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Abstract: Radiation inactivation of enveloped viruses
occurs as the result of damages at the molecular level
of their genome. The rapidly emerging and ongoing cor-
onavirus disease 2019 (COVID-19) pneumonia pandemic
prompted by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) is now a global health crisis and an
economic devastation. The readiness of an active and safe
vaccine against the COVID-19 has become a race against
time in this unqualified global panic caused by this pan-
demic. In this review, which we hope will be helpful in the
current situation of COVID-19, we analyze the potential
use of γ-irradiation to inactivate this virus by damaging
at the molecular level its genetic material. This inactiva-
tion is a vital step towards the design and development of
an urgently needed, effective vaccine against this disease.

Keywords: SARS-CoV-2 virus, virus genome, virus infectivity,
gamma irradiation, virus inactivation, vaccine development

1 Introduction

Viruses (or virions) are subcellular particles, commonly
spherical or rod-shaped, which composed of a protein
capsid that contains their genetic material made of RNA
or DNA. Sometimes the viral genome is protected by an
additional outer envelope made of a lipid bilayer with

spikes of glycoproteins inserted inside the viral envelope
[1]. Viruses are classified based on their size, shape,
envelope, and structure of their genome. Unlike bacteria,
viruses lack cell organelles and thus have no metabolic
activities on their own. To transcript and replicate, they
entirely depend on the host biochemical machinery of
eukaryotic or prokaryotic host cells [2]. Once inside the
host cell, viruses can mutate through genome deletion,
insertion, and/or substitution to novel strains of different
virulence [3,4]. This viral mutation is the major obstacle
for the development of new vaccines [5,6].

1.1 Key features of human coronavirus

Six human coronaviruses (HCoVs)were known before the
COVID-19 outbreak: 229E and NL63 (alpha coronavirus),
OC43, HKU1, SARS-CoV, and MERS-CoV (beta corona-
virus) [7]. Severe acute respiratory syndrome (SARS)
coronavirus (SARS-CoV) first emerged in South China in
2002–2003 to cause a large-scale epidemic with over
8,000 infections and more than 800 deaths [8]. The
Middle East Respiratory Syndrome CoV (MERS-CoV) has
caused a persistent epidemic in the Arabian Peninsula,
especially in Saudi Arabia in 2012 [9]. SARS-CoV and
MERS-CoV are enveloped positive-sense RNA viruses (size
ranging from 70 to 90 nm) belonging to the Coronaviridae
family. It was shown that rodents, avians, and mainly bats
are reservoir host of these family viruses that can be poten-
tially transmitted from animals to humans [10,11] due to the
growing consumption of animal proteins including those
from exotic wild mammals in China.

A novel strain of coronavirus, labeled as SARS-CoV-2
by the International Committee on Taxonomy of Viruses-
Coronavirus Study Group [12], belonging to the beta-
coronavirus lineage, shares around 80% identity to
SARS-CoV [13,14]. This strain, believed to have started



* Corresponding author: Fouad A. Abolaban, Nuclear Engineering
Department, Faculty of Engineering, King Abdulaziz University,
PO Box 80204, Jeddah, 21589, Saudi Arabia,
e-mail: fabolaban@kau.edu.sa
Fathi M. Djouider: Nuclear Engineering Department, Faculty of
Engineering, King Abdulaziz University, PO Box 80204, Jeddah,
21589, Saudi Arabia

Open Life Sciences 2021; 16: 558–570

Open Access. © 2021 Fouad A. Abolaban and Fathi M. Djouider, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/biol-2021-0051
mailto:fabolaban@kau.edu.sa


from a seafood market in the city of Wuhan, China, in
December 2019, is now spreading and creating a chaos
across the entire world [15,16]. Human-to-human trans-
mission of this virus was officially confirmed on January
20th 2020 [10]. World Health Organization (WHO) declared
this disease as a global pandemic on March 11, 2020 [17].
As of 29 January 2021, 27,901,760 cases are still active,
72,337,017 recovered, and 2,210,259 died in 235 countries
or territories worldwide [18].

Similar to previous coronaviruses symptoms, SARS-
CoV-2 ismainly affecting the lower respiratory track, ranging
from mild respiratory disease to SARS and septic shock in
advanced stages. Damages to the cardiovascular system,
gut, kidneys, and brain have also been reported [13,19]
along with vital organ failures in comorbid patients [20,21].

The genetic material of SARS-CoV-2 consists of single-
stranded RNA backbonemade of alternating 5-carbon sugar
(ribose) and phosphate groups. Attached to this backbone
are 29,891 to 29,903 adenine, uracil, cytosine, and guanine
bases [22,23] encoding for 9,860 amino acids [10]. One third
of the SARS-CoV-2 genome make up the four major struc-
tural proteins: spike glycoprotein (S), membrane protein
(M), envelope protein (E), and nucleocapsid protein (N)
accountable for some important functions in virus replica-
tion [24,25]. The remaining two‐thirds of its viral genome
encode for 16 nonstructural proteins (nsp-1 to 16). Each of
these nsps has a specific role in the life cycle of the virus
and its pathogenicity [26,27]. For instance, nsp-1 is used
by the virus to elude the host innate immune system [28],
nsp-2 is indispensable for its replication, and nsp-9, in
complex with nsp-8, is involved in RNA replication and
virulence [29].

There is a 76.5% similarity in the amino acid sequences
of the spike glycoprotein in SARS-CoV and SARS-CoV-2
[30]. SARS-CoV-2 seems to have greater binding affinity to
the angiotensin converting enzyme 2 (ACE2) cell membrane
receptor than the other SARS-CoV virus strains, suggesting
a greater capacity of SARS-CoV-2 for human to human
transmission [31,32]. There are speculations that cellular
overexpression of human ACE2 (associated with the usage
of medications such as ACE2 inhibitors, angiotensin II
receptor blockers) could enhance the COVID-19 severity
[21,33–36]. Among the four structural proteins of the
SARS-CoV family, the spike glycoprotein S plays a key
role in viral docking and cellular internalization [37]. It
binds via the receptor-binding domain (RBD) in the S1
subunit to the ACE2 receptors [38,39], expressed espe-
cially on the plasma membrane of human respiratory
epithelial host cells, and virtually in all other organs.
The virus penetrates the host cell via endocytosis through
its S2 subunit [40,41] and infects it by hijacking its mole-
cular machinery to encode for RNA polymerase enzyme
necessary for the replication of its own RNA genome

[42,43]. Viral entry in cells is a critical phase in the course
of the COVID-19 disease. Thus, inhibition of the viral
binding and internalization in a host cell constitute a strategy
for potential therapeutics against COVID-19 pandemic.

1.2 SARS-CoV-2 infectivity

Aerial transmission by expelled respiratory droplets is
considered as the main direct transmission vector of the
SARS-CoV-2 when in close contact with an infected person
coughing, sneezing, or even talking [10,44–46]. Some
findings have indicated that the virus may as well be air-
borne [31,47,48]. Indirect transmission may also occur via
fomites when respiratory droplets from infected people
land on object surfaces which can be touched by a recep-
tive host [49,50].

The WHO recommends that SARS CoV-2 sample hand-
ling should be conducted in no less than a Biosafety Level 3
(BSL-3) laboratory using BSL-3 practices (WHO, 2020)
[17,51]. The SARS-CoV-2 cytopathogenic effect is mea-
sured by its capability to infect a host cell. This is usually
expressed by the tissue culture infectious dose, TCID50/mL,
calculated using the method of Reed and Muench, [52],
which is the viral titer at which 50% of the host cell lines
are infected when inoculated in vitro with a diluted viral
solution. However, because of some limitations with the
in vitro tests (slow viral growth), the use of in vivo assays
is taken after inoculated animals were sacrificed for within-
host virus titering and pathological study [53].

Basic reproductive number R0 is a key epidemio-
logical factor used to measure the potential infectivity
of virus-related outbreak [54,55]. It represents the average
number of infected people caused by one infected indivi-
dual during his/her whole contagious phase. Values of R0
less than one means that the pandemic is most likely to stop
propagating. In early stage of COVID-19 pandemic, realistic
pooled values of R0 were estimated in 29 studies, all done in
China, using different mathematical methods [56]. Themean
value of R0 was evaluated as 3.38 ± 1.40 (95% confidence
interval 1.9–6.49). R0 was found to be between 2.43 to 3.10 in
Italy in early stage of COVID-19 pandemic [54].

One of the key epidemiological factors in the COVID-
19 pandemic is the incubation period, time elapsed between
the exposure and the appearance of the first symptoms.
Different pooled analysis of confirmed COVID-19 cases
showed that the estimated incubation times were 5.1 days
[57], 6.4 days (range 2.2–11.1) [58], and 5.0 days (range
2–14 days) [59]. Sanche and colleagues estimated, in late
January 2020 in Mainland China, the average incubation
period to 4.2 days. A time duration from symptoms onset
to admission to hospital for treatment was estimated to
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1.5 days in late January 2020 and the time from symptoms
onset to death to 16.1 days [60].

Various in vitro studies showed that RNA viruses are
less vulnerable to corruption due to their ability to promptly
repair their genome damages by proof-reading, excision,
and removing flawed RNA nucleotides that occur during
their replication [61–64]. Exoribonuclease (ExoN) enzymes
encoded by nsp-14 play a crucial role in maintaining the
viral genome integrity [18,64–66]. Eckerle and workers
reported that mutations in nsp-14 of SARS viruses lead to
15-fold increase in replication errors [67].

1.3 Vaccine strategy

To help prevent the spreading of the COVID-19 pandemic,
most of the countries have adopted immediate measures
consisting of global travel restrictions on movement,
lockdowns, social distancing, patient self-isolation, and
provision of medical care to infected people. Few curative
methods using already known antiviral agents such as
hydroxychloroquine and remdesivir were tested on patients
[68–70]. However, results were not very encouraging for any
of these agents to be considered as significant therapy yet.
The best option for ending this pandemic and reestablishing
a normal life remains, by far, the development of safe and
effective prophylactic vaccines. This has triggered an exten-
sive collaboration and a colossal mission between pharma
companies and scientists to expedite vaccine development
and production in less than a year instead of the normal
10-year period time. By the end of 2020, 259 COVID-19
vaccine projects were in the pipeline [71]. Frontrunning
coronavirus vaccines, sharing the same purpose of sti-
mulating the immune system against SARS-CoV-2, can
be broadly categorized into three platforms:
• the classical inactivated virus vectored vaccines based
on disrupting the viral genome through chemical or
physical alterations. These viruses are no longer able

to replicate to cause infection, but able to trigger an
immune memory response [72].

• the full-length S glycoprotein- or RBD-based vaccines
that generate target antigens in the infected cell [73].

• the groundbreaking DNA-, mRNA-based vaccines that
encode in the host cell the full-length S glycoprotein as
target antigen [74].

As of 29 January 2021, five vaccines went through the
necessary multiple phases of trial to ensure safety, showing
more than 90% efficacy. They have been approved and
licensed for use by national and international public health
regulators and are being rolled out worldwide (Table 1).

1.4 Different agents for SARS-CoV-2
inactivation

Virus inactivation for vaccine purposes was already known
since the late 1800s [84]. In 1885, Pasteur laid the founda-
tions of immunization with inactivated rabies virus cul-
tured in rabbit spinal cords [85]. It was not until the
discovery of the in vitro culture of viruses outside the
host organism procedures that inactivated viral vaccine
development was truly initiated. This allowed a large-
scale production of viruses as source for inactivated vaccine
purposes [86]. Vaccine producers are generally using virus
growth on continuous cell lines to reduce production costs
and increase vaccine safety. Once the virus has been
purified, inactivation can be achieved using chemical or
physical methods or a combination of the two. A wide
range of chemical agents are used: ascorbic acid [87],
derivatives of ethylenimine [88], and hydrogen peroxide
[89]. However, formaldehyde [90] and β-propiolactone
[91] are the most widely used for inactivation for decades.
To avoid the extensive and time-consuming downstream
processing to detoxify the virus cultures from chemical
inactivators, the use of γ‐irradiation as a physical alternative

Table 1: COVID-19 vaccines currently available in the market (January 2021)

Vaccine Platform Inactivation method Developer Reference

BNT162b2 mRNA — Pfizer – BioNTech (USA,
Germany)

[75,76]

mRNA-1273 mRNA — Moderna (USA) [77,78]
AZD1222 Nonreplicating viral vector Deletions in E1 and E3 genes in

adenovirus vector to inhibit replications
University of Oxford
AstraZeneca (UK)

[15,79,80]

CoronaVac Inactivated SARS-CoV-2 β-Propiolactone to inhibit replication Sinovac (China) [29,81]
Sputnik V Heterologous recombinant

adenovirus (rAd26 and rAd5)
Deletions in E1 and E3 genes in
adenovirus vector to inhibit replications

Gamaleya (Russia) [82,83]
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method to chemical inactivation has been proposed bymany
authors. Preparation of experimental vaccines against several
viral diseases using γ‐irradiation is reported in the literature:
bluetongue [92], Venezuelan equine encephalitis [93],
rabies [94], smallpox [95], influenza [96], HIV [97], Ebola
[98], rotavirus [99], and polio [100].

The choice of an inactivation method preserving the
viral epitope integrity is important since the damage of
the envelop protein will lessen the efficacy of the vaccine
[101]. Several studies showed that viral inactivation by
formaldehyde, hydrogen peroxide, or binary ethyleni-
mine derivatives is nonselective and can damage the
envelope protein leading to a poor immune response
[102,103]. Nevertheless, γ-irradiation has shown a superior
inactivation method by preserving the viral antigens intact
to trigger the immunogenicity while destroying nucleic
acids to inhibit the viral replication in human cells [104,105].
This advantageous attribute of γ-irradiation can be ascribed to
its high penetration depth that causes direct damage to nucleic
acids without altering structural proteins [96,106,107].

Due to the potentially dangerous consequences of
SARS-CoV-2 human infection, extreme attention should
be paid to ensure that inactivation procedures are effi-
cient. Effective inactivation of the SARS-CoV-2 is vital as
it allows research, especially the development of new
vaccines, to be conducted under safe conditions [108].
Various methods are already available for SARS-CoV
effective inactivation [109] and could be tested on SARS-
CoV-2 since these two viruses share a great deal of genome:
ultraviolet radiation, thermal treatment, extreme pH values,
and commonly used disinfectants offer an effective virus
inactivation. Duan and colleagues reported an inactivation
of SARS-CoV virus after 15min exposure to ultraviolet C,

whereas ultraviolet A and B had no effect on its viability,
irrespective of the duration of the exposure [110]. Heat can
denature SARS-CoV secondary structural proteins. A com-
plete inactivation of this virus at 75°C for 45min was
reported by Darnell and colleagues [111]. For inactivation
with detergents, Gerlach et al. showed that SARS-CoV-2 can
be efficiently inactivated by 70% ethanol, 0.1% hydrogen
peroxide, and 0.1% sodium sulphate, commonly available
in hand soaps, within 60 s of exposure on various surfaces
[112]. pH has a great effect on the viability of SARS-CoV-2.
Chan et al. reported that the virus survived for up to 6 days
in a mediumwith pH range [5–9], but lost between 2.9 and
5.33 log10 infectivity. At pH 4 and pH 11, it remained viable
for 1–2 days. At extreme pHs (pH 2–3 and pH 11–12), the
virus lost 5.25 log10 infectivity within only 1 day [16].

In this perspective, γ-inactivation of viruses could be
an important and promising tool for SARS-CoV-2 vaccine
development (Figure 1). In this review, we analyze the
potential use of γ-irradiation to inactivate the SARS-
CoV-2 by altering its genetic material while preserving
its structural proteins.

1.5 Radiolysis of water in biological matter:
mechanisms of radiobiological action

The two major processes in the interaction of energetic
photons or charged particles with aqueous biological
medium are ionization and excitation of water molecules
and biologically important macromolecules such as DNA,
RNA, lipids, and proteins [113,114]. The electrons liber-
ated in the ionization have enough energy to ionize further

Figure 1: Schematic diagram showing the development of SARS-CoV-2 vaccine using radiation-induced inactivation of live virus.
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molecules in a manner that energy is deposited in spurs.
When their energy falls below the ionization threshold of
water, the electrons become solvated −eaq. Excited water
molecules can dissociate into free radicals OH• and H•.
These physicochemical processes, concentrated in tracks
along the path of the ionizing species, are complete approxi-
mately 10−12 s after the absorption of the ionizing radiation
[115,116]. The radiolysis products either react with each other
within the spurs to produce reactive oxygen species (ROS),
such as superoxide radical O2

•− and its conjugate perhy-
droxyl radical HO2

•, or diffuse homogeneously into the
bulk of the biological medium where they are scavenged
by biological macromolecules. The spur diffusion is com-
plete approximately 10−7 s after the absorption of the
ionizing radiation [117].

1.6 Mechanism of viral inactivation

γ-irradiation disrupts viruses by altering mainly their
RNA genetic material. The number of nitrogenous bases
and their sequence in the RNA is crucial for determining
the viral sensitivity towards γ-irradiation. The more target
nucleotides, the more likely the nucleic acid genome will
be damaged for a given absorbed dose [118]. Themechanism
behind this damage falls into two types: direct and indirect.
Direct damage is caused by the radiation-induced cleavage
of the sugar-phosphate backbone or the cross-linking,
deletion, substitution, and insertion in the sequence of
nitrogen bases [119,120]. Indirect damage is attributed to
the oxidative stress of the radiolytically produced ROS on
the viral material, leading to its fragmentation and cross-
linking [121,122]. A minimum energy deposition of 17.5 eV
within a critical distance of 6 Å from the nucleotide (cor-
responding to a sensitive spherical volume of 0.596 nm3)
can induce a lethal damage to the viral RNA [123].
Disruption to the protein capsid and the lipid bilayer
envelope, by lipid and protein peroxidation chain reac-
tions, may as well result in the reduction of viral patho-
genicity [70,124,125]. It has been reported that, for viruses
belonging to the enveloped Coronaviridae family, the
conformational changes in the spike glycoprotein S block
the viral binding to the host cell plasma membrane and
prevent cellular internalization, the first stage in viral
infection [111,126]. Studies suggested that genetic mate-
rial rather than protein and lipid envelopes is likely to be
the primary target for viral inactivation [107,127]. Nims
et al. reported that the presence or absence of a viral
envelope does not seem to be a major factor of inactiva-
tion by γ-irradiation [128].

Single-strand break (for single-stranded viruses) and
double-strand break (for double-stranded viruses) are
generally sufficient to inactivate the viral genome [129].
Based on the hypothesis of the single-hit-single-target
(SHST)model [130,131], the inactivation of viruses is typi-
cally expressed by the following relationship [132]:

( ) =  

 

−N D N 10
D

D0 10 (1)

where N0 and ( )N D are the virus population before and
after the irradiation, respectively, D being the radiation
dose. D10 depicts the required irradiation dose to reduce
the initial virus titer by 90% (or reduce the population by
a factor of 10). D10 values vary between different types of
viruses mainly due to the significant differences in their
genome, capsid morphology, and the presence or absence
of an envelope. For convenience, the viral inactivation is
expressed in terms of log10 reduction, which is the loga-
rithm base 10 of the ratio of the viral titer before ( )N0 and
after ( ( ))N D the inactivation:









=

( )

N
N D

log reduction log10 10
0 (2)

It should be noted that D10 corresponds to 1 log10. For
instance, 1 log reduction10 corresponds to 90% reduction
(or 10-fold) and 2 log reduction10 corresponds to 99%
reduction (or 100-fold).

Feldmann and colleagues showed that the inactiva-
tion was inversely correlated with genome size [133].
They measured the radiation doses for a 6 log10 reduction
and found 2 Mrads for coronaviruses (∼29 kb genome
size), 4 Mrads for filoviruses (∼19 kb), 8 Mrads for arena-
viruses, bunyaviruses, orthomyxoviruses, and paramyx-
oviruses (∼13 kb) and 10 Mrads for flaviviruses (∼9 kb).
Viruses having single-strand nucleic acid present the
highest radiosensitivity. Hume and colleagues [127] reported
that the three enveloped single-stranded RNA viruses of
similar sizes, namely morbillivirus (90–150 nm), bunyavirus
(90–120 nm), and rhabdovirus (70–150 nm), showed a com-
parable D10 values (2.53, 2.61, and 2.71 kGy respectively)
when irradiated under the same experimental protocol.

Leung and workers cultured SARS-CoV-2 on Vero
cells in the presence of 1% fetal bovine serum and 1%
L-glutamine. Virus-containing supernatants were titered
after irradiation [134]. The D10 was 1.6 kGy and the com-
plete inactivation of the SARS-CoV-2 was attained with
an absorbed dose of 10 kGy, value lower than the 20 kGy
previously reported value for the similar SARS-CoV [133].
Even though the single-stranded RNA viruses may present
a certain radioresistance, Nims and colleagues showed
that no strong clue can explain the discrepancies in the
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log10 values for virus inactivation by γ-irradiation, as
shown in Table 2 [135]. Multiple causative parameters
may be involved in this discrepancy, including, but not
limited to, sera matrices preparation variability from
sample-to-sample, variability in γ-irradiation procedures
(dose rate), and variability in the purity of the virus stock
quality.

In another study, Schmidt and workers [132] investi-
gated the fractionated and continuous electron beam

irradiation of four different types of viruses: the Human
Immunodeficiency Virus-2 (Retroviridae enveloped HIV-2),
the Hepatovirus A (Picornaviridae non-enveloped HAV),
the Pseudorabies Virus (Herpesviridae, enveloped PRV),
and the Porcine Parvovirus (Parvoviridae non-enveloped
PPV). The cell lines for these viruses were respectively
human T lymphocyte cells, mink-lung cells, embryonal
rhesus monkey kidney cells, and pig kidney cells. The
irradiation doses for the continuous beam were multiple

Table 2: Viral properties of some enveloped virus families. Efficacy of γ-irradiation on the log10 reduction

Virus Family Morphology
(not to scale)

Size (nm) Genome
size (kb)*

Nucleic acid
genome

D10

(kGy)
log10
reduction/
kGyc

References

IBRb Herpesviridae 100–120 120–230
Double-
stranded DNA

3.22 0.310 [136,137]

APV Poxviridae 240–300 130–260
Double-
stranded DNA

2.20 0.456 [138,139]

PI3b Paramyxoviridae 100–200 13–19
Single-
stranded RNA

4.78 0.209 [128,140]

BVDVa Flaviviridae 50–70 9–13
Single-
stranded RNA

5.05 0.198 [141,142]

SARS-CoV-2 Coronaviridae 20–25 26–32
Single-
stranded RNA

1.60 0.625 [134,143]

BEFVa Rhabdoviridae 75 × 150 10–16
Single-
stranded RNA

2.94 0.340 [142,144]

Akabanea Bunyavuridae 80–120 11–23
Single-
stranded RNA

2.50 0.400 [142,145]

Ainoa Bunyavuridae 80–120 11–23
Single-
stranded RNA

3.45 0.290 [142,146]

APV: avian poxvirus, PI3: parainfluenza virus type 3, IBR: infectious bovine rhinotracheitis, BVDV: bovine viral diarrhea virus, BEFV: bovine
ephemeral fever virus.
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of 3.4 kGy and up to 34 kGy, while for the fractionated
beam, a dose of 3.4 Gy was applied up to 10 times. The
D10 values were estimated from the regression curve
TCID50/mL vs absorbed dose. Except for PRV, each type
of virus showed a slightly greater radioresistance in
continuous than fractionated irradiation. This might be
explained by the ability of the viruses to repair their
sublethal damages to their viral genome between two
successive fractions. The least resistant was the PRV
(continuous beam: 5.6 kGy, fractionated beam: 5.8 kGy)
and the most resistant was the HIV-2 (continuous beam:
9 kGy, fractionated beam: 8 kGy).

The presence of solutes in the irradiation culture of
viruses renders the radiation-induced inactivation of viruses
less efficient. de Roda Husman et al. [125] compared the
inactivation of the respiratory feline calicivirus (FeCV)
and the enteric canine calicivirus (CaCV)with the Escherichia
bacteriophage MS2 in viral culture of different protein con-
centration. They reported a 3 log10 reduction factor at a
dose of ∼120 Gy when γ-irradiating MS2 in tap water or in
low-protein-contents. They obtained doses of 500 and
300 Gy, for a 3 log10 reductions factors, for FeCV and
CaCV, respectively, in low-protein-content cultures. No or
very little inactivation was observed when MS2, FeCV, and
CaCV were γ-irradiated in high-protein-content culture.
The presence of OH˙ and H˙ scavengers, such as proteins,
lipids, etc., significantly reduces the viral inactivation. The
authors also reported that FeCV and CaCV showed a
second-order kinetics, with faster inactivation happening
at doses between 0 and 400Gy and slower inactivation
happening at doses from 400 to 800 Gy.

2 Conclusion

The eruption of the SARS-CoV-2 new virus poses a real
challenge and worries in a sense that its attributes are
initially unknown and very limited viral data on COVID-19
infection is currently available. The virus is still infecting
populations globally. Previous studies from other viruses
and particularly the SARS-CoV and MERS-CoV have showed
that damaging the genetic material can destroy infectivity
while retaining immunogenicity. This review showed that
ionizing radiation can potentially inactivate almost all the
RNA viruses, by disrupting their genomic material. This
could suggest a basis for developing a potential γ-inactivated
virus-based vaccine against the spread of the COVID-19 pan-
demic. Improving its immunogenicity and preventing any
potential undesired effects that could compromise the safety
of the vaccine are of course other important factors which

should also be taken into full consideration and thoroughly
examined.
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