
converter MCI is trickiest than learning the patterns of
patients who remain stable (sMCI). This is suggested by
the smaller fluctuations in the specificity values across
distinct times windows, when compared with the sensi-
tivity values, which had greater fluctuations.

Validating the prognostic model

Table 6 reports the results of the best prognostic model
(Naive Bayes, subsection “Best prognostic model”) derived
during the train phase, using the validation set (Fig. 2, Val-
idating the model). We recall that these results are not
used to choose the best classifier or parameters, which
was done beforehand (Fig. 2, Learning the model). At this
step, the best prognostic model was evaluated in an

independently (validation) set, for each time window and
FL datasets. Comparing the results of Tables 5 and 6, we
may observe that most of the conclusions drawn for the
CV set are also valid for the validation set. Although the
overall results were slightly lower in the validation set, we
notice that the Time Windows approach performed better
than the FL approach, achieving superior AUC values.
Having a lower performance on the validation set corrob-
orates our expectations as we are using an independent
set, unbiased from the preprocessing and parameters-
tuning procedure. The best outcome was also the one
attained with the 5-years window approach. Conversely to
what happened in the CV set using the NB classifier, the
sensitivity of the 4 and 5-years windows was lower than
the respective specificity values. This showed some weak-
ness of the proposed prognostic model in identifying con-
verting MCI patients, in this study cohort. In general the
results were good with AUC values above 0.72 for the
Time Windows approach suggesting that model overfit-
ting is reduced as aimed by using 10 x 5-fold CV to learn
and tune the models. The effect of class imbalance (while
training the models with the CV set) was not critical in
the validation set. Indeed, acceptable values of sensitivity
and specificity were attained for the 2-years window (0.69
and 0.66 in the validation and CV set, respectively) and for
the 5-years window (0.70 and 0.71 in the validation and
CV set, respectively), correspondingly.

Discussion

We proposed a new approach to create learning examples
based on time windows, which consists in stratifying the
cohort of MCI patients based on their conversion time
(converter MCI), or the time that they remained MCI
(stable MCI). Then, we evaluated its performance on the
prognostic model for MCI-to-dementia conversion by
comparing it with the model learned with the FL approach,
the prevalent strategy in the field [3, 8, 9, 15, 30, 31]. We
showed that, following the FL approach, and thus disre-
garding the heterogeneity of the population under study
caused by the continuous cognitive decline that character-
izes this neurodegenerative disease, hampers the discovery
of more reliable prognostic models and/or biomarkers.
This question had been partially addressed in the literature
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Fig. 4 Results obtained with Naive Bayes, the best classifier for the Time Windows and the First Last approaches, as assessed by the AUC values
within a grid search scheme, under 10 x 5-fold cross validation (using the CV set)

[33, 34]. Eskildsen et al. [34], homogenized the converter
MCI group regarding the time to conversion, using the
cortical thickness of anatomical MR images collected at 36,
24, 12 and 6 months before conversion to create the learn-
ing examples. Similarly, Cabral et al. [33] created five
groups with PDF-PET images collected at 24, 18, 12, 6 and
0 months before conversion. These converting MCI groups,
along with the single non-converting MCI group, were fed
to machine learning classifiers to perform prognostic. An
overall finding was the enhancement of the evaluation met-
rics with the decrease of the temporal distance to the con-
version event. Despite the relevance of this approach, it has
been mostly explored with neuroimaging data. We believe
that this question is transversal to all biomarker research
and thus we performed a similar study using neuropsycho-
logical data. To our knowledge, this is the first study using
neuropsychological data to predict conversion within a
Time Windows approach. We also used the strategy
presented in previous works [33, 34] with our data, for
sake of comparability. The outcome is shown in appen-
dix [See Additional file 3]. Replicating the methodology
pursuit by [33, 34] with our data benefits from a longer
follow-up period.

The results support our view about the strengths of
predicting conversion to dementia within time windows
as this remains true even with different approaches to
time windows and data types. Predicting conversion to

dementia (cMCI) seems to be the trickiest, suggested by
the lower values of sensitivity [33—35]. According to the
previous studies, and using neuroimaging data, the ac-
curacy of the prediction improved as the time to conver-
sion from MCI to AD decreased, conversely to our
results, where we were able to predict dementia as early
as 5-years (AUC: 0.88, specificity: 0.71, sensitivity: 0.88).
Our approach, along with neuropsychological data, was
thus more successful in the long-term prediction, which
we believe to be more useful in the clinical practice and
intervention.

One strength of this work was the length of follow-up.
We are able to predict conversion to dementia within a
long-time span (5 years). Indeed, using neuropsychological
data to detect cognitive decline in initial phases of AD has
faced significant limitations, due to the short follow-up
periods which characterize most cohort studies of conver-
sion to dementia [24, 28, 31, 46]. Our work supports the
view that longer follow-ups might be an asset in the study
of conversion to dementia, as the best results were
achieved with the longest windows used.

Another important point is the sample size. Our cohort
has a reasonable size when comparing to similar studies,
including those that use data from the industrious ADNI
project (study populations of around 200 to 300 patients)
[8, 16, 33]. Using a validation set to evaluate how the clas-
sification model performs when facing new and unknown

Table 6 Results of the best prognostic model using the independent validation set (patient recruited in Coimbra, Table 3), for the

Time Windows and the First Last approaches

AUC Sensitivity

Specificity

FL 2Y 3Y 4y 5y FL 2y

3y 4y 5y FL 2Y 3y 4y 5y

Naive Bayes 061 0.73 0.74 0.72 0.76 040 0.69

0.64 0.56 0.56 0.73 077 0.76 0.68 0.70

The model was fine-tuned to the CV set (patient recruited in Lisbon, Table 3). cMCl represents the positive class
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data is also to emphasize since it enables to test the model
generalization.

We further highlight the use of neuropsychological
data to predict dementia. NPTs are relatively inexpensive
and non-invasive, can be readily obtained in most clin-
ical settings [23, 24], are required for diagnosis purpose
and have proven their value in tracking the cognitive de-
cline in dementia [8]. Still, their predictive power has
not been fully exploit, as it has been addressed mostly by
classical statistical methods. Indeed, more powerful
methods are mainly focused on more complex data, in-
cluding neuroimaging data and other biological markers.
In the present work, we accomplished successful conclu-
sions by using machine learning classifiers with NPTs.

Beyond dealing with the MCI heterogeneity induced
by the slow progression nature of dementia, the Time
Windows approach takes a step forward in the prognos-
tic research challenge, as it not only predicts whether a
MCI patient will evolve to dementia, but also, a time
window of conversion.

Some limitations also warrant consideration. The best
classifier (and parameters) was chosen based on the
AUC values obtained during the grid search. However, it
would be preferable to also include the sensitivity and
specificity values. It may be worth having smaller AUC
values if it allows having equally good values on the
remaining classification metrics. The same idea stands
for SMOTE which, ideally, should be the lowest possible
or not used. Despite many researchers have focused in
the MCI-to-dementia conversion problem, comparing
these studies is not trivial due to the different data types
used, subject inclusion and exclusion criteria, diagnostic
criteria for MCI and/or dementia, classification frame-
work and evaluation metrics. The set of common features,
as well as the ones that were different across windows,
lack a further analysis, from a clinical standpoint, to clarify
their clinical relevance. This is however out of the scope
of this paper.

Conclusions

We proposed a supervised learning approach to predict
conversion of MCI to dementia based on time windows,
following an innovative strategy to build the learning
examples and compared it with the commonly used
strategy (FL approach). We thus handled the heterogeneity
of the MCI cohort by creating different time-homogenous
groups regarding their time to conversion (Time Windows
approach), when building the learning examples. We stud-
ied the effect of disease staging in the performance of the
prognostic model by learning different models with dif-
ferent groups of MCI patients, and thus fine-tuning the
prognosis regarding the conversion time. The Time
Windows approach is more relevant from a clinical point
of view, as it provides a temporal interval of conversion
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thus allowing clinicians to timely adjust treatments and
clinical appointments.

Our results corroborated the hypothesized idea, that
more reliable prognostic models may be obtained if we
handle with the stages of the disease, as Time Windows
approach outperformed the First Last approach. Our
prognostic model, using neuropsychological data, was able
to predict conversion to dementia as early as 5 years
before the event.

In the future, we believe that temporal-based classifi-
cation models may contribute to a better understanding
of conversion to dementia and, hopefully, support the
decision of clinicians in real world situations. We thus
aim to enrich the supervised learning methodology and
develop a decision support system to be used in clinical
settings: the system would predict, with a given confi-
dence, whether the patient was prone to convert, along
with the most likely time window; then, clinicians could
use this information to adjust treatments and the frequency
of the medical appointments.

Hopefully, this study will encourage researchers to
tackle, not only the MCI-to-dementia conversion problem,
but also the disease patterns and time to conversion, so
we can move to the question on whether a MCI patient
will evolve to dementia to the one that predicts the time
that will take for this event to happen.
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Additional file 1: Table describing the cognitive domains tested by
each neuropsychological data of the sample. (DOCX 21 kb)

Additional file 2: Table illustrating the neuropsychological data of the
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