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Abstract: Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide.
Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of
CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril,
emerged from natural products, namely snake venoms. These venoms are complex mixtures of
bioactive molecules, which, among other physiological networks, target the cardiovascular system,
leading to them being considered in the development and design of new drugs. In this review, we
describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2
(PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory
proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition,
their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation,
cardioprotective activities—are discussed. The dissection of their biological effects at the molecular
scale give insights for the development of future snake venom-derived drugs.

Keywords: snake venom; cardiovascular diseases; hypotensive agent; anti-platelet agent; vasorelax-
ant effect; drugs discovery

1. Introduction

Snakes use their venom to neutralize and predigest prey, and to ward off or weaken
predators. Several types of strategies exist [1]: (i) muscle paralysis by blocking the neuro-
muscular junction, (ii) alterations of the cardiovascular function to cause tissue ischemia or
circulatory collapse, (iii) tissue predigestion via cell necrosis. Among venomous animals,
snakes have long captured the human imagination. On the one hand, snakebite enven-
oming causes a serious public health issue worldwide, including a range of acute medical
emergencies, with deadly consequences (WHO, 2020). The World Health Organization
estimates that 81,000 to 138,000 people die every year from a snake envenomation, and
400,000 victims/year live with permanent disabilities (WHO, 2019). On the other hand,
there is a growing interest in studying snake venoms for therapeutic applications.

Venomous snakes are classified into four families (i) Atractaspididae, (ii) Elapidae,
(iii) polyphyletic “Colubridae”, and (iv) Viperidae [2]. Their venom is a mixture of mostly
enzymes and non-enzymatic proteins or peptides constituting 90% to 95% of the venom’s
dry weight. Other components include carbohydrates, lipids, metal ions, and inorganic
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anions. These proteins have either (i) enzymatic activities such as metalloproteinase,
serine proteinase, phospholipase A2 (PLA2), acetylcholinesterase (AChE), L-amino-acid-
oxidase (LAAO), or hyaluronidase or (ii) non-enzymatic properties like natriuretic peptides,
three-finger toxins, C-types lectins, proteinase inhibitors, and bradykinin-potentiating
peptides [2–4]. Snake venom composition is not stable, and can indeed vary depending
on different factors such as ontogeny, sex, snake stress, geographical distribution, and
environmental and diet conditions [5]. Various studies have shown that snake venom
compounds can cause a range of biological effects on the local and systemic level. The local
effect is characterized by burning, bursting, or throbbing pain followed by local swelling
and tissue necrosis. On the systemic level, the venom can cause different effects including
neurotoxicity, myotoxicity, cardiotoxicity, nephrotoxicity, coagulopathy, and circulatory
shock [6]. These life-threatening conditions caused by venom components lead scientists
to study and characterize the molecules of interest with the aim of turning out these toxins
into a source of life-saving therapeutics. The idea that snake venoms could be the source of
remedies in various pathologies emerged from the observation of cardiovascular symptoms
in humans after snake envenomation.

Cardiovascular diseases (CVDs) can affect (i) the heart, causing conditions such as
myocardial infarction, heart failure, and cardiac rhythm disturbances or arrhythmias and
(ii) blood vessels through hypertension, atherosclerosis, aneurysm, and strokes. CVDs
are considered the most common cause of death globally [7]; they account for 45% and
37% of all deaths in Europe and in the European Union each year, respectively [8]. The
WHO described the different risk factors—including unhealthy diet, obesity, smoking,
lack of physical activity, harmful consumption of alcohol, hypertension, hyperlipidaemia,
and diabetes—facilitating the development of heart and vessel diseases. Among them,
hypertension is a major contributor to the high prevalence of CVDs, as complications
from hypertension account for 9.4 million deaths worldwide per year. For this reason,
treatment of hypertension is a major issue of pharmaceutical companies in order to reduce
the prevalence of CVDs. Some drug development strategies rely on natural products, such
as snake venom, to treat many diseases including CVDs [9]. For example, captopril was the
first drug derived from viper venom approved by the Food and Drug Administration to
treat hypertension and congestive heart failure [10]. This venom-derived drug development
strategy counts on the fact that snake venom compounds target ion channels (Na+, K+, and
Ca2+ channels) and receptors (acetylcholine receptors, membrane transporters, enzymes),
and consequently can partake in different physiological events. Interestingly, the biological
effects of venom are due to the individual activities of their compounds or to the synergy
of several molecules, therefore broadening the spectrum of their biological activities. These
properties of snake venom compounds make them a valuable source for the discovery of
new drugs for the treatment of several diseases including CVDs. The clinical benefits of
snake venoms have emerged in two main directions related to the cardiovascular system:
(i) the management of hypertension and (ii) the consequences of platelet aggregation with
anti-thrombotic therapy.

In this review, we describe snake venom components that have been shown to interact
with the cardiovascular system, leading to their use as a potential treatment of CVDs, and
emphasize their targets and mechanism of action.

2. Main Components of Snake Venom and their Effects on the Cardiovascular System

The toxins presented in this section appear in Table 1 and Figures 1 and 2.
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Figure 1. Overview of snake toxins acting on the vascular tone through activation/inhibition of receptors expressed at the
surface of endothelial cells (EC) or vascular smooth muscle cells (VSMC). See text for details. PLA2: phospholipase A2;
BPPs: bradykinin potentiating peptide; ANP/BNP-like peptide: atrial natriuretic peptide/brain natriuretic peptide; BNP:
brain natriuretic peptide; 3FTXs: three-finger toxins; CRISPs: cysteine-rich secretory proteins; DNP: dendroaspis natriuretic
peptide; MT-α: muscarinic toxin; H1-R: histamine H1 receptor; mAChR-M1: M1 muscarinic acetylcholine receptor; EDRF:
endothelium derived relaxing factor; eNOS: endothelial nitric oxide synthase; NO: nitric oxide; GC: guanylate cyclase; Cav
type L: L-type voltage-gated calcium channel.

Figure 2. Overview of the molecular targets of snake venom toxins with antithrombotic effect. See text for details.
Disintegrins and fibrinolytic enzymes, two different families of proteins, act on the surface of platelets via different
receptors and glycoproteins or directly by digesting fibrin to inhibit thrombus formation. ADP: adenosine diphosphate;
vWF: von Willebrand factor; GPIIb/IIIa (αIIbβ3): platelet-specific integrin receptor; GPIb-V-IX: platelet glycoprotein
adhesion receptor; P2Y12-R, P2Y1-R:¨Platelet G-protein-coupled receptor for ADP; PAR1/4-R: Protease activated receptors
as G-protein-coupled receptors for thrombin.
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2.1. Phospholipase A2

Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of membrane glycerophos-
pholipids to release lysophospholipids and arachidonic acid [11]. These enzymes, widely
found in animal venoms, have diverse effects including inflammation, myotoxicity, neu-
rotoxicity, and hypotension [12–14]. Among these effects caused by snake venom PLA2
(svPLA2), the hypotensive properties are of interest for the treatment of hypertension,
which is an important factor of developing CVDs. As such, an in vivo study reporting
the cardiovascular effects induced by snake venoms showed that two distinct phenomena
appeared following venom injection: (i) a rapid decrease in blood pressure (termed car-
diovascular collapse) and (ii) prolonged hypotension. In this study, PLA2 was suggested
to be responsible for prolonged hypotension via vasodilatation [15]. In agreement with
such observations, two PLA2 (OSC3a and OSC3b) isolated from coastal taipan (Oxuranus
scutellatus) venom induced hypotension response without cardiovascular collapse in vivo
and relaxed vascular tissue in vitro.

It was proposed that this effect involves histamine H1 receptors as the pre-administration
of mepyramine, an H1 receptor antagonist, alone or in combination with heparin, an in-
hibitor of histamine release, attenuated the hypotensive effect of isolated PLA2 [16]. These
findings are in correlation with others studies showing that svPLA2s induce histamine
release by activating mast cells from different tissue, leading to increased vasodilatation
and vascular permeability [17,18]. The action of histamine can be mediated through
G protein-coupled receptors including H1 and H2 receptors. These two vasodilatation-
mediating receptors are distributed throughout the resistance vessels in most vascular
beds. H1 receptors are located mainly in endothelial cells (EC), and their activation by
endogenous compounds leads to the formation of a local vasodilator substance, namely
nitric oxide (NO). It spreads from EC to vascular smooth muscle cells (VSMC) to stimulate
the increase of cyclic guanosine monophosphate (cGMP) level leading subsequently to the
relaxation of the VSMC and the regulation of blood pressure [19]. Another PLA2 purified
from the Brazilian lancehead (Bothrops moojeni) venom also induces an in vivo hypotension
effect [20]. A crotoxin with PLA2 activity from the South American rattlesnake (Crotalus
durissus terrificus) venom shows a vasoactive action on human umbilical vein endothelial
cells suggesting an anti-atherogenic effect that is worth further investigation [21].

2.2. Natriuretic Peptides

Natriuresis, which is the excretion of Na+ ions by the kidneys, is induced by natri-
uretic peptides (NPs) [22], such as the endogenous atrial natriuretic peptide (ANP) brain
natriuretic peptide (BNP), cardiac natriuretic peptide (CNP), and the venom originating
dendroaspis natriuretic peptide (DNP). The effects of NPs are mediated through three
types of receptors: natriuretic peptide receptor-A, -B, and -C (NPR-A, NPR-B, NPR-C),
which play a role in the regulation of blood pressure as well as cardiovascular and renal
functions [23,24]. ANP and BNP can contribute to vasorelaxation and natriuresis in animal
models and humans with congestive heart failure (CHF), whereas CNP is likely to have a
paracrine regulatory role on the vascular tone [25].

DNP has been isolated from the venom of the green mamba (Dendroaspis angusticeps).
The biological activities of this peptide include: (i) a relaxation of aortic strips pre-contracted
with KCl, (ii) stimulation of guanylate cyclase (GC) in cultured aortic myocytes and bovine
aortic endothelial cells, and (iii) prevention of 125I-ANP binding to aortic myocytes. The
vasorelaxant effect of DNP relies on its diffusion to vascular smooth muscle cells that
activates GC and generates cyclic guanosine monophosphate (cGMP)-dependent protein
kinase G (PKG) pathway, which, in turn, stimulates Ca2+ channels and ATP-sensitive
K+-channels, hence resulting in vasodilation. The effect of DNP has been reported to be
mediated through the ANP-A and ANP-C receptors and clearance receptors [26–29]. Da
Silva et al. isolated and characterized a new natriuretic-like peptide known as Coa-NP2
from the Grand Canyon rattlesnake (Crotalus oreganus abyssus) venom that has structural
homology with the ANP/BNP-like family. Coa-NP2 causes a dose-dependent hypotensive
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effect in rats in association with an increased NO production measured in the plasma and
vasorelaxation of thoracic aortic rings. Therefore, the NO-release dependent vasodilator
action of this peptide may occur by stimulation of K+ channels [30]. In another study, a
new NP called Lebetin 2 (L2) from the blunt-nosed viper (Macrovipera lebetina) venom was
described. The peptide showed structure similarity to BNP and was shown to have a strong
cardioprotective effect in acute ischemia via the involvement of NPRs and the mitochondrial
channel KATP (mitoKATP). L2 has shown an ability to (i) improve contractile recovery after
regional ischemia-reperfusion, (ii) increase coronary flow and decrease severe contractile
dysfunction after global ischemia, and (iii) enhance the expression of survival protein
in the reperfusion myocardium as evinced by phosphorylation of signaling pathways
PKCε/ERK/GSK3β and PI3K/Akt/eNOS [31]. Many other NPs from snake venoms have
been identified and showed effects on the vascular system including NP2_Casca from
the venom of the cascavella rattlesnake (Crotalus durissus cascavella) [32], PtNP-a from the
eastern brown snake (Pseudonaja textilis), PaNP-c from the king brown snake (Pseudechis
australis) [33], PNP from the Persian horned viper (Pseudocerastes persicus) [34], and three
natriuretic-like peptides TNP-a, TNP-b, and TNP-c from the venom of the inland taipan
(Oxyuranus microlepidotus) [35]. Despite the diversity of NPs isolated from snake venoms,
these peptides hold the same vasorelaxant activity.

2.3. Bradykinin-Potentiating Peptides

Bradykinin-potentiating peptides (BPPs) or bradykinin-potentiating factors (BPF)
are known to be proline-rich oligopeptides (PROs) containing 5-14 amino-acid residues,
which can be found in certain snake venoms [36]. The first BPP was extracted from
the venom of the Brazilian pit viper (Bothrops jararaca) and shown to be an angiotensin
converting enzyme (ACE) inhibitor. The peptide potentiates the hypotensive effect of
bradykinin [37]. This pioneering study led to the development of captopril, the first
venom-based ACE inhibitor (see Section 3.1). The decrease in blood pressure is due to
two actions exerted by BPP: (i) the inhibition of the C-domain of ACE, which inhibits
the formation of angiotensin II (Ang II)—a vasoconstrictor agent—from angiotensin I
(Ang I), and (ii) the potentiation of the endogenous bradykinin, a vasodilator molecule,
by blocking its degradation [38,39]. Morais et al. described and isolated a new member
of BPPs from Bothrops jararaca venom. The peptide, called Bj-PRO-5a, also consists of
a natural ACE inhibitor leading to vasodilation. Despite its ACE inhibitory effect, Bj-
PRO-5a has been shown to promote vasodilation through the activation of muscarinic
acetylcholine receptor M1 subtype (mAChR-M1) and bradykinin B2 receptor, which in
turn leads to transient increases in intracellular calcium levels. The intracellular signal
activates endothelial nitric oxide synthase 3 (eNOS) that induces NO production and
promotes vasorelaxation [40]. Furthermore, two other BPPs from Bothrops jararaca venom
were isolated: (i) Bj-PRO-7a, known as a mAChR-M1 agonist like Bj-PRO-5a, and (ii) Bj-
PRO-10c [41]. The latter showed a significant decrease in both BP and heart rate (HR) in
spontaneously hypertensive rats (SHR). It acts via the activation of GPCRs that induce a
Ca2+i increase, glutamate, and GABA neurotransmitter release, which act on sympathetic
activity and baroreflex sensitivity control to induce an anti-hypertensive action [42,43].
Other members of BPPs, with common hypotensive effect, have been identified in different
species of snake venom including the golden lancehead viper (Bothrops insularis) [44],
Southern American bushmaster (Lachesis muta) (Lm-BPP 1, Lm-BPP 2, Lm-BPP 3, Lm-BPP
4, and Lm-BPP 5) [45], the Mexican ground pit viper Agkistrodon bilineatus [46], Lachesis
muta rhombeata (LmrBPP9) [47], and Crotalus durissus cascavella (BPP-Cdc) [48].

2.4. Cysteine-Rich Secretory Proteins

Snake venom cysteine-rich secretory proteins (svCRISPs) are members of the CAP
protein superfamily consisting of cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5),
and pathogenesis-related 1 (PR-1) proteins, and they are part of the non-enzymatic protein
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group in snake venom characterized with a single polypeptide protein with molecular
weight between 20 and 30 kDa [49].

Yamazaki et al. isolated a CRISP from the venom of the Japanese mamushi (Gloydius
blomhoffii) designated ablomin. This protein has been shown to block high K+-induced
contraction of arterial smooth muscle cells, in a similar way to calciseptine, a well-known
blocker of L-type voltage-gated Ca2+ channels [50]. Two other ablomin homologous
proteins characterized from the Japanese Habu (Protobothrops flavoviridis) and the Chinese
sea snake (Laticauda semifasciata) venoms, termed triflin and latisemin respectively, also
inhibited high K+-induced arterial contraction [51]. Another study reported the purification
of a novel svCRISP from the venom of a Southern Pacific rattlesnake Crotalus oreganus helleri.
The peptide, named Hellerin, induced a dramatic increase in blood vascular permeability
in vivo and in vitro [52].

2.5. Disintegrins

Snake venom disintegrins are used as lead compounds for the development of drugs
acting as antagonists of platelets integrins and are therefore pharmacologically well-defined
as anti-platelet aggregation/antithrombotic drugs. Clinically, these drugs reduce the risk
of acute ischemic events and prevent thrombotic complications. Disintegrins are non-
enzymatic, relatively small (4–15 kDa), cysteine-rich proteins that are found in snake
venoms, and their functional classification depends on their ability to interact with specific
integrins, which is determined by the presence of a particular integrin-binding motif.
Such motifs are localized in the hairpin loop and differ in the amino acid sequence (RGD,
MLD, or R/KTS). The largest and most investigated family of disintegrins is the RGD-
disintegrins [53,54]. Several disintegrins were isolated from snake venoms especially
from viper venom and described as antithrombotic agents [55]. Trigramin, a disintegrin
containing the RGD (Arg-Gly-Asp) sequence purified from the venom of the common
bamboo viper (Trimeresurus gramineus), was shown to inhibit platelet aggregation in vitro
and in vivo by blocking fibrinogen binding to aggregation agonist-stimulated platelets
like fibrinogen binding ADP-activated platelets [56,57]. In human platelet-rich plasma
(PRP), trigramin also inhibited the platelet aggregation induced by ADP, collagen, or
epinephrine [57]. In another study, trigramin was reported to inhibit the formation of
hemostatic plugs in mesenteric arteries of hamsters probably through the inhibition of
fibrinogen and von Willebrand factor binding to the GPIIb/GPIIIa complex on the surface
of the platelets [56]. Echistatin, a 49-residue protein, isolated from the venom of the saw-
scaled viper (Echis carinatus), was shown to contain (i) the RGD-sequence, which is common
to proteins that bind to the glycoprotein complex GPIIb/GPIIIa and (ii) the “proline-
arginine-asparagine-proline” sequence, found in the A α chain of the human fibrinogen at
position 267–270. A 10-residue segment of this protein shows 90% homology with a portion
of trigramin sequence and that it inhibits fibrinogen-dependent platelet aggregation in a
similar way to trigramin [58]. Barbourin, a novel disulfide-rich disintegrin from the venom
of the ground rattlesnake (Sistrurus miliarius barbourin), is highly homologous to other snake
venom disintegrins, except that it contains the KDG (Lys-Gly-Asp) rather than the RDG
recognition motif [59]. These disintegrin peptides have been described as highly potent
and selective GPIIb-IIIa antagonists that can be used as antiplatelet agents [60]. Many other
disintegrins with common anti-platelet aggregation potential have been identified from
snake venoms such as those of the Malayan pit viper Calloselasma rhodostoma [61], Halys pit
viper (Gloydius halys) [62], and the fer-de-lance (Bothrops asper) [63].
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2.6. Fibrinolytic Enzyme Activity

Snake venoms have also been shown to contain fibrinolytic enzymes, which could
serve as templates for the development of alternative thrombolytic compounds of interest
for clinical application since they should not be inactivated by serine protease inhibitors
in the mammalian blood [64]. Fibrolase, a 23 kDa-zinc metalloproteinase, was originally
isolated from the venom of the southern copperhead snake Agkistrodon contortrix. This
fibrinolytic enzyme acts directly on fibrinogen/fibrin primarily cleaving α- and β-chains
of fibrinogen but not the γ-chain [65]. Different studies showed that fibrolase can de-
grade fibrin clots in vitro and in vivo. Fibrolase is effective in digesting fibrin and human
blood clots in a dose-dependent manner by acting directly on fibrin without activating
plasminogen. On the other hand, using an animal model of arterial thrombosis, fibrolase
dissolves femoral arterial clots after a single intravenous bolus administration. These data
revealed the potential of this fibrinolytic enzyme to treat occlusive thrombotic disease, but
the problem was that fibrolase is not a plasminogen activator [66]. Therefore, an alternative
strategy is to produce a chimeric derivative from fibrolase that possesses the dual ability to
degrade fibrin clots and to inhibit platelet aggregation and thrombus reformation. Since
RGD-containing agents have been shown to inhibit rethrombosis following thrombus
dissolution by plasminogen activators, a more effective fibrinolytic enzyme was engineered
by covalently incorporating an RGD-like peptide into fibrolase. This chimera was shown to
retain fibrinolytic activity and to inhibit platelet aggregation by binding to the fibrinogen
receptor integrin αIIbβ3 on platelets, leading thrombus lysis and inhibition of rethrom-
bosis [67]. Other fibrinolytic enzymes were identified and purified from other species of
snake venom including lebetase from Vipera lebetina [68], basiliscus fibrases from the venom
of the Mexican West-Coast rattlesnake (Crotalus basiliscus basiliscus) [67], and graminelysin
I from Trimeresurus gramineus [68]. Besides isolated peptides, recombinant proteins were
also produced for therapeutic purposes. As such, alfimeprase, a fibrolase derivative with
thrombolytic activity, was developed for the treatment of stroke and catheter occlusion
diseases [69].

2.7. Three-Finger Toxins

Three-finger toxins (3FTXs) are non-enzymatic proteins found in snake venoms espe-
cially Elapidae. These toxins contain 60–74 amino acid residues and 4–5 disulfide bridges.
Their nomenclature derives from their structure formed by three β-stranded loops extend-
ing from a small, globular, hydrophobic core containing all four conserved disulfide bridges,
resembling the three fingers of a hand [70]. These toxins have been shown to recognize
a broad range of molecular targets like nicotinic and muscarinic acetylcholine receptors
and L-type calcium channels, resulting in various biological properties [71]. Among 3FTXs,
calciseptine and FS2 toxins were purified from the venom of the black mamba (Dendroaspis
polylepis polylepis) and characterized as L-type calcium channel blockers that lead to a
vasorelaxant effect on smooth muscles and to a hypotensive activity [72,73]. Muscarinic
toxin α (MTα), another 3FTX from snake venom, has been shown to be a potent antago-
nist for the α2B adrenoreceptor, which can be used for the treatment of blood pressure
disorders [74]. Another low molecular weight 3FTX, designated KT-6.9, was purified from
monocled cobra (Naja kaouthia) venom and reported as an anti-platelet agent. This 3FTX
was suggested to inhibit platelet aggregation by acting through ADP receptors located
on the platelet surface and therefore can be used for the treatment of blood coagulation
disorders [75].
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Table 1. Summary of snake venom components and their effects on the cardiovascular system.

Proteins and Peptides Effects References

Enzymatic toxins

Phospholipase A2 (PLA2)
Hypotension
Vasorelaxation [21,76]
Anti-atherogenic activity

Fibrinolytic enzymes Fibrinolytic activity [67,77]
Inhibition of platelet aggregation

Non-enzymatic toxins

Natriuretic peptides (NPs)

Vasorelaxation (DNP; Coa-NP2)
Hypotension (Coa-NP2)
Increasing NO production (Coa-NP2) [30,31]
Cardioprotective action (Lebetin 2)

Bradykinin-potentiating peptides (BPPs) Hypotension [40,42,48]

Cysteine-rich secretory proteins (CRISPs) Inhibition of high K+-induced contraction [51,78]

Disintegrins Inhibition of platelet aggregation [79,80]

Three-finger toxins (3FTXs) Hypotension and vasorelaxation [73,75]
Inhibition of platelet aggregation

3. Snake-Venom-Molecule-Based Drugs for Cardiovascular Disease

Snake venoms have been used in the pharmaceutical field for the discovery and
development of drugs to treat several diseases including CVDs. Here, we describe different
drugs that were developed based on snake venom compounds for the purpose of CVD
treatments (Table 2). Some of these drugs have been approved for medical use and are
available on the market, while others are still under clinical trials or have not reached an
official approval.

3.1. Captopril

Initially, teprotide, a short peptide isolated from the venom of Bothrops jaracaca, was
used as a molecular template for the design of the ACE inhibitors—namely captopril and
enalapril. Captopril was the first active snake-venom-molecule-based drug, approved by
the Food and Drug Administration (FDA) for its use in the treatment of hypertension, a
risk factor for CVDs. The drug is derived from a bradykinin-potentiating peptide (BPP)
isolated from the venom of the Bothrops jararaca snake, which potentiates in vivo and
in vitro pharmacological actions of bradykinin (see Section 2.3). The ability of BPP to
inhibit the proteolytic enzymes that inactivate bradykinin and catalyze the conversion
of angiotensin I (Ang I) to angiotensin II (Ang II) made them promising templates for
anti-hypertensive drug design [37,81,82]. Captopril, known as an angiotensin-converting
enzyme (ACE) inhibitor, exerts its role on the renin-angiotensin-aldosterone system, which
is a key regulator of blood pressure. Inhibiting ACE leads to two major effects that result
in blood pressure decrease: (i) prevention of the hydrolysis of bradykinin that binds to its
receptor (BK receptor) and induces an increase in NO production and vasodilation, and (ii)
inhibition of Ang I to Ang II conversion, which is known to be a vasoconstrictor agent by
binding to AT1 receptor [83,84]. Clinical studies reported that captopril induces a significant
acute potentiation of endothelium-dependent vasodilation (EDV) in hypertensive patients
associated with defects in EDV [85]. Besides being used to treat hypertension, captopril
has been also used to treat several other diseases including renal disease in diabetics and
heart failure after myocardial infarction [9,86].
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3.2. Aggrastat

Aggrastat (or tirofiban) is a drug derived from a snake venom disintegrin called
echistatin, which is a synthetic non-peptide compound that mimics RGD (see Section 2.5).
Tirofiban is a synthetic highly specific antagonist of glycoprotein IIb/IIIa, provoking
platelet aggregation inhibition. The drug was approved by the FDA in 1988 for its use
in the treatment of acute coronary ischemic syndrome and the prevention of thrombotic
complications [87]. This drug reduced major adverse cardiac events in patients undergoing
percutaneous coronary intervention and in those with acute coronary syndromes when
administrated intravenously in combination with aspirin and heparin [88,89].

Table 2. Approved snake-venom-based drugs for CVD treatment.

Snake Venom Natural
Peptide/Protein Drug Mode of Action Indications References

Bothrops jararaca Bradykinin-potentiating
peptide (BPP)

Captopril/
Enalapril ACE inhibitors

Hypertension, renal
disease in diabetics and
heart failure after
myocardial infarction

[85,90,91]

Echis carinatus Echistatin Aggrastat/
Tirofiban GP IIb/IIIa antagonist

Acute coronary ischemic
and prevention of
thrombotic
complications

[58,92]

Sistrurus m.
barbouri Barbourin Integrilin/

Eptifibatide GP IIb/IIIa antagonist
Acute coronary disease
and anti-thrombotic
therapy

[59,80]

Bothrops moojeni
Bothrops atrox Batroxobin Defibrase Cleavage of fibrinogen

Aα subunit

Acute cerebral infarction
and unspecific angina
pectoris (+ sudden
deafness)

[93,94]

3.3. Integrilin

Integrilin (or eptifibatide) was derived from a KGD-containing protein purified from
the venom of the Florida ground rattlesnake. This synthetic cyclic heptapeptide, with six
amino acids and one mercaptopropionyl residue, exerts its role by binding to the glycopro-
tein IIb/IIIa of human platelets, preventing the binding of fibrinogen and then preventing
platelet aggregation and thrombus formation. In 1988, the drug was approved by the FDA
for the treatment of acute coronary disease and for anti-thrombotic therapy [95–97].

3.4. Defibrase

Batroxobin is a serine-proteinase isolated from the venom of the Brazilian lancehead
snake (Bothrops moojeni) and the common lancehead snake (Bothrops atrox) with thrombin-
like activity [98]. It converts fibrinogen into fibrin, through the cleavage of the α chain [99].
It exhibits anticoagulation and plasma fibrinogen degradation properties, without inter-
fering with the function of the platelets. It has been approved in several countries for its
defibrinogenating activity, in various conditions including acute cerebral infarction and
pulmonary embolism [94].

3.5. Alfimeprase

Alfimeprase is a recombinant protein derived from the fibrinolytic enzyme (fibrolase)
isolated from of the southern copperhead snake (Agkistrodon contortrix contortrix) [100].
Alfimeprase has a potent fibrinolytic activity and was successful in the treatment of patients
with acute peripheral arterial occlusion [101]. However, the drug is not approved by the
FDA and has reached phase III of clinical trials, but it failed to meet the expected end
points. Nuvelo discontinued the clinical development of alfimeprase, and the program
was dropped in March 2008 [102–104].
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3.6. Viprinex

Viprinex, also known as Ancrod, is a serine protease of 258 residues that was purified
from Malayan pit viper venom. Viprinex has been reported as a defibrinogenating agent
for the treatment of acute ischemic stroke, by blocking additional clot formation, as well as
other diseases including heparin-induced thrombosis and thrombocytopenia. This drug
reached phase III of clinical trials [105–107] but failed to get a clinical approval, since
it was found to have no therapeutic benefit in large scale stroke trial; this ended in the
discontinuation of its administration [108,109].

4. Conclusions

CVDs are a leading cause of mortality worldwide, and researchers keep investigating
new therapeutic strategies based on natural products to treat CVDs and manage their risk
factors, such as hypertension. Due to their wealth in bioactive molecules, snake venoms
are among the natural products that are mainly studied for the discovery, purification,
and characterization of bioactive molecules that have potential in treating CVDs, among
other diseases. The targets of some of these bioactive molecules and their mechanism of
action is common to some extent, as they mainly prevent platelet aggregation. This helped
in the characterization of molecules of interest and the development of some drugs that
have been already approved for general use and are available in the market. The list will
continue growing, as some drugs are currently in clinical trials, and many other could
appear as studies continue dissecting snake venom composition and biological activities.
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