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Abstract
Serum metabolite profiling in Duchenne muscular dystrophy (DMD) may enable discovery

of valuable molecular markers for disease progression and treatment response. Serum sam-

ples from 51 DMD patients from a natural history study and 22 age-matched healthy volun-

teers were profiled using liquid chromatography coupled to mass spectrometry (LC-MS) for

discovery of novel circulating serummetabolites associated with DMD. Fourteen metabolites

were found significantly altered (1% false discovery rate) in their levels between DMD patients

and healthy controls while adjusting for age and study site and allowing for an interaction

between disease status and age. Increased metabolites included arginine, creatine and

unknown compounds at m/z of 357 and 312 while decreased metabolites included creatinine,

androgen derivatives and other unknown yet to be identified compounds. Furthermore, the

creatine to creatinine ratio is significantly associated with disease progression in DMD

patients. This ratio sharply increased with age in DMD patients while it decreased with age in

healthy controls. Overall, this study yielded promising metabolic signatures that could prove

useful to monitor DMD disease progression and response to therapies in the future.

Introduction
Duchenne muscular dystrophy is an X-linked genetic disease and the most common childhood
neuromuscular disorder, with an incidence of about 1 in 5,000 newborn males [1–3]. The dis-
ease is characterized by a natural history consisting of progressive muscle degeneration, loss of
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ambulation by the age of 12, and eventually death by late 20s to early 30s [4, 5]. DMD is caused
by mutations in the dystrophin gene resulting in complete loss of the dystrophin protein that
maintains muscle fiber integrity and function [6]. Absence of dystrophin causes muscle fragil-
ity and loss of muscle fibers which are replaced by fat and connective tissue. While understand-
ing of the disease and clinical management–including the use of glucocorticoid treatment and
assisted ventilation–has continued to improve over the last few decades [7, 8], development of
novel therapies and testing of novel drugs is still hindered by the small numbers of patients
available for clinical trials and the difficulties in selecting appropriate outcome measures [9].
As a result, regulatory agencies such as the Food and Drug Administration (FDA) and Euro-
pean Medicines Agency (EMA) are more willing to consider surrogate biomarkers as endpoint
measures in Phase II dose-ranging studies. Thus it is important to find and identify reliable bio-
markers associated with disease progression and response to therapies for DMD patients.

The best-known serum molecular biomarker for DMD is muscle-derived creatine kinase
(CK) [10], which is typically measured by enzymatic activity. Serum elevations of CK are gen-
erally considered a diagnostic biomarker of DMD, even in presymptomatic infants [11]. How-
ever, the large inter- and intra-person variability in CK levels, partly caused by the impact of
the child’s age and sensitivity to physical activity, makes it a poor candidate for use as a surro-
gate biomarker. Furthermore, CK levels have been shown to be inversely correlated with dis-
ease progression and severity due to the loss of muscle tissue for more advanced patients,
which causes less CK to leak into the blood stream and be detected [12].

In the last few years, there has been renewed interest in defining biochemical biomarkers for
DMD. These include miRNAs [13–15] and proteins [12, 16–20], but little research has been
dedicated to identifying metabolic biomarkers for DMD [21].

Metabolites are small molecular mass components or intermediate products of metabolism
that can be detected in biofluids and tissues; they regulate and maintain physiology homeosta-
sis and have various biological functions. They can be influenced by genetics, as well as by envi-
ronmental factors [22]. Metabolites are easily measurable using high throughput technologies
and can be transitioned into clinical assays. They are widely used in other diseases (e.g. serum
creatinine is a marker of liver function) but had very limited implementation in DMD. “Meta-
bolomics” refers to the systematic assessment of metabolites. Metabolic profiles have been used
to predict disease risk, to diagnose disease, or as biomarkers of disease in a variety of disorders,
including diabetes, prostate cancer, and Crohn’s disease [23–26]. Untargeted metabolomics
approaches in DMD can add to the growing catalogue of protein and miRNA biomarkers
which may be used to monitor disease progression and, as a result, to evaluate therapeutic
response. The present study proposes several such putative metabolic biomarkers.

Materials and Methods

Study participants and samples
We analysed the circulating serum metabolites of 51 DMD patients and 22 healthy volunteers
from 5 different study sites enrolled through the Cooperative International Neuromuscular
Research Group (CINRG) Duchenne Natural History Study. All the study participants were
male. The cases and controls were age-matched, with some enrichment for older cases. Sum-
mary characteristics of the study participants are provided in Table 1 and detailed in S1 Table.
The DMD patients had a minimum age of 4, a maximum age of 28.7, and a median age of 11.4
years. The healthy controls had a minimum age of 6, a maximum age of 17.8, and a median age
of 13.7 years. The study protocol was approved by Institutional Review Boards at all participat-
ing institutions, and informed written consent was obtained from participants or their parent
or legal guardian. The Institutional Review Boards were: Conjoint Health Research Ethics

Discovery of Metabolic Biomarkers for Duchenne Muscular Dystrophy

PLOS ONE | DOI:10.1371/journal.pone.0153461 April 15, 2016 2 / 18

HS, LPM, EH, CM, SM), https://taggs.hhs.gov/
AwardDetail.cfm?s_Award_Num=R01AR062380&n_
Prog_Office_Code=106; National Institutes of Health/
National Institute of Arthritis and Musculoskeletal and
Skin Diseases grant P50AR060836 (PI: PRC, funded
authors: PRC, EPH), https://taggs.hhs.gov/
AwardDetail.cfm?s_Award_Num=P50AR060836&n_
Prog_Office_Code=106.

Competing Interests: The authors have declared
that no competing interests exist.

https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=R01AR062380&amp;n_Prog_Office_Code=106
https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=R01AR062380&amp;n_Prog_Office_Code=106
https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=R01AR062380&amp;n_Prog_Office_Code=106
https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=P50AR060836&amp;n_Prog_Office_Code=106
https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=P50AR060836&amp;n_Prog_Office_Code=106
https://taggs.hhs.gov/AwardDetail.cfm?s_Award_Num=P50AR060836&amp;n_Prog_Office_Code=106


Board (CHREB) (for Alberta Children’s Hospital, Calgary), UC Davis Institutional Review
Board, University of Pittsburgh Institutional Review Board, Children’s National Medical Cen-
ter Institutional Review Board (CNMC IRB) and Executive Committee of the Sydney Chil-
dren’s Hospitals Network (SCHN) Human Research Ethics Committee (HREC) (for
Children’s Hospital at Westmead in Australia).

For both DMD patients and healthy controls, 15 mL of blood was taken according to the
study protocol. The blood was separated into 3 red top tubes, which were then mixed by 5 com-
plete inversions. Samples were allowed to clot for 30 minutes at room temperature in a vertical
position. After clotting, the tubes were centrifuged for 10 minutes to separate the serum, which
was carefully collected by avoiding contact with the blood clot. The serum was then aliquoted
into four polypropylene Cryogenic vials from Thermo Scientific Nalgene. Each transfer tube of
500 μL was frozen in a secure -80°C freezer until shipment. Samples were not thawed and
refrozen until analysis.

Liquid chromatography-mass spectrometry (LC-MS) analysis
For metabolite extraction, a single technical replicate for each serum sample was processed by
adding 175 μl extraction buffer (A solution of 40% Acetonitrile, 25%Methanol and 35%Water
containing internal standards [10μl of 1mg/ml debrisoquine and 50μl of 1mg/ml 4- nitrobenzoic
acid]) to 25 μl of each serum sample. The samples were incubated on ice for 10 minutes and cen-
trifuged at 13,000 rpm for 20 minutes at 4°C. The supernatant was transferred to a fresh Eppen-
dorf vial and dried under vacuum. The dried samples were reconstituted in 200 μl of 5%
Methanol, 1% Acetonitrile and 94% water solution. The samples were re-centrifuged at 13,000
rpm for 20 minutes at 4°C and supernatant transferred to fresh vials for UPLC- QTof analysis.
2μl of each sample was injected onto aWaters Acquity CSH C18 1.7 μm, 2.1 × 100mm column
using an Acquity UPLC system byWaters Corporation, Milford, MA. The gradient mobile phase
consisted of Solvent A- 100% water with 0.1% formic acid, Solvent B- 100% acetonitrile with
0.1% Formic acid and Solvent D- 9:1 ratio of Isopropanol to Acetonitrile with 0.1% Formic acid
and 10mMAmmonium Formate. To reduce the chance of possible batch effects, the cases and
controls were randomized. Each sample was run onto the column for 13 minutes at a flow rate of
0.4 ml per minute. The column temperature was set to 60° C. The gradient consisted of 97% Sol-
vent A for 3 minutes and then at a ramp of curve 6 to 60% Solvent B from 0.5 to 4 minutes. From

Table 1. Summary characteristics of study participants.

Study site DMD
patients

Healthy
controls

Alberta Children’s Hospital (Calgary) 19 16

University of California, Davis (UC Davis) 26 0

University of Pittsburgh / Children's Hospital of Pittsburgh of UPMC (U
of Pittsburgh)

5 2

Children’s National Medical Center (CNMC) 0 4

Children’s Hospital at Westmead (Australia) 1 0

Median age in years (minimum, maximum) 11.4 (4, 28.7) 13.7 (6, 17.8)

Total by age category

4–7 years 15 2

> 7–11 years 8 3

> 11–18 years 17 17

> 18–29 years 11 0

Total 51 22

doi:10.1371/journal.pone.0153461.t001
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4.0 to 8.0 minutes at a ramp of curve 6, the gradient moved to 98% of solvent B and at 9 minutes
shifting to 5% Solvent B and 95% solvent D for10 minutes. At 11 minutes, the gradient was 25%
Solvent A, 25% solvent B and 50% solvent D at a curve of ramp 6 and then back to initial condi-
tions of 97% solvent A and 3% solvent B at 13 minutes. The elution from the column was intro-
duced to Quadrupole Time of flight Mass spectrometer (Waters G2- Qtof) by electrospray
Ionization in both positive and negative mode at a capillary voltage of 3.5 kV and sampling cone
voltage of 35 V. The source temperature was set to 120° C and Desolvation temperature to 350
°C. The cone gas flow was maintained at 25L/hr and Desolvation gas flow at 750L/hr. Leucine-
Encephalin solution in 50% acetonitrile was used a reference mass ([M+H]+ = 556.2771 and
[M-H]− = 554.2615) to maintain accurate mass. The data was acquired in centroid mode from 50
to 1200 mass range with the software Mass lynx (Waters Corporation). The column was initially
conditioned by multiple injections of pooled quality controls and then every ten injections subse-
quently. The mass accuracy was monitored by injecting a mixture of standard compounds at the
beginning and at the end of the batch.

Data processing
The resulting CDF files were processed together using the XCMS method [27] to align the
peaks and estimate the metabolite intensities for each sample. The exact steps performed were:
feature detection, retention time correction, alignment of peaks into peak groups, and imputa-
tion of the values for the missing peaks based on the raw files. Thus, each peak group may have
slightly different m/z values in different samples. The groups which had fewer than 19 peaks
detected across all samples prior to imputation were removed. Henceforth, we will refer to
“peak groups” as simply “peaks.” Prediction of isotopes was then performed using the CAM-
ERA package [28] and higher-weight isotopes were removed. This resulted in 313 peaks in the
negative mode and 1892 peaks in the positive mode, including nitrobenzoic acid and debriso-
quine, respectively. Four of the estimated peak intensities, corresponding to two peaks, were
equal to zero; we imputed these as the minimum non-zero value for that peak across all sam-
ples. The intensities were then normalized to the intensities of the two internal standards,
quantile normalized (separately for the positive and negative modes), then log transformed (we
used a log2 basis, but the results do not depend on the basis). Thus, a total of 2203 peaks were
considered in downstream analyses. Individual-level internal standard normalized, quantile
normalized, and log2-transformed peak intensity values are given in S1 Table.

Statistical and bioinformatic analysis
Variables considered. The primary variable of interest for all the analyses considered

below was DMD disease status. Additional variables considered were: age, age-by-DMD status
multiplicative interaction, and study site. We included the effect of age, as metabolites related
to hormonal and other physical changes in individuals between childhood and adulthood are
expected to be reflected in metabolomics measurements, even in healthy controls. Other
sources of variation not related to the disease process might exist. For example, many metabo-
lites show associations with diet [29], some of which might also change with age. Since DMD is
a progressive disorder, the age trends may be different in cases and controls, hence the use of
the age-by-DMD status interaction term. We considered the effect of the study site, since
demographic characteristics and environment factors including altitude or latitude might be
different in the populations served by the different centers. Furthermore, we wished to account
for any effects due to technical variables which were not controlled for between sites and which
might have an impact on the results. For example, issues like personnel differences could play
an important role and can never be fully eliminated [30].
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Global exploratory analyses. A principal components analysis (PCA) was also performed
as an exploratory analysis to check for possible technical artifacts and any other unusual pat-
terns. After the PCA, 9 linear regression models were considered for the first principal compo-
nent (PC1) to perform an assessment of variables which may have a “global” impact on the
metabolite profiles. These models included as explanatory variables all possible combinations
of DMD status, age, and site, as well as the possible age-by-DMD status interaction, only con-
sidered in models where both age and DMD status were also included separately. The best-fit-
ting model in terms of the trade-off between model fit and number of parameters were chosen
by the Akaike Information Criterion (AIC).

Linear regression analyses. The goal of the main statistical analysis was to find metabo-
lites that are significantly different between DMD patients and healthy controls. The following
linear model was fit to the transformed and normalized intensities:

Met ¼ b0 þ b1x1ðStatus ¼ DMDÞ þ b2xAgeþ b3x1ðStatus ¼ DMDÞ xAgeþ bsite þ Noise;

where βsite is an intercept for each site with the exception of Australia, which serves as a
baseline.

Equivalently, this means that for DMD patients, the model was:

Met ¼ ðb0 þ b1Þ þ ðb2 þ b3ÞxAgeþ bsite þ Noise;

while for healthy controls, it was:

Met ¼ b0 þ b2xAgeþ bsite þ Noise:

As a result, testing the null of no effect of the DMD disease on the metabolite levels is equiv-
alent, in this framework, to testing whether both the intercept and the slope for age are the
same in the two groups:

H0 : b1 ¼ b3 ¼ 0:

We perform this F-test for each of the 2203 metabolite peaks, adjusting for multiple testing
via the Bonferroni threshold, to ensure control of the familywise error rate (FWER) at a signifi-
cance level of 0.05 and via the Benjamini-Hochberg (BH) correction [31]–which estimates con-
servative q-values [32]–to ensure control of the false discovery rate (FDR) at a significance
level of 0.01. The significant peaks from the FDR-adjusted analysis were annotated via the
HMDB [22] and Metlin [33] databases and manually inspected. These peaks were also consid-
ered in receiver operator characteristic (ROC) curve analyses, which fit a logistic regression
model with case/control status as outcome and age and peak intensity as explanatory variables.

Two further analyses were considered. One subgroup analysis considered the same linear
model, but only on the 62 study participants with ages 4–18 years. This is because the DMD
group contained adult patients, whereas the control group did not. A subgroup analysis was
also performed for the study participants from Calgary, using the model:

Met ¼ b0 þ b1x1ðStatus ¼ DMDÞ þ b2xAgeþ b3x1ðStatus ¼ DMDÞ xAgeþ Noise

and performing the analogous F-test. The purpose of this analysis was to see whether the most
significant peaks are also found in a subset which is expected to be more homogeneous, in
terms of both demographics and sample processing. Note that the Calgary subgroup had the
largest sample size and was also somewhat balanced in terms of cases and controls (Table 1).

Validation of significant metabolites. For validation studies, eight serum samples were
processed and run for tandemmass spectrometry (MS/MS) onWaters Quadruple time of flight
Mass Spectrometer with ultra-performance liquid chromatography (Waters G2- Qtof).
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Samples were processed in the similar manner as in the profiling experiment and the chro-
matographic conditions used for data acquisition remained the same. The MS/MS spectra
obtained for the significant m/z was then used to match with available spectra in online data-
bases for identification of the biomarkers.

Pathway analyses. We used the web-based resource ConsensusPathDB [34] to perform
pathway over-representation analysis. ConsensusPathDB contains a total of 4349 pathways
from 12 different pathway databases such as Reactome, Kegg, Signalink, Biocarta, Pharmgkb,
Netpath, Smpdb, Inoh, Wikipathways, Pid, Ehmn and Humancyc. HMDB IDs of the peaks val-
idated by MS/MS were used to conduct pathway enrichment analysis. For each pathway, the
hypergeometric distribution was used to test for over-representation of the metabolites in the
input list of validated peaks among the metabolites in the pathway set. A multiple testing cor-
rection was performed using the Benjamini-Hochberg approach to control the FDR for the
pathways that overlapped with at least one of the input HMDB IDs.

Bayesian network analyses. A Bayesian network analysis was conducted to develop a clas-
sifier for the participants in the study using a minimal set of metabolites, for both the entire
dataset and the Calgary subset. The goal of this analysis was to identify the minimum set of
peaks that classify samples as either DMD or control. The full data analysis considered age,
normalized peak intensities, and site. Age and the peak intensity values were discretized using
density approximation with 3 bins. The Markov Blanket network learning algorithm [35] was
then applied to create the network. The Calgary-only analysis considered age and normalized
peak intensities.

We then performed five-fold cross validation using the Markov Blanket algorithm. The data
was split randomly into 5 approximately equal subsets, with the learning being performed on
80% of the data and the remaining 20% being used for validation for each of the 5 combina-
tions of learning/validation sets.

Results

Global exploratory analysis
The top two principal components are shown in Fig 1(A) and 1(B). The samples in Fig 1 are
shape-coded by DMD disease status; in Fig 1(A) they are also color-coded by age category,
whereas in Fig 1(B) they are color-coded by study site. 23% of the total variance is explained by
the first principal component (PC1) and 6% by the second principal component (PC2). No
clear clusters are observed. The regression models considered with PC1 as the outcome, along
with the corresponding AIC and relative probability that they minimize the information loss
[36] are presented in S2 Table. The top model selected via AIC for PC1 had age and study site,
with study site being significant (p = 0.008 from F-test comparing it to model with only age)
and age showing a borderline significant association (p = 0.066). Thus, both age and study site
appear to have an impact on global metabolite profiles.

Serummetabolome signature for DMD
Based on the F-tests performed for each of the 2203 peaks, testing for an effect of disease status
in the presence of age and study site and allowing for an interaction between disease status and
age, we find 14 metabolites to be statistically significant using the Benjamini-Hochberg proce-
dure with q-value (adjusted p-value)� 0.01, thus controlling the FDR at the 0.01 level. This
means that we would expect the average fraction of false discoveries to be no more than 1%
when repeatedly using this procedure. Of these 14 metabolites, 8 also showed statistically sig-
nificant associations at a Bonferroni threshold of 0.05/2203, therefore controlling the FWER at
0.05. This means that using a p-value cut-off of 0.05/2203 for rejection for each peak, we would
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expect to obtain at least one false discovery (a peak which is not truly different between cases
and controls but for which the null is rejected) no more than 5% of the time when repeatedly
using this procedure on individuals sampled in the same way. Significant differences indicate
that the fitted age trends for the DMD and control groups differed in slope and/or intercept,
i.e. either there is a difference between intensity levels in normal and DMD individuals at base-
line, which is maintained at different ages (difference in intercept); or there is no difference at
baseline, but the values change according to age (difference in slope); or there is a difference at
baseline and the values change according to age as well (difference in intercept and slope.) We
focused the metabolite annotation and validation efforts on these 14 peaks. Each peak was
annotated using the HMDB and Metlin databases (see S3 Table for the positive mode and S4
Table for the negative mode). Following MS/MS validation (S1 Fig), the identities of 4 of these
peaks were determined very likely to be: 5a-DHT; creatinine; either epitestosterone sulfate,
dehydroepiandrosterone sulfate, or testosterone sulfate; and creatine, corresponding to adducts
with median m/z values of 369.17, 114.07, 367.16, and 132.08 in the LC-MS experiment. The
MS/MS spectra for these peaks were all in accordance with the most likely database annota-
tions. The identity of a fifth peak was determined to likely be L-arginine upon manual inspec-
tion; the adduct for this peak has an m/z value of 174.15, which was close to the monoisotopic
mass of 174.11 for L-arginine, however it was not identified in the database annotation.

A subgroup analysis was conducted for the participants aged 4–18 years. This retained 6 sig-
nificant peaks (m/z values of 357.25, 449.15, 369.17, 114.07, 132.08, 312.01) at the Bonferroni
threshold of 0.05/2203, with no additional peaks significant at the q-value threshold of 0.01.
Five of these peaks (all except the peak at m/z of 449.15) were among the top 14 peaks in the
full data analysis. Three of these peaks were validated as being creatinine, creatine, and 5a-
DHT. The remaining peak was ranked 16th (q-value = 0.013) in the full data analysis.

A subgroup analysis was also conducted for the Calgary dataset. This resulted in 8 signifi-
cant peaks at the Bonferroni threshold of 0.05/2203, with no additional peaks significant at the
q-value threshold of 0.01. Six (m/z values of 357.25, 369.17, 114.07, 367.16, 451.17, and 209.12)
of these 8 peaks were among the top 14 peaks in the full data analysis, three of them corre-
sponding to the validated metabolites creatinine, 5a-DHT, and either testosterone sulfate, epi-
testosterone sulfate, or dehydroepiandrosterone sulfate. The remaining 2 peaks at m/z of

Fig 1. PCA plots of the internal standard normalized, quantile normalized, and log2-transformed intensity data. PC2 is plotted against PC1. Solid
circles are DMD patients, empty circles are healthy controls. In panel a), individuals are color-coded by age category and in panel b) by study site.

doi:10.1371/journal.pone.0153461.g001
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223.13 and 175.12 respectively were ranked 15th (q-value = 0.0101), and 612th (q-value> 0.99)
in the full data analysis. We note that creatine was only slightly outside of the threshold deemed
significant in the Calgary-only analysis (q-value = 0.016).

Fig 2 plots the normalized intensity values versus age for the top 14 peaks, with the regres-
sion lines shown for the Calgary and UC Davis sites, which had the largest numbers of partici-
pants. It is clearly shown that levels of some metabolites (e.g. creatinine at m/z 114.06) and the
unknown compound at m/z = 312) are not substantially different between DMD and healthy
volunteers at young ages, then their levels substantially diverge at around 15 years of age. Cre-
atinine was lower in DMD group relative to control group at all ages with the most substantial
difference seen at an older age (> 15 years old). Fig 3 displays boxplots for these same metabo-
lites for the two groups and clearly shows substantial differences between DMD and healthy
volunteers at older ages (blue dots).

The top 14 metabolites include multiple pairs which have strong positive or negative corre-
lations (Fig 4). In particular, we note that creatine and creatinine are negatively correlated
(Pearson correlation = -0.48) while the two testosterone metabolites, 5a-DHT and testosterone
sulfate (or epitestosterone sulfate or dehydroepiandrosterone sulfate), are strongly positively
correlated (Pearson correlation = 0.92).

We further considered a similar linear regression analysis for the creatine/creatinine ratio
(on the log2 scale). Once again an F-test was performed, looking for an effect of disease status
in the presence of age and study site and allowing for an interaction between disease status and
age; the result was highly significant (p = 4 x 10−13). Fig 5 shows the plot of the ratio on the log2
scale against participants’ ages. We also compared this ratio to the values of serum CK muscle
type (CKM) measured in a recent proteomics study [12]. All 51 of the DMD cases in the cur-
rent study were also considered in the proteomics study. Overall, there was a negative correla-
tion between CKM level and creatine/creatinine in the cases, reflecting a decrease in CKM
activity that is most likely due to loss of muscle mass with age (S2 Fig).

The top 14 metabolites and the creatine/creatinine ratio all had areas under the curve
(AUC) values greater than 0.5 in the ROC analysis (S3 Fig) 8 of these 15 biomarkers had AUC
greater than 0.8, including creatine, creatinine, creatine/creatinine ratio, and the two testoster-
one metabolites.

Pathway analyses for metabolites significantly different between DMD
patients and healthy controls
The pathways in which at least one of the 5 validated peaks, corresponding to 7 HMDB IDs–
due to the uncertainty for the peak with m/z 367.16 –were considered. Two IDs, corresponding
to epitestosterone sulfate and 5-DHT were not found in the ConsensusPathDB database. The
pathways in which at least one of the metabolites associated with the remaining 5 HMDB IDs
is present are given in S5 Table. Creatine metabolism is the most significant pathway followed
by urea cycle and metabolism of amino groups, creatine biosynthesis and arginine and proline
metabolism. The validated metabolites present in these pathways are creatine, creatinine, and
L-arginine. In addition to the amino acid metabolism pathways, hormonal pathways such as
17-beta hydroxysteroid dehydrogenase III deficiency and androgen and estrogen metabolism
were also significant. These pathways contain testosterone sulfate and dehydroepiandrosterone
sulfate.

Bayesian network analyses
Six peaks were identified as important for classification for the full-data analysis, two of them
being validated as creatinine and creatine; the remaining 4 peaks were ranked 27th, 58th, 88th,
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Fig 2. Plots of the intensity versus age for the top 14metabolites associated with DMD status. The intensity levels have been internal standard
normalized, quantile normalized, and log2-transformed. The likely annotations are given for the validated peaks and the m/z value of the adduct in the LC-MS
experiment is given for the other peaks; the peak labelled testosterone sulfate may be dehydroepiandrosterone sulfate or epitesterone sulfate. The points are
color- and shape-coded by disease status. The regression lines obtained from the interaction model are shown for the Calgary site for DMD cases and
controls (solid lines) and for the UC Davis site for DMD cases (broken line).

doi:10.1371/journal.pone.0153461.g002
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and 1479th using the F-test. Using only these 6 peaks, the participants in the study can be classi-
fied at 97% accuracy (in-sample classification). Four of these peaks were identified in at least 4
of the 5 combinations in the five-fold cross-validation, corresponding to creatine (5 times), cre-
atinine (5 times), and the peaks ranked 27th (q-value = 0.04) and 58th (q-value = 0.10), which

Fig 3. Boxplots of the intensity versus age for the top 14metabolites associated with DMD status. The intensity levels have been internal standard
normalized, quantile normalized, and log2-transformed. The likely annotations are given for the validated peaks and the m/z value of the adduct in the LC-MS
experiment is given for the other peaks; the peak labelled testosterone sulfate may be dehydroepiandrosterone sulfate or epitesterone sulfate. The points are
separated by DMD status and color-coded by age category.

doi:10.1371/journal.pone.0153461.g003

Fig 4. Correlation plot of the top 14metabolites associated with DMD status. The intensity levels have been internal standard normalized, quantile
normalized, and log2-transformed. The likely annotations are given for the validated peaks and the m/z value of the adduct in the LC-MS experiment is given
for the other peaks; the peak labelled testosterone sulfate may be dehydroepiandrosterone sulfate or epitesterone sulfate.

doi:10.1371/journal.pone.0153461.g004
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have m/z values of 154.06 and 176.04, respectively (4 times). The peak with m/z = 154.06 is
likely to be annotated to a +Na adduct of creatine or beta-guanidinopropionic acid based on
the HMDB database.

The average classification precision for the five-fold validation was 88%.
The Bayesian network analysis applied to the Calgary subset selected only two peaks, corre-

sponding to creatine and creatinine. Using only these two peaks, the samples were classified at
89% accuracy. Five-fold cross validation identified the creatine and creatinine peaks as the only

Fig 5. Plot of the creatine/creatinine ratio of intensities on the log2 scale versus age. The intensity levels have been internal standard normalized and
quantile normalized. The points are color- and shape-coded by disease status. The regression lines obtained from the interaction model are shown for the
Calgary site for DMD cases and controls (solid lines) and for the UC Davis site for DMD cases (broken line).

doi:10.1371/journal.pone.0153461.g005
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peaks being selected in 3 of the 5 combinations. None of the peaks appeared in more than 3 of
the combinations. The total classification precision for the 5 fold subgroup analysis was 71%.
The lower classification accuracy of the subgroup analysis may be due to the smaller learning
set size.

Discussion
To the best of our knowledge, this is the first serum metabolomics study of DMD. We consid-
ered serum from 51 DMD patients and 22 age-matched controls for discovery of novel meta-
bolic biomarkers for DMD using LC-MS profiling. After data processing, linear regression
models were fit for each metabolite, considering the associations with DMD disease status, age,
study site, as well as the age-by-DMD status interaction. We found 14 putative molecular bio-
markers that differ in their levels between DMD patients and healthy controls when age is
taken into consideration. Essentially, as in the DMD proteomics study, we considered increas-
ing age as a surrogate for disease progression among the DMD patients [12]. These metabolites
included creatine, creatinine, and testosterone-related steroids, which were confirmed by MS/
MS analysis. Creatinine and creatine were, as expected, inversely correlated, with creatinine
being generally lower and creatine generally higher in the DMD patients. Creatinine tends to
increase with age in the controls and decrease in the DMD patients, while creatine tends to
decrease in the controls but stay relatively stable in the DMD patients. Creatinine is a break-
down product from the high energy metabolite phosphocreatine in muscle. With loss of muscle
mass in DMD there is a decrease in production of creatinine while creatine that is synthesized
by the liver stays at a steady level. These results are also in agreement with a recent study which
considers serum creatinine in DMD and the less severe Becker muscular dystrophy phenotype,
showing an inverse correlation with a number of measures of disease severity [37], given that
in our study creatinine is higher in controls compared to cases and shows a slight decrease in
cases with age, which is correlated with disease severity.

We note that the ratio between creatine and creatinine may also serve as a possible bio-
marker, as it generally appears to increase in DMD patients and decrease in controls (Fig 5)
and is more significantly associated with DMD status than either creatine or creatinine individ-
ually. It is apparent that DMD patients are not metabolizing creatine as they age, most likely
due to loss of muscle mass. These results are also in agreement with the values of serum CKM,
which were measured on all the DMD cases in a recent proteomics study [12]. While CKM
decreases in DMD cases with age, thus leading to levels more similar to those in healthy con-
trols, which makes it not an ideal marker of disease progression, the creatine to creatinine ratio
appears to increase in cases and decrease in controls.

Other interesting biomarkers are testosterone-related steroids that showed an increase with
age in both DMD patients and controls. However, they remain lower in the case group com-
pared to the control group. This is most probably due to glucocorticoid use, which is known to
cause a decrease in levels of endogenous testosterone and derivatives [38]. We note that we
detected two testosterone-related derivatives, 5a-DHT and testosterone sulfate (or epitestoster-
one sulfate or dehydroepiandrosterone sulfate), which are positively correlated with each
other. Our subgroup analyses–one restricted to participants aged 4–18 years and one restricted
to the Calgary participants–both confirmed several of the significant peaks from the all-data
results. The Bayesian network analysis confirms the importance of creatine and creatinine,
although it does not select the testosterone metabolites. We note that our study did not include
reliable recording of glucocorticoid use, because this is a natural history study and it has been
shown that DMD patients may take either deflazacort or prednisone/prednisolone and that
many different dosing regimens exist [39]. This is certainly an important aspect which should
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be investigated in future work. Additional variables such as muscle mass, dietary intake, disease
conditions, and drugs or supplements taken by the study participants at the time of the blood
draw are also known to impact metabolism and could not be controlled in the present DMD
natural history study, therefore additional studies considering these variable are desirable and
could be achieved with a well-controlled cohort in the future.

A major challenge we faced and a common one for this type of study involves separating
metabolites related to the disease process from those that are a result of drugs or dietary supple-
ments used by the patients. Several compounds were found to have altered levels in DMD
patients compared to controls, but are yet to be identified.

Potential differences between study sites could also be a concern. These were significant for
the first principal component, which is not surprising, due to possible differences in demo-
graphics and environmental exposures which could not be controlled, although the sample col-
lection, processing and storage protocols were consistent at each site. We note as a limitation
of this work the fact that the number of patients in 3 of the five sites was less than 10 and that
the second largest site, UC Davis, only provided cases. We adjusted for study site in the linear
model and performed the Calgary-only subgroup analysis, which resulted in very similar top
hits, to partially address this issue but are aware that in the future more sites should be consid-
ered, with a larger number of participants per site and more detailed individual-level demo-
graphic and exposure information. A further limitation is due to the retrospective nature of the
study–meaning that we cannot tell if the change in a metabolite’s intensity is related to a pro-
cess which impacts disease progression or is impacted by disease progression. We are presently
collecting longitudinal samples within a well-controlled cohort in order to answer these ques-
tions and to validate the biomarkers proposed in our current, natural history, study. Our future
work will also be powered to detect correlations between clinical outcomes which measure dis-
ease severity and metabolic markers. As creatine and creatinine are well-studied metabolites,
the use of more targeted methods to measure them as well as their ratio in future studies may
also provide additional validation for our results.

Conclusions
We described herein the first comprehensive metabolomic study for DMD. We believe that
this preliminary study represents one of the first steps towards finding metabolic surrogate bio-
markers of disease progression in DMD patients. Given that the present work considered a nat-
ural history study, important variables could not be controlled. We are hopeful that future
work will include prospective longitudinal studies with a larger number of variables collected,
as well as more targeted assays, which will provide better insights into temporal trends and
causal mechanisms related to DMD progression. While further validation of the results from
this initial discovery study is expected to follow from the longitudinal cohort, our current work
should provide valuable insights as the first metabolomic signature of DMD and might prove
to be a useful reference for future metabolomics studies. Integration with additional types of
data–such as genomics, proteomics, and clinical outcomes–is a further avenue of interest.

Supporting Information
S1 Fig. MS/MS spectra for the top peaks.
(PDF)

S2 Fig. Plot of CKM versus the creatine/creatinine ratio in DMD cases, both on the log2
scale. The intensity levels for creatine and creatinine have been internal standard normalized
and quantile normalized. The points are color- and shape-coded by age category. ρ represents
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the correlation on the log scale. Both the overall correlation and the correlations within age cat-
egories are given.
(PDF)

S3 Fig. ROC curves for the top 14 peaks from the overall analysis and for the creatine/creat-
inine ratio. A logistic model was fit with case/control status as outcome and age and peak
intensity as explanatory variables. The AUC for each possible biomarker is given in the title;
tpr = true positive rate, fpr = false positive rate.
(PDF)

S1 Table. Individual characteristics and peak intensities of the study participants. Each
peak is labelled according to its m/z value, retention time in seconds, and mode (‘p’ = positive,
‘n’ = negative); for example, peak M132T37p has an m/z value of 132, a retention time of 37
seconds, and was detected in the positive mode. The log2-transformed CKM values from the
[12] study are also given for the common samples.
(XLSX)

S2 Table. Models considered for PC1. The 9 linear models considered for PC1. The variables
and Akaike Information Criteria (AIC) are given. Smaller AIC values indicate a better model fit,
while also adjusting for the number of parameters, with the best model according to the AIC
being shown in bold. The relative probabilities representing the strength of evidence for each
model j compared to the model deemed to be the best are calculated by exp(-(AICj-AICmin)/2);
for instance, the model including only site has 0.43 times as much evidence than the model
including both age and site.
(XLSX)

S3 Table. Annotations for the top peaks detected in positive mode from HMDB andMetlin.
Drugs and non-human metabolites are shown in red. The most likely annotations are
highlighted.
(XLSX)

S4 Table. Annotations for the top peaks detected in negative mode from HMDB and
Metlin. Drugs and non-human metabolites are shown in red. The most likely annotations are
highlighted.
(XLSX)

S5 Table. Pathways from ConsensusPathDB in which at least one of the 5 validated peaks is
present. The ‘Size’ column represents the absolute size of the pathway, the ‘Effective size’ col-
umn represents the number of set members that are annotated with an ID of the user-specified
ID type (HMDB ID in this case); the ‘Input overlap’ column represents number of entities
from the user input list that overlap with entities in the pathway based set. The p-values are
obtained from a hypergeometric test of over-representation. The q-values are calculated using
the Benjamini-Hochberg approach considering just the tests for the pathways which include at
least one validated peak.
(XLSX)
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