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Proteolytic modulation of tumor
microenvironment signals
during cancer progression

Yoshifumi Itoh*

Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
Under normal conditions, the cellular microenvironment is optimized for the

proper functioning of the tissues and organs. Cells recognize and

communicate with the surrounding cells and extracellular matrix to maintain

homeostasis. When cancer arises, the cellular microenvironment is modified to

optimize its malignant growth, evading the host immune system and finding

ways to invade and metastasize to other organs. One means is a proteolytic

modification of the microenvironment and the signaling molecules. It is now

well accepted that cancer progression relies on not only the performance of

cancer cells but also the surrounding microenvironment. This mini-review

discusses the current understanding of the proteolytic modification of the

microenvironment signals during cancer progression.
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1 Introduction

It is now well accepted that surrounding microenvironment is a determinant of the

cancer cell progression (1). Cancer cells modify a normal tissue microenvironment and turn

into a tumor microenvironment (TME) that helps cancer cells to grow, invade, and

metastasize (1). A major component of the TME is the extracellular matrix (ECM) (2, 3).

Cancer cells recognize ECM components through ECM receptors and modify them by

depositing or degrading the ECM (3). Cells within the TME, such as cancer-associated

fibroblasts (CAFs) and tumor-associated macrophages (TAMs), also contribute to this

process. In addition to being a glue function to connect the cells and a bordering function

to separate tissues and organs, the ECM also acts as signaling molecules, a pool for cytokines

and growth factors, and a scaffolding for migrating cells (3). Thus, the modification of the

pericellular ECM would impact cancer progression significantly.

Invasion and metastasis are the most life-threatening feature of malignant cancers.

Transformed epithelial cells gain the ability to proliferate, downregulate cell–cell adhesion,

and degrade the basement membrane (BM) and stromal tissue under it. This invasion process
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disturbs tissue architecture and causes the loss of tissue function.

Once cancer cells reach either blood vessels or lymphatic vessels, they

intravasate and traverse to distant organs. During this process, many

cancer cells are attacked by immune cells. Still, some cancer cells

evade this immune surveillance and reach the organ where they can

extravasate and create metastatic colonies. Once they extravasate,

they grow, invade tissue, and cause tissue malfunction (Figure 1).

One of the means for cancer cells to modify their

microenvironment signals is by using proteolytic enzymes. These

proteinases degrade the ECM for growth, invasion, metastasis, and

causing tissue damage (4). Proteinases can also generate bioactive

fragments from the ECM by limited processing. It also degrades or

processes soluble factors and modifies the signaling events in cancer

cells and other cells within the TME. Proteinases also shed

transmembrane (TM) cell surface receptors for cytokines and
Frontiers in Oncology 02
growth factors and adhesion molecules for cell–cell and cell–ECM

attachments and adhesion. Proteolytic events are non-reversible

reactions and are thus effective in modulating the function of the

molecules. This mini-review discusses the current understanding of

proteolytic modification of microenvironment interaction in cancer.
2 Proteolytic enzymes involved in
microenvironment modulation

2.1 Matrix metalloproteinase

Matrix metalloproteinases (MMPs) belong to the metzincin

clan of metalloendopeptidase, and the major substrates of MMPs

are ECM components (5). They harbor zinc in their catalytic site
FIGURE 1

Proteolytic events during cancer progression. Epithelial cancer arises within the epithelial layer. They break through the basement membrane
(BM) and invade stromal tissue. Upon BM degradation, matrikines are generated by proteolytic action, and cell surface extracellular matrix (ECM)
receptor shedding promotes cancer cell motility. Stromal fibroblasts are activated and become cancer-associated fibroblasts and help cancer
cells further invade. Tumor-associated macrophages (TAMs) help to evade the immune system. Cells degrade stromal the ECM further,
including type I collagen, and intravasate into the vessel. Cancer cells traverse other organs through the bloodstream, interacting and rolling on
the endothelial cell layer. Intercellular adhesion molecule–1 may be expressed in cancer cells, and its shedding allows cancer cells to migrate
through the endothelial cell layer and extravasate. Cancer cells invade stromal tissue, form a metastatic colony, create a tumore
microenvironment, and cause tissue malfunction.
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for the hydrolysis of peptide bonds. There are 23 MMPs in

humans, and they can be divided into two groups according to

their membrane-bound nature: soluble MMPs and membrane-

type MMPs (Figure 2) (6). Within soluble MMPs, they can be

further classified according to domain structure. Classical MMPs

contain a pre-/propeptide, a catalytic domain, a hinge, and a

hemopexin domain. This group contains interstitial collagenase

(MMP-1), stromelysin 1 (MMP-3), neutrophil collagenase/

collagenase 2 (MMP-8), stromelysin 2 (MMP-10), macrophage

elastase (MMP-12), collagenase 3 (MMP-13), MMP-19,

enamelysin (MMP-20), and MMP-27. Gelatinase MMPs have

three repeats of the type II fibronectin domain in the catalytic

domain, allowing them to bind collagen and gelatin. This group

has two gelatinases, MMP-2 (gelatinase A) and MMP-9

(gelatinase B). The third group is minimal as its domain

structure consists only of a pre-/propeptide and a catalytic

domain. Matrilysin 1 (MMP-7) and matrilysin 2 (MMP-26)

belong to this group. The fourth group has classical MMPs’

domain structure, but it has a basic amino acid motif of R-X-K/

R-R that is recognized and cleaved by proprotein convertases

(PCs) such as furin at the C-terminus of the propeptide, allowing

them to be activated during the secretory process by PCs. This

group includes stromelysin 3 (MMP-11), MMP-21, and epilysin

(MMP-28). MMP-23 is a unique member of MMP that is a type

II TM enzyme. The TM domain is located at the N-terminus of

the propeptide, and the basic motif of R-R-R-R for activation by

furin is inserted at the C-terminus of the propeptide. Thus,

MMP-23 becomes a soluble enzyme upon activation.

Membrane-type MMPs (MT-MMPs) have two subgroups. One

is type I TM-types, including MT1-, MT2-, MT3-, and MT5-

MMPs, and the other glycosylphosphatidylinositol (GPI)-

anchored types, including MT4- and MT6-MMPs. As they

have a membrane-anchored part at the C-terminus of the

enzyme molecule, MT1-MMPs are expressed on the cell

surface. All MT-MMPs have the basic motif of R-X-K/R-R

motif at the C-terminus of propeptide for activation by PCs.

TM-type MT-MMPs have a characteristic eight amino acid

insertion in the catalytic domain called MT-Loop or IS-2.

GPI-type MT-MMPs do not have this insertion.
2.2 A disintegrin and a metalloproteinase

ADAM belongs to the metzincin clan of metalloendopeptidase-

like MMPs. There are 12 ADAMs that are catalytically active and

eight ADAMs that are catalytically inactive (Figure 2) (7). ADAMs

are type-I TM proteinases and share conserved domain structures

within the family. They consist of a signal peptide, pro-domain,

catalytic domain, disintegrin domain, cysteine-rich module, EGF-

like domain, TM domain, and cytoplasmic domain. ADAMs also

have a basic R-X-K/R-R motif at the C-terminus of propeptide for

activation by PCs at trans-Golgi. Thus, ADAMs are displayed on

the cell surface as an active form. ADAMs are generally considered
Frontiers in Oncology 03
membrane protein sheddases, cleaving a range of cell surface

proteins, including cytokines, growth factors, receptors for

cytokines and growth factors, and cell adhesion molecules (8).

Among 12 catalytically active ADAMs, ADAM10 and ADAM17

are the most characterized dominant membrane sheddases.
2.3 A disintegrin and metalloprotease
with thrombospondin type 1 motif

ADAMTS enzymes have conserved domain structures,

consisting of a signal peptide, pro-domain, catalytic domain,

disintegrin domain, cysteine-rich module, spacer domain, and

additional repeats of thrombospondin regions for some enzymes

(Figure 2) (9). ADAMTS enzymes also have a basic motif of R-

X-K/R-R motif at the C-terminus of the pro-domain and are

activated by PCs during secretion. Unlike ADAMs, ADAMTSs

are soluble enzymes whose primary function is ECM

degradation (9).
2.4 Plasmin system

The serine proteinase plasmin is the major proteinase in our

body fluid (10). It is mainly produced in the liver and exists in

the plasma as its precursor form, plasminogen (or Glu

plasminogen with the glutamic acid at the N-terminus), at

approximately 0.2 mg/ml. Its major function is fibrin

degradation, but it also degrades ECM components, including

fibrinogen, laminin, vitronectin, and osteocalcin. It also activates

several proMMPs, including proMMP-1, proMMP-3, proMMP-

9, and proMMP-13. It cleaves complement components 3 and 5

(C3 and C5), factors V, VIII, and X, and protease-activated

receptors (PARs). Thus, plasmin possesses a broad substrate

specificity. Plasminogen is activated by two types of plasminogen

activators (PA), urokinase PA (uPA) and tissue-PA (tPA), by the

cleavage in the activation loop between Arg561 and Val562.

Activated plasmin activates pro-uPA and pro-tPA, providing

positive proteolytic feedback (Figure 3).
2.5 Neutrophil-derived serine proteinases

Neutrophil in the TME produces serine proteinases,

including neutrophil elastase (NE), proteinase 3 (Pro3), and

cathepsin G (CG) (11, 12). NE, Pro3, and CatG cleave elastin, the

telopeptide region of fibrillar collagen types I, II, III; collagen

types IV, VI, VIII, IX, X, and XI; and fibronectin, laminin, and

aggrecan (11, 12). They can also activate proMMPs and

inactivate endogenous proteinase inhibitors such as a2
antiplasmin, a1 antichymotrypsin, and the tissue inhibitors of

metalloproteinases (TIMPs) (11, 12). It has also been shown that

NE and CatG activate PARs (11, 12).
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3 Microenvironment modification by
proteolytic enzymes

3.1 Extracellular matrix degradation for
cancer invasion

The ECM holds cancer and other cells together to create a

TME. The ECM provides signals to cells through ECM receptors

and migration cues. On the other hand, the ECM also acts as a

physical barrier to invading cancer cells as it is a solid matrix. For

a cancer cell to migrate through the ECM, its pore size needs to

be big enough for cells to squeeze the nuclei to migrate through:

7 mm2 for cancer cells (13). If the ECM gaps are not sufficiently

large, cells will use proteolytic enzymes to enlarge the opening to
Frontiers in Oncology 04
migrate through. It has been well accepted that one of the major

proteinases to degrade the ECM during invasion under the

condition is MT1-MMP (4, 13–15). MT1-MMP degrades

many ECM components, including fibrillar collagens I, II, III,

fibronectin, vitronectin, laminins-1, -2, -4, and -5, fibrin/

fibrinogen, perlecan, and aggrecan (4, 14). It activates other

MMPs on the cell surface, namely, proMMP-2 and proMMP-13,

expanding the proteolytic repertoire (14). ProMMP-2 activation

is critical when cancer cells need to degrade the BM since a

major component of the BM can be degraded by activated

MMP-2 but not by MT1-MMP itself. It was shown that

epithelial cancer cells could not invade or grow without

stromal-derived proMMP-2 due to the inability to degrade

type IV collagen (14, 16). MT1-MMP is also a major
FIGURE 2

Domain structure of metalloproteinases. Matrix metalloproteinases (MMPs) can be divided into two major groups: soluble MMPs and
membrane-type MMPs. According to their structures, they can be classified into six soluble MMPs and two subgroups in membrane-type MMPs.
MMP-11, 21, 28, 23, and MT-MMPs have a basic motif of RXKR that is recognized and cleaved by proprotein convertases to activate the
enzymes by removing their pro-domain. Sig, signal peptide; Pro, pro-domain; Cat, catalytic domain; L, linker or hinge region; Hpx, hemopexin
domain; C, cysteine; FN-II, fibronectin type-II repeats; TM, transmembrane domain; CA, cysteine array; IgG, IgG-like domain; L1, linker1 or hinge
region; L2, linker 2 or stalk region; MT-Loop, eight amino acids insertion unique to TM-type MT-MMPs; and CP, cytoplasmic domain. ADAM
enzymes have a conserved domain structure. DITG, a disintegrin-like domain; CysR, a cysteine-rich domain; EGF, an EGF-like domain. ADAMTS
enzymes also have a conserved domain structure and differ in the number of thrombospondin motifs (TS) at their C-terminus. ADAMTS-4 is the
smallest, without a C-terminal TS, and ADAMTS-5 and 8 have two. Other members have 2–14 repeats. Spacer, spacer domain. Both ADAM and
ADAMTS enzymes have an RXKR motif at the C-terminus of their propeptide for activation by proprotein convertases.
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collagenase that promotes cancer invasion in stromal tissue.

There are five collagenolytic MMPs, including MMP-1, MMP-2,

MMP-8, MMP-13, and MT1-MMP. However, MT1-MMP is the

only collagenase that promotes cellular invasion within the type I

collagen matrix (17).

MT1-MMP is regulated by different post-translational

mechanisms to promote cellular invasion effectively. One is

homodimer formation on the cell surface through the

hemopexin (Hpx) domain and TM domain (18, 19). The

homodimer state is considered an active state of the enzyme,

as both the proMMP-2 activation and fibrillar collagen

degradation activities of MT1-MMP on the cell surface require

the enzyme to be in the dimer state (18, 20). In invading cells, the

dimerization of MT1-MMP constitutively occurs at the leading

edge (21). The dimerization was regulated by the coordination of

the actin cytoskeleton, and Rac1 and Cdc42 activation was

shown to enhance MT1-MMP dimerization (21).

The second regulation is localization at the “leading edge”

membrane structures, such as lamellipodia and invadopodia.

Preventing MT1-MMP localization to the leading edge would

disable MT1-MMP-dependent cancer invasion as the

coordination of MT1-MMP activity and migrating machinery

would be lost (15). It was shown that MT1-MMP localization at
Frontiers in Oncology 05
the lamellipodia is mediated by interacting with a hyaluronan

receptor CD44 through the Hpx domain (22). Since CD44 is

associated with the actin cytoskeleton through ERM proteins at

the cytoplasmic domain, MT1-MMP is also associated with F-

actin indirectly.

Invadopodia is another leading-edge membrane structure,

and it was initially characterized as “a vertical membrane

protrusion extends towards ECM that contains proteinases to

degrade ECM” (23). The key components of the invadopodium

include a scaffold protein, tyrosine kinase substrate with 5 SH3

domains (Tks5), the actin-regulating molecule cortactin, neural

Woskott–Aldrich syndrome protein N-WASP, and cofilin (23).

Aside from these molecules, MT1-MMP is another component

that provides invasive function to the membrane structure (23).

It has been extensively documented that breast cancer cells

extend the invadopodia structure and degrade the matrix

creating punch hole degradation spots (24–29). However, as

the invasion process progress, a single protrusion seems to

expand to a larger cell cortex along the matrix to degrade

further and push the ECM to expand the gaps of the

meshwork (27). Thus, invadopodia can no longer be defined

as a protruding membrane structure but as a membrane with a

molecular composition of Tks5, cortactin, F-actin, and MT1-
FIGURE 3

Plasmin system. Plasminogen is a precursor form of plasmin, mainly produced in the liver and present in the plasma at approximately 150–200
mg/ml. Plasminogen is activated by either a tissue plasminogen activator (tPA) or urokinase plasminogen activator (uPA). uPA is bound to the
glycosylphosphatidylinositol-anchored uPA receptor and activates plasminogen on the cell surface. tPA and uPA are also produced as precursor
forms, and activated plasmin can activate these activators. Activated plasmin can degrade cross-linked fibrin and various ECM components,
interact with the complement system to facilitate complement cascade, activate proMMPs, activate the precursor form of TGFb, and cause
syndecan shedding.
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MMP. It was shown that MT1-MMP localization at the

invadopodia requires the cytoplasmic tail (CT) of the MT1-

MMP (27, 30), suggesting that the CT-binding molecules play a

role in MT1-MMPp localization at invadopodia. However, the

crucial adaptor molecule enabling MT1-MMP localization at the

invadopodia has not been identified yet.

On the other hand, two kinesin motor proteins, Kinesin-1

(KIF5B) and Kinesin-2 (KIF3A), were shown to be involved in

MT1-MMP trafficking to the invadopodia (31). Recently, the

picture of the MT1-MMP vesicle trafficking to invadopodia was

further clarified by a study reporting that the ER (endoplasmic

reticulum) protein, protrudin, is crucially involved in MT1-

MMP vesicle transport to the invadopodia (Figure 4A) (32).

P r o t r ud i n make s con t a c t s i t e s w i t h RAB7 and

phosphatidylinositol 3-phosphate (PI3P)–positive late

endosomes (LEs) containing MT1-MMP. Protrudin hands

over RAB7-binding KIF5 adaptor protein FYCO1, enabling

the transport of MT1-MMP-containing vesicles along

microtubules toward invadopodia at the plasma membrane

(Figure 4A) (32).

Aside from invadopodia, MT1-MMP has been shown to

localize at the focal adhesion (FA) (34–36). FA is where the

distance of the plasma membrane and ECM is the closest since

integrins directly interact with ECM components at FA.

However, unlike invadopodia localization, MT1-MMP

localization at the FA is independent of the CT of the MT1-
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MMP (34). It was shown that an eight-amino-acid loop structure

called MT-Loop or IS-2 (163PYAYIREG170) within the catalytic

domain is necessary to localize at the FA (34). Since MT-Loop is

positioned on the opposite side of the catalytic site in the

catalytic domain, it does not influence the catalytic function.

Still, it acts as a molecular interface, allowing MT1-MMP to

localize at the FA (34). It was recently discovered that the FA

localization of MT1-MMP is carried out by direct intracellular

trafficking of MT1-MMP-containing vesicles to the FA by

kinesin superfamily motor proteins, KIF13A and KIF3A (33).

KIF3A and KIF13A coordinately transport MT1-MMP-

containing vesicles from the trans-Golgi to endosomes.

KIF13A alone then takes over the vesicles and transports them

from the endosomes to the plasma membrane (33) (Figure 4B).

This is a distinct vesicle trafficking pathway from invadopodia as

KIF5B is not involved (33). It is possible that KIF3A- and

KIF13A-mediated trafficking can be therapeutic targets to

prevent invasion in specific cancers that utilize FA-dependent

invasion mechanisms.

In contrast to ECM degradation, the stiffening of the tumor

ECM, called desmoplasia, is also known to correlate with tumor

aggressiveness. In this case, stiffened ECM-driven signals

promote the progression of cancer. This aspect is reviewed by

Gkretsi and Stylianopoulos (37). It is seemingly contradictory,

but cancer invasion only requires local ECM degradation; thus, it

makes sense.
A B

FIGURE 4

Vesicle transport of MT1-MMP to the invadopodia and the focal adhesion (FA). (A) Vesicle transport of MT1-MMP to the invadopodia has been
extensively studied. It was shown that the endoplasmic reticulum protein protrudin plays a crucial role. Protrudin makes contact sites with RAB7
and phosphatidylinositol 3-phosphate (PI3P)–positive MT1-MMP-containing vesicles. Protrudin hands over RAB7-binding KIF5 adaptor protein
FYCO1, enabling the transport of MT1-MMP-containing vesicles along microtubules toward invadopodia (32). (B) It was found that localization at
FA is due to the direct transport of MT1-MMP-containing vesicles along the microtubules. KIF3A and KIF13A transport the vesicles between the
trans-Golgi and the endosome. From the endosome, KIF13A solely transports the vesicles to the plasma membrane. The FA localization of MT1-
MMP is essential for the HT1080 cell invasiveness (33).
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3.2 Generation of matrikines: Bioactive
fragments from extracellular matrix

ECM components are generally large multidomain

glycoproteins that interact with each other to create a unique

solid structure to support the function of the cells, tissues, and

organs (2). These ECM molecules contain hidden sequences or

modules that can send signals to the cells through the receptors

upon exposure. These epitopes can be revealed either due to

partial unfolding of the protein structures or proteolytic

processing (38). These ECM fragments are termed

“matrikines” (39). This section discusses collagen-derived

fragments, elastin-derived fragments, and laminin-

derived fragments.

3.2.1 Collagen-derived fragments
Non-fibrillar collagens consist of triple helical regions and

non-triple helical regions, and some of these collagens were

shown to contain antiangiogenic fragments. The first example is

type XVIII collagen. It is a component of the BM and plays a

significant role in providing the integrity of the structure of the

BM for both endothelial and epithelial cells. It is well known that

type XVIII collagen proteolysis generates angiogenesis inhibitor

endostatin (38). It is a C-terminal non-collagenous domain 1

(NC1) fragment of collagen XVIII. Endostatin can be generated

by many different proteinases, including the lysosome cysteine

proteinases of Cathepsin L, Cathepsin B, and Cathepsin K;

MMPs including MMP-3, MMP-9, MMP-12, MMP-13, MMP-

20; and, to a less extent, by MMP-2 and MT1-MMP (38). An

increase in the proteolytic activities of these proteinases in tumor

tissue would generate endostatin and delay tumor angiogenesis

and thereby tumor growth and metastasis.

The following example is type IV collagen. It is a major BM

component and forms a thin sheet-like structure with laminin 5.

Type IV collagen is composed of six different a chains (a1–a6)
that are encoded by six different genes (COL4A1–COL4A6)

(40). The three primary antiangiogenic fragments released from

the a1, a2, and a3 chains of type IV collagen are arresten,

canstatin, and tumstatin, respectively (40). It was shown that

arresten was generated upon p53 activation in cancer cells, and it

was due to p53-induced MMP activity (41). It was reported that

MMP-2, MMP-3, and MMP-13 could generate tumstatin, but

MMP-9 was the most efficient in liberating it from type IV

collagen, and MMP-9 null mice showed significantly decreased

circulating blood levels of tumstatin (42). While endostatin

inhibits both physiological and tumor angiogenesis, tumstatin

inhibits only tumor angiogenesis. It is because the tumstatin’s

receptor avb3 only plays a role in tumor angiogenesis (42). It

was also shown that MT2-MMP could cleave the NC1 domain of

type IV collagen in the submandibular gland, which promotes

branching morphogenesis (43). Since MT2-MMP cleaves off all
Frontiers in Oncology 07
three chains, it effectively generates arresten, canstatin, and

tumstatin (43).

The final example of antiangiogenic fragment generation is

type XV collagen. It is classified as a chondroitin sulfate

proteoglycan and a member of the multiplexin and non-

fibrillar collagen subgroups (44). It is also a member of the

FACIT collagen family (fibril-associated collagens with

interrupted helices). Upon the cleavage of the C-terminal NC1

domain of type XV collagen on its a1 chain, restin, a 22-kDa

antiangiogenic factor similar to endostatin, is produced (45).

Restin exhibits antiangiogenic properties in vivo in xenograft

carcinoma mouse models (45). However, responsible enzymes to

generate restin have not been described. Similar other

antiangiogenic fragments of ECM molecules include vastatin

(type VIII collagen), anastellin (fibronectin), and endopellin

(perlecan), but responsible proteinases are not known.

3.2.2 Elastin-derived fragments
Elastin provides elasticity and resilience to tissues, including

the lungs, arteries, and skin. It shows a unique protein

containing a large amount of four hydrophobic amino acids of

Gly, Val, Ala, and Pro. It is heavily cross-linked at Lys residues.

Due to its hydrophobicity and extensive cross-linking, elastin is

insoluble, highly resistant to proteolytic degradation, and does

not undergo substantial turnover in healthy tissue (46–48).

However, it was found that elastin can be extensively degraded

by proteinases related to inflammation and cancer.

It has been reported that MMP-7, MMP-9, and MMP-12

degraded elastin extensively and also generated fragments

possessing pro-inflammatory activities (49). It has also been

reported that neutrophil-derived serine proteinases, NE, CatG,

and RR3, degrade elastin, and these elastin-derived peptides

possess pro-inflammatory activities (50). VG-6 (VGVAPG) and

AG-9 (AGVPGLGVG) peptides are especially considered to be

active fragments showing various pro-inflammatory and

protumorigenic activities (38).

3.2.3 Laminin-derived fragments
Laminin has also been extensively studied for biological

fragments. Laminin 5 (Laminin 332) is a major component of

the epithelial and endothelial BM aside from type IV collagen,

and it is composed of the three laminin chains of a3, b3, and g2.
After secretion and deposition in the ECM, laminin 332

undergoes physiological maturation processes consisting of the

proteolytic processing of domains located within the a3 and the

g2 chains by plasmin (51), mammalian tolloid (mTLD) (52), and

bone morphogenic protein 1 (BMP-1) (53). These maturation

events are essential for laminin 332 integration into the BM,

where it plays a vital function in the nucleation and maintenance

of anchoring structures. C-terminal globular domains 4 and 5

(LG45) of the a3 chain are proteolytically removed during
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maturation, but soluble LG45 has biological functions. It was

shown that soluble LG45 induced keratinocyte migration and

the expression of MMP-1 and MMP-9 (54).

It was shown that a 30-kDa g2 chain fragment containing an

epidermal growth factor (EGF)–like motif (DIII, domain III) was

released by the two cleavages by MT1-MMP and MMP-2 (55–

57). The released DIII fragment of the g2 chain then promotes

the migration and invasion of cancer cells by engaging to the

EGF receptor (56–58). It is considered that this event promotes

the growth and initial breach of the BM at primary tumor sites.
3.3 Releasing extracellular matrix–bound
soluble factors

One of the important biological roles of the ECM is pooling

growth factors and cytokines (59, 60). There are growth factors

associated with heparan sulfate (HS) and those that interact with

matrix proteins (59, 60). They are secreted from the cells and

retained in the ECM. Binding to the ECM prevents these soluble

factors from binding to their receptors, but upon liberating from

the ECM, they become bioavailable to cells to transmit the

signals (59, 60). Proteolytic enzymes are responsible for

this release.

One of the examples is the vascular endothelial growth factor

(VEGF). The VEGF is a potent inducer of angiogenesis,

implicated in cancer angiogenesis (61). It binds to HS through

the heparin-binding domain with basic motifs encoded by exons

6 and 7 (61). VEGF has several alternative splicing variants,

including VGFA121, VGFA165, VEGF189, and VEGF206. VEGF189
and VEGF206 have two heparin-binding sites, and VEGF165 has a

single heparin-binding domain encoded by exon 7, while

VGFA121 does not have the heparin-binding domain (61).

VEGF165 is the most physiologically relevant VEGF isoform,

and the heparin-binding domain locates at the C-terminus.

While VEGF189 and VEGF206 exclusively localize on the cell

surface or ECM and cannot be detected in the culture medium

due to two heparin-binding domains, 50%–70% of VEGF165 can

be secreted to the medium due to weaker affinity to HS (62).

Serine proteinase plasmin was shown to proteolytically release

the ECM-bound VEGF species of both VEGF165 and VEGF189
into a soluble biologically active VEGF (63), suggesting that the

proteolytic cascade of plasminogen activation, a critical step

during angiogenesis, can result in an angiogenic switch. It was

also found that MMP-9 can cause an angiogenic switch in tumor

tissue by releasing VEGF from the matrix (64).

Another example is TGF-b, which exerts both tumor-

suppressive and -promoting effects (65). The suppressive effect

is due to its ability to upregulate the cyclin kinase inhibitors,

causing the inhibition of cell proliferation. However, as the

cancer progresses, cyclin kinase inhibitors become refractory

to growth inhibition and begin to produce large amounts of

TGF-b (65). TGF-b is produced as an inactive pro-form and
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requires proteolytic conversion by furin or other proteinases,

such as MMP-9, to become an active form. MMP-9 can localize

at the cell surface by binding to the CD44, a hyaluronan

receptor, and then activate TGFb (66). It was also shown that

MT1-MMP and MMP-2 could activate TGF-b1 (67). On the

other hand, MMP-2 and MMP-9, and MT1-MMP indirectly

modulate TGF-b by cleaving the latent TGFb-binding protein 1

(LTBP-1), releasing ECM-bound TGF-b (68, 69). Since tumor

cells often acquire non-responsiveness to TGF-b, the proteolytic
activation of TGF-b by MMPs may exhibit cancer-promoting

effects by selectively driving stroma-mediated cancer invasion

and metastasis (65). It has also been shown that plasmin can

release active TGFb from the ECM (70).

Although it is not a proteolytic action, the degradation of HS

chains in HS proteoglycans (HSPGs), such as syndecans and

perlecan, by the hepanase glycolytic enzyme can also release

growth factors and is also considered to be an essential

modulator of growth factor signaling within the TME.
3.4 Processing soluble factors: cytokines
and chemokines

Proteinases are known to process cytokines and modify their

signals (71). Interleukin 1b (IL-1b) is degraded by MMP-1,

MMP-2, MMP-3, and MMP-9, while IL-1a is resistant to these

proteolytic enzymes (72). Although both IL-1a and IL-1b bind

to the same IL-1 receptor (IL1R) and activate through the same

pathway, they are separately encoded proteins with low sequence

homology and divergent biological processes, cellular

localization, and the mechanisms of activation (73). However,

IL-1b was shown to be involved in cancer more than IL-1a. IL1b
has two opposite roles in cancer: promoting cancer and

suppressing cancer. The tumor-promoting effects of IL-1b are

to promote inflammation-driven carcinogenesis and cause tissue

damage by upregulating various MMPs. On the other hand, the

tumor-suppressing effect is the activation of anticancer

immunity (73). Cancer may take advantage of IL-1b
degradation to evade immunity.

Another example of proteolytic processing is chemokines. It has

been shown that MMP-dependent chemokine proteolysis can affect

the biological functions of chemokines in different ways (71). First,

the proteolysis inactivates the chemokine. Second, the processing

generates antagonistic derivatives, which can still bind to the

chemokine receptor but cannot exert chemotaxis. Third, the

truncation of chemokine results in a higher chemotactic effect. It

has been shown that MMP-1, MMP-2, MMP-3, MMP-9, MMP-13,

and MT1-MMP inactivate CXCL12 (stromal cell-derived factor-1)

(74). MMP-2 also sheds the plasma membrane-associated

chemokine, CX3CL1 (fractalkine), generating a soluble

chemokine. However, an additional cleavage at the N terminus of

the protein byMMP-2 inactivates the chemokine, converting it into

a potent antagonist (75).
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MMP-9 also inactivates CXCL chemokines, including

CXCL4 and CXCL1 (76). MMP-9 inactivates CXCL5 and

CXCL7 as well (76). It was also shown that MMP-8 and

MMP-9 inactivate CXCL9 and CXCL10 by processing their C-

terminus (77).

Several inactivated chemokines can still bind to their

receptors, acting as functional antagonists. MMP-1, MMP-2,

MMP-3, MMP-13, and MMP-14 process CCL7 (MCP-3) into an

antagonistic form (78, 79). The closely related chemokines CCL2

(MCP-1) and CCL13(MCP-4) can also be cleaved by MMP-1

and MMP-3 and CCL8 (MCP-2) by MMP-3 (79). Thus, MMPs

can exhibit anti-inflammatory effects by dampening the action

of chemokines.

MMP-9 was shown to process CXCL8 (IL-8), significantly

increasing chemotactic activity (76). MMP-8, MMP-13, and

MT1-MMP also generate truncated IL-8 species with increased

activity (80, 81). MMP-8 also activates CXCL5 (81).
3.5 Membrane protein shedding
and processing

ECM–cell communication is mediated by cell surface

receptors and other cell surface molecules, and the proteolytic

cleavage of these membrane proteins termed shedding modifies

microenvironment signaling. The major shedding enzymes are

MT1-MMP, ADAM17, and ADAM10 in the TME. They are

type-I TM proteinases, and, together, these enzymes modify

diverse signaling pathways. This section discusses six shedding

examples that influence cancer progression, namely, CD44,

ICAM-1, DDRs, syndecans, EphA2, and HB-EGF.

3.5.1 CD44
CD44 is a type I TM cell adhesion molecule whose ligand is

hyaluronic acid (HA), a glycosaminoglycan (82–84). It has been

shown that CD44 can also bind to osteopontin (85), fibronectin,

type I collagen (86), type IV collagen (87), and matrix

metalloproteinases (MMPs) (88). CD44 is expressed in most

cell types in our body, and a shed form of soluble CD44 has been

detected in the circulation and other body fluids (83). A single

gene encodes CD44, but alternative splicing generates multiple

isoforms. CD44 gene contains 20 exons, and the most common

form of CD44, referred to as standard or hematopoietic CD44,

contains 10 exons (82, 83, 89). This form is the shortest isoform,

and other forms have the insertion of alternative exons (V2–

V10) at a single site within the membrane-proximal region of the

ectodomain (82, 83, 89). Interestingly CD44 with V3 insertion

made CD44 to be modified with HS, which may provide

additional functionality to the receptor: HB-EGF presentation

(90). CD44 consists of N-terminal HA-binding globular domain,

followed by a stem with glycosylation and GAG binding sites, a

TM domain, and the cytoplasmic tail. The cytoplasmic domain

binds to band 3.1 proteins (ERM proteins), linking CD44 to the
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actin cytoskeleton (83) (Figure 2A). It has been reported that

CD44 can transition to a high-affinity state upon the stimulation

of the cells by soluble factors (91–93). However, the molecular

event on CD44 during the activation process is not understood.

CD44 was shed by three TM metalloproteinases, namely,

MT1-MMP (94), ADAM10, and ADAM17 (95, 96). The CD44

shedding by each metalloproteinase was shown to promote cell

migration (94, 95). MT1-MMP shedding occurs constitutively at

the lamellipodia when CD44 and MT1-MMP are coexpressed in

the cells (94). It was found that CD44 shedding by MT1-MMP

promoted cancer cell migration on the HA-based substratum

(94). CD44 interacts with MT1-MMP through its stem region

and the hemopexin (Hpx) domain of MT1-MMP, which

mediates MT1-MMP localization at the lamellipodia (22).

ADAM10- or ADAM17-dependent CD44 shedding was

induced by calcium influx or protein kinase C activation,

respectively (97, 98). However, when cell migration on the

HA-based matrix was measured, the knockdown of ADAM10

or 17 in human lung adenocarcinoma inhibited the migration by

75% in both (98), suggesting that ADAM-dependent CD44

shedding also supports cell migration on the HA matrix. Since

CD44 is localized at the lamellipodia, and the suppression of

Rac1 by overexpressing Rac1 dominant-negative mutant

inhibited the shedding (97), CD44 shedding by these

proteinases also occurs at the lamellipodia. It has been

reported that adding HA to the cells initiated CD44 shedding

(99), suggesting that CD44 shedding may occur at the leading

edge where CD44 binds to the HA-containing substratum

(Figure 2). It was shown that after shedding the ectodomain

by a metalloproteinase, the soluble intracellular domain of CD44

was released by presenilin-dependent gamma-secretase (100,

101), and this fragment has a transformation activity (101).

Thus, CD44 ectodomain shedding triggers transformation as

well. Taking together, the membrane proteinase-dependent

shedding is likely the core of CD44-mediated cell migration.

As described above, CD44 is cleaved by three membrane-bound

metalloproteinases, and all of this shedding promotes cell

migration. However, it is unclear which shedding events play a

role in different types of cell migration. In human melanoma

cells, the constitutive shedding of CD44 was reported to be

mediated by ADAM10 but not by MT1-MMP or ADAM17,

although all these enzymes are expressed in the cells (102).

Further clarifications are required in the future.
3.6 Intercellular adhesion molecule–1

Intercellular adhesion molecule (ICAM)–1 is a TM

glycoprotein of the immunoglobulin (Ig)−like superfamily. It

consists of five extracellular Ig−like domains (D1-D5), a TM

domain, and a short cytoplasmic tail. ICAM-1 interacts with the

aLb2 integrin (lymphocyte function-associated antigen 1 or

LFA-1), mediating cell–cell interaction. ICAM-1 is expressed
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in endothelial cells, and aLb2 integrin in lymphocytes and

myeloid cells, and ICAM-1–aLb2 interaction is crucial for the

transendothelial migration of the lymphocytes and myeloid cells

(103). Soluble proteolytically shed ICAM-1 (sICAM-1) has been

detected in human serum, and it contains all five IgG domains of

the D1-D5 (104). Thus, the cleavage for this shedding occurs

between D5 and the TM domain. It has been shown that NE

cleaves ICAM-1 (105). However, it was revealed that an antibody

against D1 inhibited NE-mediated cleavage, indicating that NE

is unlikely to cleave between D5 and the TM region. Therefore,

NE is unlikely to be responsible for generating sICAM-1. Later, it

was found that phorbol 12-myristate 13-acetate-induced ICAM-

1 shedding was due to ADAM17 (106). In addition, it was found

that MT1-MMP-mediated ICAM-1 shedding plays a crucial role

during the transendothelial migration of monocytes (107). It was

also reported that oxidative stress–induced ICAM-1 shedding

was MT1-MMP dependent (108). Most recently, it has been

found that ADAM10-mediated ICAM-1 shedding plays a role in

the transendothelial migration of neutrophils (109). Thus, it is

possible that ICAM-1 shedding may be involved in the

infiltration of lymphocytes and myeloid cells within the TME.

ICAM-1–aLb2 interaction was also shown to play a role in the

transendothelial migration of the melanoma (110). It was

demonstrated that the coculture of melanoma cells with

endothelial cells induced the expression of aLb2 in melanoma

cells, allowing them to interact with ICAM-1 in endothelial cells.

Given the role of ICAM-1 shedding during the transendothelial

migration of lymphocytes and myeloid cells, it is expected that

the shedding also plays a role in the transendothelial migration

of melanoma.

3.6.1 Syndecans
Syndecans are type 1 TM HSPGs. The HS chains at the

extracellular domains interact with different ligands, including

ECM glycoproteins, cytokines, chemokines, and growth factors.

There are four syndecans. Syndecan-1 is highly expressed in

epithelia, syndecan-2 in endothelia and fibroblasts, syndecan-3 is

mainly expressed in neuronal and some musculoskeletal tissue,

while syndecan-4 can be found in most tissues. A single cell can

express multiple syndecans. Each syndecan is attached by three

HS chains, and syndecan-1 and syndecan-3 are attached by

additional two chondroitin sulfate chains. The TM domain of all

syndecans contains a GXXXG motif that promotes the

formation of SDS-resistant dimers (111, 112). This TM

domain–mediated dimer was reported to be crucial for the

function of syndecan-2 and syndecan-4 (112). Syndecans are

known to be shed by many different proteinases (113).

Syndecan-1 was shown to be shed by MMP-7 (114), MMP-9

(115), MT1-MMP, MT3-MMP (116), and ADAM17 (117).

Syndecan-2 was shown to be shed by MMP-2, MMP-9 (118),

MMP-7 (119), and MT1-MMP (120). Syndecan-3 sheddase was

shown to be metalloproteinase, but it has not been identified yet
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(121). Serine proteinase, thrombin, was also shown to cleave

syndecan-3 (122). Syndecan-4 is shed by MMP-9 (115),

ADAM17 (117), ADAMTS1 (123), plasmin (124), and

thrombin (122, 124). Syndecan shedding has two biological

effects. First, it decreases syndecan levels on the cell surface.

Several growth factors are known to interact with the HS chain

of the syndecans, including fibroblasts growth factor (FGF),

vascular endothelial growth factor (VEGF), EGF, hepatocyte

growth factor (HGF), platelet-derived growth factor (PDGF),

and transforming growth factor b1 (TGFb1). This interaction is

essential for growth factor signaling. It has been shown that HS-

bound FGF-2 increased the affinity for FGFR by over one

magnitude (125). Thus, loss of syndecan by shedding would

greatly influence the presentation of growth factors to the

receptors. The second effect is that the shed ectodomain of

syndecans can act as a soluble factor that exerts biological

function. For instance, shed soluble syndecan-1 from

fibroblasts can mediate mitogenic responses in human breast

cancer cells. This paracrine event is mediated by the HS chain,

basic FGF, and stromal-derived factor 1 (126). Another example

can be that shed syndecan-2 deposited to the ECM can be a

ligand for the protein tyrosine phosphatase receptor CD148 to

promote b1 integrin-mediated cell adhesion (127).

3.6.2 Discoidin domain receptors
Discoidin domain receptors (DDRs) are collagen receptor

tyrosine kinases, and there are two types, DDR1 and DDR2.

Both DDRs have a collagen-binding discoidin domain at the N-

terminus of the ectodomain and tyrosine kinase domain at their

cytoplasmic domain. DDRs are the only receptor tyrosine kinase

whose ligands are collagens. Both DDRs bind to fibrillar

collagens, but DDR1 additionally binds to type IV collagen.

Under physiological conditions, DDR1 is expressed in epithelial

cells, while DDR2 is expressed in mesenchymal cells.

DDR1 and DDR2 bind to the GVMGFO motif (128, 129)

found in collagen types I, II, and III, distinct from the b1
integrin-binding site GFOGER (130). Thus, the binding of

DDRs and integrins are independent. For DDRs to bind

collagens, they must form a homodimer (131). The DDR1

dimer is likely mediated through the leucine zipper in the TM

domain (132), while the DDR2 ectodomain spontaneously forms

a dimer (131). Thus, ligand binding–induced dimerization,

which is found in many receptor tyrosine kinases, does not

apply to DDRs. It has been shown that further clustering of

dimer DDRs occurs upon collagen binding. Interestingly, inter-

DDR dimer phosphorylation was shown to occur between

DDR1s and between DDR1 and DDR2 (133).

It was shown that the DDR1 ectodomain is proteolytically

shed upon the collagen stimulation of the cells, which can be

inhibited by a broad-spectrum metalloproteinase inhibitor

(134). Later, the responsible enzyme was identified as

ADAM10 (135). Interestingly ADAM10 and DDR1 exist as a
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stable complex on the cell surface, but the shedding does not

occur unless collagen binds to DDR1. Since the interaction of

DDRs with collagen cannot be controlled by inside-out signaling

like integrins, ectodomain shedding is the only means to

dissociate cells from DDR1-mediated collagen adhesion. It was

shown that shedding-deficient DDR1 had a much longer half-

life of collagen-induced tyrosine phosphorylation (135),

suggesting that DDR1 shedding controls the duration of

collagen signaling. The DDR1-mediated collagen signal has

been shown to increase cell motility (136). When cells migrate

on the collagen matrix, adhesion to the matrix is essential, but

dissociation from the collagen is equally important, and

ADAM10-dependent DDR1 shedding plays a key role. The

inhibition of DDR1 shedding by ADAM10 significantly

inhibited epithelial cell migration on the collagen matrix (135).

Aside from ADAM10, MT1-MMP was also reported to shed a

DDR1 ectodomain. It was shown that the coexpression of MT1-

MMP with DDR1 in COS7 cells caused a constitutive shedding

of DDR1 ectodomain (137). However, this event was not shown

in endogenous MT1-MMP and DDR1 (137). Thus, further

investigation is necessary to examine the role of MT1-MMP in

DDR1 shedding.

DDR2 must also be dissociated from collagen upon

transmitting collagen signals, but DDR2 shedding has not

been described, and an alternative mechanism has not

been identified.

3.6.3 EphA2
Erythropoietin-producing hepatocellular receptor-2

(EphA2) is a member of the Eph receptor kinase family, which

is overexpressed frequently in diverse cancer types (138, 139).

EphA2 is also overexpressed in various cancer cell lines, such as

fibrosarcoma, breast cancer, and ovarian cancer, and high

EphA2 levels are correlated with increased malignancy and

poor clinical prognosis (140). Furthermore, ectopic expression

of EphA2 in a normal mammary epithelial cell line, MCF10A,

was enough to confer tumorigenicity in mice (141). However,

activation of EphA2 is known to exhibit tumor-suppressive

activities (140, 142); thus, the exact mechanism of tumor-

promoting activity of EphA2 was unclear. It turns out that the

shedding of EphA2 by MT1-MMP was one of the mechanisms

promoting cancer. It was shown that both EphA2 and MT1-

MMP are upregulated in different invasive breast cancer cells,

and silencing the EphA2 or MT1-MMP gene inhibited collagen

invasion of the cells. It was found that the proteolytic cleavage of

EphA2 by MT1-MMP initiated increased cleaved EphA2

translocation to the intracellular compartment and increased

activity of RhoA small GTPase, which, in turn, caused a

repulsive effect between cells, and promoted single cancer cell

invasion (143). The shedding of EphA2 by MT1-MMP was also

found to play other important roles in cancer progression.

Without EphA2 cleavage by MT1-MMP, the ligation of ephrin
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A1 to EphA2 causes a significant inhibition of EGF-ErbB

induced phosphor-Erk, phosphor-Akt, anchorage-independent

growth, and cell migration (144). Upon EphA2 cleavage by

MT1-MMP, this effect was significantly hampered; thus,

EphA2 shedding by MT1-MMP converts a tumor-suppressive

RTK to an oncoprotein (144).

3.6.4 Heparin-binding epidermal growth factor
Heparin-binding EGF (HB-EGF), a member of the EGF

family, transduces extracellular signals via ErbB receptors and

plays a pivotal role in many physiologic and pathologic processes

(145, 146). HB-EGF is also expressed in various human

carcinomas such as pancreatic, esophageal, colon, gastric,

ovarian, and bladder cancers (147). HB-EGF is synthesized as

a type-I TM pro-HB-EGF, and its propeptide is removed by

proprotein convertases such as furin during secretion to the cell

surface. The ectodomain of HB-EGF comprises a heparin-

binding domain containing a core stretch of basic amino acids

at its N-terminus, followed by an EGF-like domain and a

juxtamembrane domain (145). Membrane-bound HB-EGF can

bind to its cognate ErbB receptors expressed in other cells in

trans, or its ectodomain can be proteolytically cleaved at the

juxtamembrane region to become a soluble HB-EGF and ligate

ErbB receptors in neighboring cells, transmitting a signal. It has

been reported that ADAM10, ADAM12, and ADAM17 shed

HB-EGF to generate a soluble HB-EGF. In addition, MMP-2 or

-9 (148), MMP-7 (149), and MMP-10 (150) were also reported

to shed HB-EGF as well. This shedding event makes HB-EGF

bioavailable to cells within the TME.

The heparin-binding domain (HBD) of HB-EGF prevents

the EGF-like domain from binding to its cognate ErbB receptors.

However, heparin-binding to the HBD renders the EGF-like

domain available to ligate ErbB. Thus, the binding to the HSPG

is thought necessary for HB-EGF to transmit a signal to the cells.

However, it was found that MT1-MMP removes the N-terminal

20 amino acids of HBD by cleaving at A81-L82, making an HB-

EGF heparin-independent growth factor (151). It was shown

that this MT1-MMP cleavage plays a significant role in cancer

cell growth in a three-dimensional matrix (151).
4 Conclusion and future prospective

Within the TME, there are many signaling events in cancer

cells and neighboring cells. They can be signals from the ECM,

soluble factors, and cell–cell communications. As discussed above,

many of these signaling events involve the proteolytic modulation

of signaling molecules. Therefore, proteolytic enzymes are

considered part of these signaling events, and cancer cells utilize

them for their malignant progression. It becomes apparent that

several enzymes promote cancer progression by modulating

multiple signaling events. Especially, membrane-bound
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metalloproteinase, MT1-MMP, ADAM10, and ADAM17, are

significant players. For instance, MT1-MMP plays a role in

ECM degradation for invasion and metastasis, laminin-5 g2
chain processing to stimulate cell motility and growth, cleaving

chemokines to modulate host immunity, shedding CD44 to

promote cell migration, shedding ICAM-1 to mediate trans-

endothelial migration, shedding EphA2 to enhance EGF

signaling in cancer, and cleaving the N-terminus of HB-EGF to

convert it to heparin-independent growth factor, promoting

cancer cell growth and motility. ADAM10 and ADAM17 play a

role in CD44 shedding to promote cell migration, ICAM-1

shedding to mediate the trans-endothelial migration of cells,

syndecans’ shedding to modulate heparan-sulfate-mediated

signaling events, ADAM10-mediated DDR1 shedding to

modulate DDR1-mediated cell adhesion and to control

prolonged collagen signaling, and HB-EGF shedding to generate

soluble HB-EGF. Thus, the inhibition of each enzyme or all these

enzymes would inhibit multiple events in the TME, which

significantly impact cancer progression. Therefore, these

metalloproteinases can be potentially effective target molecules

for cancer therapy. However, the past failures of the clinical trial of

metalloproteinase inhibitors have hampered metalloproteinase

inhibitor drug development. Further understanding of the

regulation of these enzymes during cancer progression may

reveal novel means to control the activity of these enzymes

without directly inhibiting the enzyme activities so that novel

treatments that target cancer invasion, growth, and metastasis can

be developed in the future.
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