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Abstract: Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early
clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative
determination of CEA is of vital significance. In this study, we demonstrated the in
situ growth of Au nanoparticles (AuNPs) on nitrogen-doped graphene quantum dots
(N-GQDs) decorated reduced graphene oxide (rGO) nanocomposites by using simple
drop-coating and electrochemical deposition methods. N-GQDs@rGO can be formed
through the π–π stacking interaction and possesses a high specific surface area and many
functional groups, providing lots of anchor sites (amino moieties in NGQDs) for the in
situ electrochemical growth of AuNPs without the addition of reductants and protective
agents. Such AuNPs/N-GQDs@rGO ternary nanocomposites combine the characteristics
of three nanomaterials, showing a large surface area, excellent solubility, good conductivity,
catalytic activity, a simple fabrication process, and notable stability, which are further
used to construct a label-free electrochemical immunosensor for the determination of
CEA. Under the optimized experimental conditions, the AuNPs/N-GQDs@rGO-based
electrochemical immunosensor achieves a broad linear response, ranging from 1 pg/mL to
0.5 µg/mL and a low detection limit of 0.13 pg/mL. Moreover, the AuNPs/N-GQDs@rGO-
based electrochemical immunosensor shows exceptional selectivity, anti-interference, and
anti-fouling capabilities for the direct analysis of CEA amounts in fetal bovine serum
samples, showing vast potential in the clinical screening of cancer.

Keywords: Au nanoparticles; nitrogen-doped graphene quantum dots; reduced graphene
oxide; electrochemical immunosensor; carcinoembryonic antigen

1. Introduction
Cancer is a widespread disease which poses significant treatment challenges, and is

characterized by persistently high mortality rates [1]. Therefore, effective early diagnosis
is crucial for improving survival rates and managing disease progression. Tumor marker
levels in the serum of cancer patients are often significantly elevated, reflecting tumor status
and providing essential information for diagnosis, classification, treatment selection, and
prognosis [2,3]. Carcinoembryonic antigen (CEA) is a commonly used tumor marker, which
has been extensively applied in the clinical diagnosis of various cancers, including liver,
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gastric, and pancreatic cancers [4–7]. In healthy individuals, CEA levels typically remain
below 5 ng/mL, while serum CEA concentrations exceeding 20 ng/mL often indicate the
possible presence of cancer [8,9]. Therefore, the rapid and sensitive detection of CEA levels
is critical for an accurate early cancer prediction and diagnosis.

Currently, immunoassays are prevalent in clinical tumor marker detection due to
their high specificity and sensitivity [10,11]. The existing methods include colorimetric
immunoassays [12], fluorescence immunoassays [13], enzyme-linked immunosorbent as-
says [14], and electrochemiluminescence immunoassays [15–17]. While these methods
are effective, they require significant reagent volumes, specialized equipment, and skilled
personnel, which challenge the need for a rapid clinical diagnosis. Therefore, there is an
urgent need to develop convenient detection methods for CEA detection to better serve
clinical needs. Label-free electrochemical immunosensors have emerged as a promis-
ing solution to overcome the above issues in tumor biomarker monitoring due to their
high precision, simplicity, miniaturization, and excellent biocompatibility [18,19]. Label-
free electrochemical immunosensors directly monitor changes in current intensity during
antigen–antibody interactions, eliminating the need for labeling procedures and avoiding
interference from labeling agents [20,21]. The rational design of advanced nanomaterials
for electrode modification is crucial in constructing high-performance, label-free electro-
chemical immunosensors.

With the development of nanomaterial synthesis technology, the application of nano-
materials in the field of electroanalytical sensing, such as metal nanoparticles [22], metal
oxide nanoparticles [23], carbon materials [24–26], porous silica materials [27–30], and so on,
is garnering increasing attention. As a widely used metal nanoparticle, gold nanoparticles
(AuNPs) have been employed as an electrode-modified material to promote electrode ana-
lytical performance by enhancing electrode conductivity and improving electron transfer
to the sensing interface [31–34]. In addition, AuNPs are regarded as a kind of ideal material
for anchoring biological recognition elements due to their low toxicity and outstanding
biocompatibility [35]. Therefore, developing a simple method for the preparation of AuNPs
with a nanoscale size on the electrode surface is of great importance.

As a kind of two-dimensional (2D) planar carbon material, reduced graphene oxide
nanosheets (rGOs) are extensively utilized as the support material for the growth of metal
nanoparticles (e.g., AuNPs, silver nanoparticles, and platinum nanoparticles) [36–38] and
the porous membrane [39–41] to promote the conductivity of electrodes. Researchers have
reported on the exploitation of rGO nanosheets for the preparation of AuNPs with the
help of protective agents to avoid the aggregation of AuNPs [42]. In this study, hybrid
nanocomposites comprising nitrogen-doped graphene quantum dots (N-GQDs) and rGOs
were synthesized via the π–π stacking interaction, and they were then employed to grow
AuNPs in situ without the need for protective agents using a controllable electrodeposi-
tion method (Scheme 1). Such obtained AuNP/N-GQDs@rGO ternary nanocomposites
combine the characteristics of three nanomaterials, showing a large surface area, excel-
lent solubility, good conductivity and catalytic activity, a simple fabrication process, and
notable stability. Firstly, belonging to zero-dimensional (0D) carbon materials, N-GQDs
have similar sheet-like π–π conjugated structures to rGOs and their size is smaller than
10 nm [43,44], which can act as a spacer to avoid the re-stacking of graphene [45]. Secondly,
the doped N heteroatom in NGQDs can improve the conductivity of the overall materials,
and, meanwhile, they offer more anchoring sites for the further functionalization of other
materials [46]. Thirdly, the electrodeposition of AuNPs on the N-GQDs@rGO surface is
convenient without the addition of protective agents, which greatly remains the active sites
of AuNPs. The combination of the three materials listed above not only forms the electroac-
tive substrate electrode, but also easily generates the biofunctional sensing interface. When
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the CEA-specific antibody is covalently modified on the AuNPs/N-GQDs@rGO nanocom-
posites via Au-NH2 or Au-SH interactions, a highly sensitive and selective immunosensing
interface is achieved. Furthermore, the AuNPs/N-GQDs@rGO-based immunosensor can
be applied to accurately determine CEA in fetal bovine serum samples, providing an
alternative strategy for the clinical screening of cancer.
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Scheme 1. Illustration of the construction of a AuNPs/N-GQDs@rGO-based label-free electrochemi-
cal immunosensor for the sensitive detection of CEA.

2. Results and Discussion
2.1. The Morphology and Structure of AuNPs/N-GQDs@rGO Composites

N-GQDs were successfully synthesized using 1-aminopyrene as a precursor and
ammonia as a dopant through a one-step hydrothermal method. Due to the quantum
confinement effect, the N-GQDs exhibit fluorescence (inset in Figure 1a), which distin-
guishes them from 2D graphene. The maximum emission wavelength of the N-GQDs is
520 nm when the excitation wavelength is set to 465 nm (Figure 1a). In addition, a distinct
ultraviolet absorption peak of the N-GQDs is observed at approximately 350 nm, which is
attributed to the n→π* transition of the C=O. The elemental and chemical compositions
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of the N-GQDs were further analyzed by X-ray photoelectron spectroscopy (XPS) with
results shown in Figure 1b–d. The XPS analysis reveals that the N-GQDs are primarily
composed of carbon (C), oxygen (O), and nitrogen (N) elements. In the high-resolution C 1s
spectrum, peaks at binding energies of 285.9 eV, 286.3 eV, and 288.5 eV are assigned to the
C=C, C-N, and C–OH bonds, respectively (Figure 1b) [47,48]. The N 1s spectrum confirms
the presence of amino, graphitic, and pyrrolic nitrogen (Figure 1c) [49]. The O 1s spectrum
shows characteristic peaks at binding energies of 531.4 eV and 532.0 eV, corresponding to
the C–O and C=O bonds, respectively (Figure 1d). All above data verify the successful
synthesis of N-GQDs.
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Figure 1. (a) UV−Vis (Abs) and fluorescence spectra (Ex, Em) of N-GQDs. High-resolution C 1s (b),
N 1s (c), and O 1s spectra (d) of N-GQDs.

rGO was synthesized via the reduction of GO and was characterized using UV–Vis
spectroscopy and XPS. As shown in Figure 2a, the UV–Vis spectrum of GO exhibits a
pronounced peak at around 230 nm, which is attributed to the π→π* transitions of conju-
gated C=C bonds and further indicates the presence of aromatic structures. Additionally,
a shoulder peak observed near 300 nm arises from oxygen-containing groups [50]. In
comparison with GO, rGO shows a characteristic red shift in the adsorption peak to
260 nm, while the shoulder peak at 300 nm diminishes, indicating that rGO is successfully
reduced from GO and the π–π conjugated structure of graphene nanosheets is restored.
Figure 2b,c displays the high-resolution C 1s spectra of GO and rGO. Four typical peaks
are identified at binding energies of 285.4 eV, 287.2 eV, 288.5 eV, and 289.0 eV in the C 1s
spectrum of GO, which is assigned to the C–C/C=C in aromatic rings, C–O, C=O, and
O-C=O, respectively [51,52]. By contrast, the C 1s spectrum of rGO reveals an increase in
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the C–C/C=C intensity and a marked reduction in oxygen-containing functional groups
signals, suggesting the effective reduction in GO and the successful formation of rGO [53].
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Figure 2. (a) UV−Vis spectra of GO (Brown) and rGO (Red). High-resolution C1s XPS spectra
obtained on (b) GO and (c) rGO.

The morphology of the N-GQD@rGO nanocomposites was analyzed using trans-
mission electron microscopy (TEM). Figure 3a illustrates that a wrinkled interconnected
network formed at the edges of the rGO nanosheets. The TEM image of N-GQD@rGO
reveals that the N-GQDs with an average diameter of 5.3 ± 0.3 nm (47 samples) are uni-
formly distributed onto the rGO structures (Figure 3b). The lattice spacing of the N-GQDs
is 0.28 nm, which corresponds to that of graphene (100) planes (Figure 3c). These N-
GQDs can act as the spacer to prevent the restacking of rGO nanosheets, leading to the
stable N-GQDs@rGO nanocomposites. The N-GQDs@rGO dispersion shows much better
dispersibility compared with the rGO, which arises from the spacer role of the N-GQDs
(Figure S1). Figure 4a,b compares the scanning electron microscope (SEM) image of N-
GQDs@rGO and AuNPs/N-GQDs@rGO. As seen, the N-GQDs@rGO composites exhibit a
wrinkled texture. After the electrodeposition of AuNPs, lots of AuNPs with an average
diameter of approximately 50 ± 11 nm (140 samples) are anchored on the N-GQDs@rGO
substrate, enhancing the dispersion and stability under the tested conditions. Generally,
the smaller AuNPs (<20 nm) may offer higher surface area, but they tend to aggregate
during electrochemical procedures. In addition, the Au element of AuNPs and the N
element of N-GQDs are found at the energy-dispersive X-ray (EDX) mapping data (inset
of Figure 4b), demonstrating the successful preparation of the AuNPs/N-GQDs@rGO
ternary nanocomposite.
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Figure 3. TEM images of rGO (a) and N-GQDs@rGO (b). Inset in (b) is size distribution of NGQDs N-
GQDs@rGO complex. (c) HRTEM image of N-GQDs@rGO. Insets is the high-magnification HRTEM
image of N-GQDs in N-GQDs@rGO complex.
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Figure 4. SEM images of N-GQDs@rGO (a) and AuNPs/N-GQDs@rGO (b). The inset in (b) is the
EDX mapping of Au and N elements (top) and size distribution of AuNPs (bottom). (c) CV curves
obtained at the bare GCE, N-GQDs@rGO/GCE, and AuNPs/N-GQDs@rGO/GCE in a KHP (0.05 M)
solution containing Fe(CN)6

3− (0.5 mM). (d) EIS plots obtained at the bare GCE, N-GQDs@rGO/GCE,
and AuNPs/N-GQDs@rGO/GCE in KCl (0.1 M) containing Fe(CN)6

3/4− (2.5 mM). The frequency
range for EIS measurements was from 0.1 Hz to 100 kHz, with a perturbation amplitude of 5 mV.

To further confirm the stepwise fabrication procedure of the AuNPs/N-GQDs@rGO,
cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques
were employed. Figure 4c,d presents the CV (c) and Nyquist (d) curves of the bare GCE, N-
GQDs@rGO/GCE, and AuNPs/N-GQDs@rGO/GCE in a solution containing ferricyanide
(Fe(CN)6

3−, 0.5 mM) and ferricyanide/ferrocyanide ([Fe(CN)6]3−/4−, 2.5 mM), respectively.
As displayed, the bare GCE exhibits a pair of well-defined redox peaks with a peak-to-peak
separation (∆Ep) of 82 mV corresponding to the electrochemical reaction of Fe(CN)6

3−

and an electron transfer resistance (Rct) of 376 Ω. Upon modification of N-GQDs@rGO,
reduced ∆Ep (80 mV) and Rct (352 Ω) are found at the N-GQDs@rGO/GCE, indicating
the increased electroactive surface area and improved conductivity of N-GQDs@rGO
nanocomposites. When GCE is modified with AuNPs/N-GQDs@rGO, a significant increase
in redox peak currents and a further decreased Rct are obtained, which is indicative of the
superior electrocatalytic activity of the AuNPs/N-GQDs@rGO ternary composites. These
characteristics underscore the significant potential of this ternary composite material for
constructing high-performance electrochemical immunosensors for CEA detection.

2.2. Electrochemical Characteristics of AuNPs/N-GQDs@rGO-Based Immunosensor

In constructing the CEA immunosensor, the AuNPs/N-GQDs@rGO ternary compos-
ites were selected as the electrode modification material due to their low toxicity, excellent
biocompatibility, and ability to bind antibodies via Au-NH2 bonds [54]. CV, EIS, and DPV
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are effective techniques for observing changes in electrode performance at various stages
of modification and the results are shown in Figure 5a–c. As depicted in Figure 5a–c,
CV, EIS, and DPV curves of various electrodes in a solution of KCl (0.1 mM) containing
[Fe(CN)6]

3−/4− (2.5 mM) demonstrate that, with the successive incubation of CEA-specific
antibody (Ab) and BSA, the redox peak currents progressively decrease and Rct increases
gradually, suggesting the successful fabrication of the AuNPs/N-GQDs@rGO-based im-
munosensor. Moreover, after incubation with the target CEA (1 ng/mL), the fabricated
AuNPs/N-GQDs@rGO-based immunosensor shows a remarkable signal variation, such as
the decreased redox currents and the increased Rct, verifying the feasibility of the developed
AuNPs/N-GQDs@rGO-based immunosensor for CEA determination.
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Figure 5. CV (a), EIS (b) and (c) DPV curves on the AuNPs/N-GQDs@rGO/GCE, Ab/AuNPs/N-
GQDs@rGO/GCE, and BSA/Ab/AuNPs/N-GQDs@rGO/GCE before and after incubation with
CEA (1 ng/mL) in 0.1 M KCl solution containing 2.5 mM Fe(CN)3−/4−. The frequency range for EIS
measurements was from 0.1 Hz to 100 kHz, with a perturbation amplitude of 5 mV.

2.3. Optimization of Experiential Conditions of the AuNPs/N-GQDs@rGO/GCE-Based Immunosensor

To achieve optimal electrochemical responses, parameters influencing the performance
of the AuNPs/N-GQDs@rGO/GCE-based immunosensor were systematically investigated,
including the antibody’s incubation time and the CEA reaction time. It can be found, in
Figure 6a, that, as the reaction time increases, the anodic peak current of [Fe(CN)6]3−/4− at
the Ab/AuNPs/N-GQDs@rGO/GCE gradually decreases. This decrease arises from the
following three reasons. First, steric hindrance resulting from the antibody can decrease
the mass transport of [Fe(CN)6]3−/4−. Second, due to the increased amount of noncon-
ductive antibodies immobilized on the electrode surface, interfacial resistance enhances
and, thereby, decelerates the electron transfer of [Fe(CN)6]3−/4−. Third, charged residues
on the antibody may exert the electrostatic effect towards [Fe(CN)6]3−/4−. When the
incubation time reaches 30 min, the electrochemical signal remains unchanged, suggesting
that antibody immobilization on the AuNPs surface nears saturation (Figure 6b). Therefore,
the incubation time for the antibody was selected as 30 min for subsequent studies. Addi-
tionally, the effect of the CEA binding time on the detection performance was examined.
Figure 6c demonstrates that, when the incubation time of the target CEA reaches 45 min,
the electrochemical signal reaches a plateau, indicating that the CEA binding has reached
saturation. Consequently, in subsequent experiments, the incubation time for CEA on the
AuNPs/N-GQDs@rGO/GCE-based immunosensor was set to 45 min. These optimization
steps establish a reliable foundation for further analytical applications.
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Figure 6. (a) DPV curves of AuNPs/N-GQDs@rGO/GCE after incubation with 1 µg/mL of anti-CEA
antibody at different incubation times in a 0.1 M KCl solution containing 2.5 mM [Fe(CN)6]3−/4−.
(b) Dependence of the incubation time for 1 µg/mL anti-CEA antibody on the anodic peak current
variation in the Ab/AuNPs/N-GQDs@rGO/GCE. (c) DPV curves of AuNPs/N-GQDs@rGO/GCE-
based immunosensor after incubation with 100 pg/mL CEA at various incubation times. The tested
solution is 0.1 M KCl solution containing 2.5 mM [Fe(CN)6]3−/4−. (d) Dependence of the incubation
time for 100 pg/mL CEA on the anodic peak current variation in AuNPs/N-GQDs@rGO/GCE-
based immunosensor.

2.4. DPV Performance of the AuNPs/N-GQDs@rGO/GCE-Based Immunosensor

Under optimal detection conditions, the performance of the constructed AuNPs/N-
GQDs@rGO/GCE-based immunosensor for CEA detection was evaluated. Figure 7a displays
the DPV signals of the AuNPs/N-GQDs@rGO/GCE-based immunosensor after incubation
with varying concentrations of CEA. The results indicate a declining trend in DPV signals
with increasing CEA concentration, attributable to the impeded electron transfer effect by the
accumulation of immune complexes on the electrode surface. As depicted in Figure 7b, a
good linear relationship is observed between the anodic peak current (I) and the logarithm
of CEA concentration (logCCEA) over the range of 1 pg/mL to 500 ng/mL, with the regres-
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sion equation I (µA) = −1.73 (± 0.054) logCCEA (ng/mL) + 18.0 (± 0.104), and a correlation
coefficient (R2) of 0.995 (RSD < 3%). The limit of detection (LOD), calculated based on a signal-
to-noise ratio (S/N = 3), is determined to be 0.13 pg/mL. Table 1 compares the CEA detection
performances of our immunosensor with other reported electrochemical immunosensors. As
seen, the dynamic linear range obtained at our developed AuNPs/N-GQDs@rGO/GCE-
based immunosensor is broader than those of other electrochemical sensors. Although
the achieved LOD (0.13 pg/mL) is lower than those at the BSA/Ab/chitosan (CS)-
rGO/gold nanodendrites (AuND)/AuNPs/GCE, BSA/Ab/streptavidin/CS/platinum
nanoparticles (PtNPs)@rGO@polystyrene nanospheres (PS NSs)/GCE (0.01 pg/mL),
BSA/Ab/Au/ZnMn2O4@rGO/GCE (0.019 pg/mL), Au@CeBi0.4O3.7 with feather-
like structures (CeBi0.4O3.7-Ab2NFs)/CEA/BSA/Ab1/rGO-Au/GCE (0.12 pg/mL),
AuNPs/covalent organic frameworks (COF) TFPB-Thi/Ab2/CEA/BSA/Ab1/COF
Tab-Dva/GCE (0.03 pg/mL), and Cu2O/PtNPs-Ab2/CEA/BSA/Ab1/AuNPs/GCE
(0.03 pg/mL), our AuNPs/N-GQDs@rGO/GCE-based immunosensor simplifies the elec-
trode construction process, offering a convenient method for detecting trace CEA. Above
results indicate that our developed AuNPs/N-GQDs@rGO/GCE-based immunosensor
exhibits excellent detection performance across a broad concentration range.
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Figure 7. (a) DPV curves obtained at the AuNPs/N-GQDs@rGO/GCE-based immunosensor af-
ter incubation with different concentrations of CEA in 0.1 M KCl solution containing 2.5 mM
[Fe(CN)6]3−/4−. The concentrations of CEA are 1 pg/mL, 10 pg/mL, 0.1 ng/mL, 1 ng/mL,
10 ng/mL, 0.1 µg/mL, and 0.5 µg/mL. (b) The calibration curve for the detection of CEA. The
error bars represent the standard errors of three measurements.

Table 1. Comparison with the other reported electrochemical immunosensors to CEA detection.

Sensing Interface Linear Range
(ng·mL−1)

LOD
(pg·mL−1) Analysis Method Construction Step Refs.

BSA/Ab/CS 1-rGO/AuND 2/AuNPs/GCE 0.0001–10 0.02 DPV 6 [55]
BSA/Ab/streptavidin/CS/PtNPs 3@rGO@PS NSs 4/GCE 0.05–70 0.01 DPV 6 [56]
BSA/Ab/Au/ZnMn2O4@rGO/GCE 0.01–50 0.019 DPV 5 [57]
BSA/Au-pMCP 5-Ab/Au/3D-G 6/GCE 0.5–200 0.31 SWV 13 5 [58]
BSA/Ab/AuNPs@Ir-Zr-MOL 7/GCE 0.001–100 0.2 ECL 14 4 [59]
Au@CeBi0.4O3.7-Ab2NFs 8/CEA/
BSA/Ab1/rGO-Au/GCE 0.01–100 0.12 DPV 7 [60]

AuNPs/COF 9TFPB-Thi/Ab2/CEA/BSA/Ab1/COF
Tab-Dva/GCE 0.11–80 0.03 DPV 7 [61]

Cu2O/PtNPs-Ab2/CEA/BSA/Ab1/AuNPs/GCE 0.0001–80 0.03 CA 15 6 [62]
Apt 10/GNPs 11/MOF 12(801)/rGO/GCE 2.5–250 800 EIS 4 [63]
BSA/Ab/AuNPs/N-GQDs@rGO/GCE 0.001–500 0.13 DPV 5 This work

1: CS: chitosan; 2: gold nanodendrites; 3: platinum nanoparticles; 4: polystyrene nanospheres; 5: poly-m-
cresol purple; 6: three-dimensional graphene; 7: metal organic layers; 8: CeBi0.4O3.7 with feather-like structures;
9: covalent organic frameworks. 10: aptamer; 11: gold nanoparticle; 12: metal–organic framework; 13: square wave
voltammetry; 14: enhanced chemiluminescence; 15: CA: chronoamperometry.
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2.5. Selectivity, Anti-Interference, Reproducibility, and Stability of the
AuNPs/N-GQDs@rGO/GCE-Based Immunosensor

To verify the selectivity of the AuNPs/N-GQDs@rGO/GCE-based immunosensor, the
influence of common tumor biomarkers as potential interferents on CEA detection was
investigated, such as prostate-specific antigen (PSA), alpha-fetoprotein (AFP), neutrophil
gelatinase-associated lipocalin (NGAL), and carbohydrate antigens 19-9 (CA19-9) and
CA12-5. As illustrated in Figure 8a, when these substances were incubated individually
with the our immunosensor, the variation in anodic peak current is negligible. Only in the
presence of CEA or mixtures containing CEA, the anodic peak current decreases remarkably
and their variation is comparable, suggesting the excellent selectivity and anti-interference
capacity of our fabricated immunosensor. In addition, the AuNPs/N-GQDs@rGO/GCE-
based immunosensor was co-incubated with the additional potential interferents that may
coexist with CEA in human serum, including glucose, dopamine, PSA, AFP, K+, and Cl−.
As depicted in Figure 8b, even when the concentration of interferents is ten-fold that
of CEA, variations in the DPV current response remains negligible, demonstrating the
immunosensor’s superior anti-interference capability. Figure 8c shows the anodic peak
currents of five immunosensors after incubation with CEA (100 pg/mL). The DPV signals
of these electrodes, measured in [Fe(CN)6]3−/4− solution, exhibit a low relative standard
deviation (RSD) of 1.8%, indicating the excellent reproducibility. The storage stability of the
immunosensor incubated with CEA antibodies was also evaluated by incubation with CEA
(100 pg/mL) and stored at 4 ◦C for five days. Figure 8d records the anodic peak currents of
the immunosensor within five days and the signal retains 93.5% of its initial value after five
days, confirming that the designed immunosensor exhibits commendable storage stability.
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Figure 8. (a) Anodic peak currents of AuNPs/N-GQDs@rGO/GCE-based immunosensor after
incubation with PSA (10 ng/mL), AFP (10 ng/L), NGAL(10 ng/mL), CA19-9 (100 U/mL), CA125
(1 U/mL), CEA (100 pg/mL), or their mixture in 0.1 M KCl solution containing 2.5 mM [Fe(CN)6]3−/4−.
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(b) Anodic peak currents of AuNPs/N-GQDs@rGO/GCE-based immunosensor after incubation with
CEA (100 pg/mL) and other interfering species (1 ng/mL) in a 0.1 M KCl solution containing 2.5 mM
Fe(CN)6

3−/4−. (c) Anodic peak currents of five AuNPs/N-GQDs@rGO/GCE-based immunosensor
after incubation with CEA (100 pg/mL) in a 0.1 M KCl solution containing 2.5 mM [Fe(CN)6]3−/4−.
(d) Relative ratio of andic peak current obtained at the immunosensor after incubation CEA
(100 pg/mL) and stored at 4 ◦C for different days. I0 and I are anodic peak currents obtained
at the first and other days.

2.6. Real Sample Analysis

To assess the potential of the developed AuNPs/N-GQDs@rGO/GCE-based im-
munosensor for practical applications, fetal bovine serum was chosen as a representative
real sample, and the concentration of CEA was quantified using the standard addition
method. Throughout the experiment, various concentrations of CEA were added to the
different simulated samples and the detected results were shown in Table 2. As presented,
the recoveries of the immunosensor range from 101% to 103%, with an RSD of less than
3.2%. These data demonstrate the immunosensor’s outstanding reliability and accuracy in
detecting real samples, showing a good anti-fouling ability in complex biological matrices.

Table 2. Detection of CEA in fetal bovine serum samples.

Sample Added b

(ng/mL)
Found

(ng/mL)
RSD

(%, n = 3)
Recovery

(%)

0.0100 0.0103 3.2 103
Serum a 0.100 0.101 2.8 101

10.0 10.1 2.5 101
a: Samples with the added CEA were diluted by a factor of 50 using 0.1 M PBS (pH 7.4); b: The concentration of
CEA presented in Table 2 reflects the values after dilution.

3. Materials and Methods
3.1. Chemicals and Materials

CEA, anti-CEA antibodies, alpha-fetoprotein (AFP), prostate-specific antigen (PSA),
and fetal bovine serum were obtained from Beijing KeyGen Biotech Co., Ltd. (Beijing,
China). A monolayered GO aqueous dispersion (10 mg/g) was sourced from Hangzhou
GaoxiTech (Hangzhou, China). Hydrazine hydrate was sourced from Hangzhou Shuanglin
Chemical Reagent Co., Ltd. (Hangzhou, China). Various reagents, including potassium
ferricyanide (K3[Fe(CN)6], 99.5%), potassium ferrocyanide (K4[Fe(CN)6], 99.5%), potassium
chloride (KCl, AR), chloroauric acid (HAuCl4·3H2O, 99.9%), 1-aminopyrene (C16H11N,
98%), ammonia solution (NH3·H2O, AR), sodium dihydrogen phosphate (NaH2PO4·2H2O,
AR), and disodium hydrogen phosphate (Na2HPO4·12H2O, AR), were obtained from Al-
addin Biochemical Technology Co., Ltd. (Shanghai, China). Ethanol (99.8%) was procured
from Hangzhou Gaojing Fine Chemical Co., Ltd. (Hangzhou, China). A glassy carbon
electrode (GCE, 3 mm in diameter) was acquired from CHI Instrument Co., Ltd. (Shanghai,
China). Phosphate buffer solution (PBS) was prepared using Na2HPO4 and NaH2PO4.
All chemicals employed in this study were of analytical grade and used without further
purification. Ultrapure water (18.2 MΩ cm) used in the experiments was obtained from a
Milli-Q system (Millipore Company, Burlington, MA, USA).

3.2. Characterizations and Instrumentations

The morphologies of rGO and N-GQDs@rGO were examined using a transmission
electron microscope (TEM, JEM-2100, JEOL, Musashino, Japan) operating at 200 kV. In
addition, the morphologies of N-GQDs@rGO and AuNPs/N-GQDs@rGO were analyzed
using a scanning electron microscope (SEM, SU8010, Hitachi, Tokyo, Japan) at 10 kV.
Ultraviolet–visible (UV–Vis) absorption spectroscopy was conducted using a UV-2450
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spectrometer (Shimadzu, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) was con-
ducted using a PHI5300 electron spectrometer (PE Ltd., Waltham, MA, USA) equipped with
an Mg Kα source (250 W, 14 kV). A conventional three-electrode system was employed:
Ag/AgCl served as the reference electrode, platinum wire as the counter electrode, and
the modified electrode as the working electrode. An Autolab electrochemical worksta-
tion (PGSTAT302N, Metrohm, Switzerland) was utilized to conduct all electrochemical
experiments, namely, cyclic voltammetry (CV), differential pulse voltammetry (DPV),
and electrochemical impedance spectroscopy (EIS). The scan rate for CV tests was set to
50 mV/s, and the parameters for DPV tests were defined as follows: step potential of
0.005 V, modulation amplitude of 0.025 V, modulation time of 0.05 s, and interval time of
0.2 s. The frequency range for EIS measurements was from 0.1 Hz to 100 kHz, employing a
perturbation amplitude of 5 mV.

3.3. Preparation of rGO

rGO was synthesized via a modified chemical reduction method [64,65]. Briefly, 8 mL
of GO (1 mg/mL) solution was added to 32 mL of water. The mixture was ultrasonicated
for approximately 24 h to ensure the thorough dispersion of GO in the water. Once the
GO solution was uniformly dispersed, 135 µL of ammonia solution (25 wt%) and 14 µL of
hydrazine hydrate (40 wt%) were sequentially added. The mixture was then stirred in a
water bath at 85 ◦C for 3 h. Upon completion of the reaction, the solution was centrifuged
at 3000 rpm for 30 min to yield a homogeneous rGO dispersion.

3.4. Preparation of N-GQDs

N-GQDs were synthesized by one-step hydrothermal synthesis method [66–68]. Ini-
tially, 40 mg of 1-aminopyrene was dissolved in 20 mL of ammonia solution (0.4 M). The
resulting mixture was transferred into a polytetrafluoroethylenelined autoclave (50 mL
capacity) and subjected to a high-pressure reaction at 200 ◦C for 8 h. Upon completion
of the reaction, the solution was filtered through a 0.22 µm membrane to remove large
particles. Subsequently, the filtrate was dialyzed using a dialysis bag with a molecular
weight cut-off of 500 Da for 24 h to remove the unreacted small molecules. Finally, the
dialysate was freeze-dried to obtain the NGQDs.

3.5. Preparation of AuNPs/N-GQDs@rGO/GCE

rGO (1 mL) and N-GQDs (200 µL) dispersions were mixed, ultrasonicated for 2 h,
centrifuged (12,000 rpm, 30 min), and washed with ethanol/water to obtain N-GQDs@rGO.
The glassy carbon electrode (GCE) was polished with 0.3 and 0.05 µm alumina slurry,
nitric acid (50%), anhydrous ethanol, and ultrapure water sequentially to remove residual
alumina particles. After sonication, the GCE was dried with nitrogen gas for subsequent
use. Subsequently, 4 µL of the N-GQDs@rGO composite solution was drop-casted onto the
GCE surface, and dried at 60 ◦C to obtain the N-GQDs@rGO-modified GCE (denoted as
N-GQDs@rGO/GCE). AuNPs were electrodeposited by immersing the modified GCE in a
0.5 mM HAuCl4 solution at −0.5 V for 2 s, followed by rinsing and storage at 4 ◦C.

3.6. Construction of Label-Free Electrochemical Immunosensors BSA/Ab/AuNPs/N-GQDs@rGO/GCE

4 µL anti-CEA antibody (Ab, 1 µg/mL) was drop-casted onto the surface of the
AuNPs/N-GQDs@rGO/GCE and incubated at 4 ◦C for 45 min to ensure stable immo-
bilization of Ab on the GCE surface. Following incubation, the resulting electrode was
gently rinsed with PBS (0.1 M, pH 7.0) to remove unbound substances. Subsequently, to
block the active sites on the electrode surface and reduce nonspecific adsorption, 4 µL BSA
(0.1 mg·mL−1) was coated on the surface of Ab/AuNPs/N-GQDs@rGO/GCE at 4 ◦C for
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60 min. After rinsing with PBS (0.1 M, pH 7.0), the immunosensor was achieved, designated
as the BSA/Ab/AuNPs/N-GQDs@rGO/GCE, and stored at 4 ◦C.

4. Conclusions
In summary, an AuNPs/N-GQDs@rGO ternary nanocomposite was successfully

pre-pared and employed as a kind of electrode-modified material on the GCE surface to
construct a sensitive electrochemical immunosensor for enhanced electrochemical detection
performance for CEA. Such AuNPs/N-GQDs@rGO nanocomposites display a large surface
area, good conductivity and high electrocatalytic capacity, abundant functional sites, facile
modification capacity, and robust stability. By a simple covalent modification of the CEA-
specific antibody on the conductive AuNPs/N-GQDs@rGO/GCE surface, the proposed
AuNPs/N-GQDs@rGO/GCE-based electrochemical immunosensor enables the selective
and sensitive determination of CEA with a broad detection linear range and a satisfactory
LOD of 0.13 pg/mL. Moreover, the direct and accurate analysis of CEA in fetal bovine serum
samples has been realized by the developed electrochemical immunosensor, which can be
expected to aid in the preparation of various tumor biomarkers and further integrated with
smart chips for significant applications in the clinical diagnosis of diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules30061347/s1, Figure S1: Photograph of rGO and N-
GQDs@rGO dispersions after the storage of three months.
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