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SUMMARY

Population-level disease risk across a set of non-overlapping areal units varies in space and time, and
a large research literature has developed methodology for identifying clusters of areal units exhibiting
elevated risks. However, almost no research has extended the clustering paradigm to identify groups of
areal units exhibiting similar temporal disease trends. We present a novel Bayesian hierarchical mixture
model for achieving this goal, with inference based on a Metropolis-coupled Markov chain Monte Carlo
((MC)3) algorithm. The effectiveness of the (MC)3 algorithm compared to a standard Markov chain Monte
Carlo implementation is demonstrated in a simulation study, and the methodology is motivated by two
important case studies in the United Kingdom. The first concerns the impact on measles susceptibility of
the discredited paper linking the measles, mumps, and rubella vaccination to an increased risk of Autism
and investigates whether all areas in the Scotland were equally affected. The second concerns respiratory
hospitalizations and investigates over a 10 year period which parts of Glasgow have shown increased,
decreased, and no change in risk.

Keywords: Health inequalities; Metropolis-Coupled Markov chain Monte Carlo ((MC)3) simulation; Space-time
disease mapping; Trend estimation.

1. INTRODUCTION

Population-level disease risk varies between communities due to variation in factors such as air pollution
concentrations and smoking rates, while temporal trends can be affected by public health interven-
tions and health scares. Spatial variation in disease risk is known as a health inequality, with more
affluent communities typically exhibiting lower disease risks compared to more impoverished ones
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(Mackenbach and others, 1997). Health inequalities are recognized internationally as a key public health
challenge (World Health Organisation, 2013) and have gained political traction in the United Kingdom
following the Marmot review (Marmot, 2010). They can be quantified by modeling small-area population-
level disease incidence data, which enables policy-relevant questions to be answered, such as: which areas
exhibit elevated risks and increased risk trends compared to their geographical neighbors; and, does a
health scare have the same impact on disease risk in all socio-economic groups in society? A wide range
of statistical models have been proposed for modeling spatio-temporal variation in disease risk, with the
most popular models including those proposed by Bernardinelli and others (1995) and Knorr-Held (2000).

One popular goal in modeling small-area disease data is the identification of clusters of areas exhibit-
ing elevated risks compared with their geographical neighbors, and a number of approaches have been
proposed including Knorr-Held and Rasser (2000), Charras-Garrido and others (2013), and Wakefield
and Kim (2013) in a spatial context, while Lee and Lawson (2016) extended this to the spatio-temporal
setting. While a number of models have been developed for estimating area specific temporal trends (e.g.
Bernardinelli and others, 1995; MacNab and Dean, 2001), little research has extended the clustering par-
adigm to group areas together that exhibit similar temporal risk trends. Heard and others (2006), Lawson
and others (2010), Choi and others (2011), and Jiang and Serban (2012) propose clustering methodology
to group areas together based on sharing common latent temporal trends, but the resulting trends are not
shape constrained, as they are represented by spline basis functions or autoregressive processes. Therefore,
two or more of the estimated trend functions could be similar, resulting in two areas from different trend
clusters exhibiting very similar trends. At the other extreme, Anderson and others (2016) augment the
linear trends model of Bernardinelli and others (1995) with a clustering mechanism, but this restricts all
the trends to be linear.

Therefore, we propose a novel Bayesian spatio-temporal mixture model for clustering areas based
on their temporal trends, where the candidate trend functions have fixed parametric forms (e.g. linear,
step-change) or constrained shapes (e.g. monotonically increasing). The use of fixed or shape-constrained
trends is beneficial for two reasons. Firstly, it allows the user to test specific hypotheses about the data
being modeled, for example by including a change point trend to determine which areas were affected by a
health scare. Secondly, by choosing different shapes for the candidate trends it overcomes the identifiability
problem of areas in two supposedly different clusters actually having very similar estimated trends. The
choice of the trend functions will be problem specific, and will depend on the temporal patterns in
the data, a priori knowledge about the context of the data, and the goals of the analysis. Our model
is presented in Section 3, while its clustering performance is assessed by simulation in Section 4. The
methodology is motivated by two important public health case studies in the United Kingdom, namely
measles susceptibility and respiratory hospitalizations, which are presented in Sections 2 (exploratory
analysis) and 5 (results). Finally, Section 6 concludes the article.

2. MOTIVATING CASE STUDIES

Our methodology is motivated by two important public health case studies in the United Kingdom, and
in both cases our goal is to cluster areas together that share common disease risk trends. Thus, we do not
include any covariates in the modeling as then any trends would be in the residual risk after covariate
adjustment.

2.1. Case study 1—measles susceptibility in Scotland

In 1998, Wakefield and others (1998) linked the measles, mumps, and rubella (MMR) vaccine with an
increased risk of autism, and the resulting media coverage resulted in vaccination rates dropping to around
80% in 2003 in parts of the United Kingdom (McIntyre and Leask, 2008). These reduced rates were felt in
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2013, when a large outbreak of measles occurred in the United Kingdom (Pollock and others, 2014). The
article by Wakefield and others (1998) was partially retracted in 2004, before being fully discredited in
2010 after multiple epidemiological studies failed to find any association with an increased risk of autism
(e.g. Elliman and Bedford, 2007).

The MMR vaccine was introduced in Scotland in 1998, and vaccination records were recorded in the
Scottish Immunisation & Recall System (SIRS). The data were provided by Health Protection Scotland
and relate to children eligible to attend pre-school (aged between 2.5 and 4.5 years) from non-overlapping
2-year birth cohorts between 1998 and 2014. Thus, we have data for N = 9 time periods (2-years apart)
for the set of K = 1235 intermediate zones (IZ) across Scotland (average population around 4000), which
is an administrative geography for distributing small-area statistics. The data comprise the number of
children susceptible to measles Ykt , and the total number of children Nkt , for the kth IZ and tth time period.
An exploratory measure of risk is the proportion susceptible θ̂kt = Ykt/Nkt , where susceptibility is based
on the receipt of one or two vaccinations that each have a 10% failure rate.

The spatial patterns and temporal trends in {θ̂kt} are displayed in Appendix A of the supplementary
material available at Biostatistics Online, and temporally there appears to be an increase in susceptibility
between 1998 and 2004 before a decrease in subsequent years. The existence of such a change point in
2004 is reinforced by our prior knowledge about the date of the partial retraction of the Wakefield paper,
as well as the work of Napier and others (2016) which showed that the Scotland-wide average trend
also contained a change point in 2004. Here, we extend that earlier analysis and estimate whether: (i) all
IZs exhibited a change point in measles susceptibility or whether some showed no effect of the articles’
retraction; and (ii) did the change point occur in 2004 for all IZs, or was it earlier or later for some?
Therefore, we consider two types of candidate trends in the modeling, linear (increasing, decreasing, and
constant) trends indicating no change point, and change point trends with different times for the change
point.

2.2. Case study 2—Respiratory hospital admissions

Respiratory disease is the second most common cause of death in Scotland behind cancer
(http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates), and in this study, we focus
on the Greater Glasgow and Clyde health board because Glasgow is one of the unhealthiest cities in
Europe (Gray and others, 2012). We have yearly data for N = 10 years between 2002 and 2011 for the
K = 271 IZ that make up the health board. For the kth IZ and tth year, Ykt denotes the number of hospital
admissions with a primary diagnosis of respiratory disease (International classification of disease 10th
revision codes J00–J99), but this depends on the size and demographic structure of the population in each
IZ and year. This is accounted for by computing the expected number of admissions Ekt using indirect
standardization, based on national age and sex specific hospitalization rates. An exploratory measure of
disease risk is the standardized morbidity ratio (SMR) computed as θ̂kt = Ykt/Ekt , where a value of 1.2
corresponds to a 20% elevated risk compared to the Scottish average.

The spatial pattern and temporal trends in SMR are displayed in Appendix A of the supplementary
material available at Biostatistics Online, and the latter again highlights what types of trends are likely
to be present in the data. The temporal trend figure shows no clear temporal trends, as some IZs show
an increased risk while others show a decreased risk. The magnitude of the health inequalities appears to
change little over the 10 year period, as the variation in the SMR in 2002 is similar to that in 2011, with
standard deviations of 0.33 and 0.31, respectively. Our key motivating questions for these data are: (i)
which areas exhibit an increase, a decrease, or no change in risk over the 10 year period and (ii) how have
these changes in risk impacted upon health inequalities. To answer these questions, we consider three
candidate trend functions: an increasing trend, a decreasing trend, and no change, and we compare linear
and non-linear trends and assess the sensitivity of the results to this choice.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
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3. METHODOLOGY

We propose a novel spatio-temporal mixture model for clustering areas based on their temporal trends,
which differs from space–time risk models such as Knorr-Held (2000) that do not identify any clusters in
the data. Inference is based on a Bayesian setting via a Metropolis-coupled Markov chain Monte Carlo
(MC)3 algorithm. The model and inferential algorithm are described in Sections 3.1 to 3.3, while other
risk models applied to our data are defined in Section 3.4.

3.1. Model specification

The study region is partitioned into k = 1, . . . , K areal units, and data are available for t = 1, . . . , N time
periods. Letting (Ykt , Okt) respectively denote the response variable and offset (e.g. ln(Ekt) in case study
2) in area k and time period t, the general model is given by:

Ykt ∼ p(ykt|μkt), k = 1, . . . , K , t = 1, . . . , N ,

g(μkt) = Okt + x�
ktβ + φk +

S∑
s=1

ωksfs(t|γ s).
(3.1)

The model has a generalized linear model form with data likelihood p(ykt|μkt), mean μkt , and link
function g(μkt). In case study 1, the binomial model Ykt ∼ Binomial(Nkt , θkt) with logit link function
g(θkt) = ln(θkt/(1 − θkt)) is appropriate for the non-rare measles susceptibility outcome, while for case
study 2, the Poisson model Ykt ∼ Poisson(Ektθkt) with log link function g(θkt) = ln(θkt) is appropriate
for the rare hospitalization outcome. The spatio-temporal pattern in μkt is modeled by the offset Okt , a
p × 1 vector of covariates xkt (if required) with parameters β = (β1, . . . ,βp), a spatial component φk

common to all time periods, and a clustering model
∑S

s=1 ωksfs(t|γ s) for assigning each area to one of
S temporal trends (f1(t|γ 1), . . . , fS(tγ S)). The regression parameters are assigned the weakly informative
prior βj ∼ N(0, 1000). As the aim of the model is to cluster areas based on their overall temporal trends,
we have not included temporally varying random effects in the model, because this would mean that the
trend functions would then capture the residual trends after adjusting for these random effects.

3.1.1. Overall spatial pattern The spatial pattern in risk φ = (φ1, . . . ,φK) common to all time periods is
modeled using the conditional autoregressive (CAR) prior proposed by Leroux and others (2000), which
uses a K × K neighborhood matrix W to define spatial closeness. Here element wkj = 1 if areas (k , j)
share a common border, otherwise wkj = 0 and wkk = 0 ∀ k . This implies that pairs of areas for which
wkj = 1 are modeled as autocorrelated, whilst pairs of areas where wkj = 0 are modeled as conditionally
independent. The CAR prior is given by

φk |φ−k ,W, ρ, τ 2 ∼ N

(
ρ
∑K

j=1 wkjφj

ρ
∑K

j=1 wkj + 1 − ρ
,

τ 2

ρ
∑K

j=1 wkj + 1 − ρ

)
, (3.2)

where φ−k = (φ1, . . . ,φk−1,φk+1, . . . ,φK). The strength of the spatial autocorrelation is controlled
by ρ, with ρ = 1 corresponding to the intrinsic CAR model of Besag and others (1991) for
strong spatial autocorrelation, while ρ = 0 corresponds to independence as φk ∼ N(0, τ 2).
We assign a uniform prior for ρ, that is ρ ∼ Uniform(0, 1), while an Inverse-Gamma prior is
placed upon the spatial variance parameter τ 2 ∼ Inverse-Gamma(a = 1, b = 0.1), following
(https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations).

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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3.1.2. Mixture model for the trends The model clusters areas according to their temporal trends via the
mixture component

∑S
s=1 ωksfs(t|γ s), where the S trends (f1(t|γ 1), . . . , fS(tγ S)) are chosen by the user.

Area k is assigned to one of the S candidate trends via the binary indicator variables ωk = (ωk1, . . . ,ωkS),
where ωks = 1 if area k is assigned to trend s and is zero otherwise, and

∑S
s=1 ωks = 1 for all k . Therefore,

we specify the following multinomial prior distribution for ωk :

ωk = (ωk1, . . . ,ωkS) ∼ Multinomial(1; λ), (3.3)

λ = (λ1, . . . , λS) ∼ Dirichlet(α = (α1, . . . ,αS)).

The region-wide probabilities associated with each temporal trend are denoted by λ = (λ1, . . . , λS), and
a conjugate weakly informative Dirichlet prior distribution is placed upon these probabilities, whereαi = 1
for i = 1, . . . , S. The trend indicators ωk are modeled as independent rather than spatially autocorrelated
because spatial autocorrelation in the data is already modeled by φ, and additionally, we want the data to
determine the clustering of the areas to trends rather than a priori encouraging geographically neighboring
areas to exhibit the same trends. During the (MC)3 algorithm different values of ωk will be sampled, which
allows the computation of the posterior probability that each area is assigned to each trend. We use the
maximum a posteriori rule for classifying an area to one of the S trends (also used by Lawson and others,
2012), because it allows a hard classification of an area to a single trend.

3.2. Choice of trend functions

The choice of which and how many trend functions to include in the model will be made by the user
and depend on a number of considerations, including: the motivating question being addressed; prior
knowledge about any events that may induce specific trends into the data [e.g. the retraction of the
Wakefield and others (1998) article for the MMR example introducing a change point]; and visually
examining plots of risk trends in the raw data (e.g. sample proportions or SMRs). One constraint is that
the trends included should be different from each other, as we have found that including two similar
trends leads to areas swapping between these trends, resulting in a poor cluster identification and label
switching. An implication of this is that including two or more unconstrained trends, such as random
walks, is inappropriate as their estimated shapes could be similar to each other. Therefore, we recommend
either fixed parametric trends or shape-constrained smooth functions such as those proposed by Pya and
Wood (2015). Below, we describe the trends we use in the two case studies.

Case study 1—Our goal is to determine which IZs exhibit a change point in measles susceptibility, or
whether some IZs showed no effect of the articles’ retraction. Therefore, we compare the following
linear (no effect) and change point trends.

(1) Constant: f (t) = 0.
(2) Linear: f (t|γ ) = γ t, which via the prior specification can be constrained to be increasing (via

γ ∼ N(0, 1000)I[γ > 0]) or decreasing (via γ ∼ N(0, 1000)I[γ < 0]), where I[.] denotes an
indicator function.

(3) Known change point: f (t|γ ) = γ1t + γ2(t − t∗)+, where t∗ denotes the known change point, and
(t − t∗)+ = t − t∗ if t − t∗ > 0, and is zero otherwise. Different shapes can be specified via the
choice of prior distribution for (γ1, γ2), and from our exploratory analysis we constrain the trend
to increase and then decrease.

Note that (3.1) includes an intercept term β1, which is why no intercept terms are included in the
trends above. Also, we can include two linear trends in the same model because they are respectively
constrained to be increasing and decreasing, whereas including two unconstrained linear trends may
lead to the identification problems outlined above.
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Case study 2—Our goal is to determine which IZs exhibit increasing, decreasing or no change in respi-
ratory hospitalization rates, which motivates the use of three trend functions. Initially, we included a
no-change function ((1) from above) and linear increasing and decreasing trends ((2) from above), but
we also consider replacing the linear trends with the following more flexible monotonic alternatives.

(4) Monotonic cubic splines: f (t|γ ) = γ0t + ∑q
j=1 γj(t − t∗j )

3
+, which unlike the previous exam-

ples allows the shape of the trends to be estimated from the data. Here, q is the number of
knots and controls the wiggliness of the estimated trend. To ensure monotonicity, the coeffi-
cients (γ0, γ1, . . . , γq) are constrained to be positive or negative for monotonically increasing
and decreasing trends, respectively, using the same half normal priors outlined above.

3.3. Inference

Inference in a Bayesian setting is typically based on either Markov chain Monte Carlo (MCMC) simulation
or Integrated Nested Laplace Approximations (INLA, Rue and others, 2009), and the latter has become
increasingly popular in spatio-temporal modeling (see Lawson and others, 2014; Lee and Mitchell, 2014)
thanks to the R-INLA package and the excellent book by Blangiardo and Cameletti (2015). However,
while R-INLA is able to fit a wide range of spatio-temporal models, such as that proposed by Knorr-Held
(2000), it is not able to fit the model proposed here which contains a clustering model to group areas
together based on shared trends.

Therefore, we initially developed an MCMC simulation algorithm for model fitting using a combination
of Gibbs sampling and random walk Metropolis steps. However, this algorithm performed poorly (see
Section 4) and often got trapped in a local mode, which is due to the multimodality issues inherent in fitting
mixture models in a Bayesian setting using MCMC simulation (see Atchadé and others, 2011; Altekar and
others, 2004). To overcome this, we developed a (MC)3 algorithm, which runs multiple Markov chains
in parallel and then couples the chains together to prevent them from becoming stuck in a local rather
than a global mode. The parallel chains are run at different ‘temperature’ levels, where the higher the
temperature level the more likely a chain is to accept a proposed move, thus potentially making larger
jumps between the multiple modes around the target distribution. This is known as parallel tempering.
Full details of our (MC)3 algorithm are presented in Appendix B of the supplementary material available
at Biostatistics Online.

Our inferential algorithms are implemented in R and C++ (via the Rcpp package) and exploit
computationally efficient mathematical forms such as triplet form for W. Their computational com-
plexities are summarized in Appendix C of the supplementary material available at Biostatistics
Online for a range of data sizes, which illustrates the scalability of our methodology to large
data sets. Software to fit our model together with the respiratory hospitalization data are provided
at https://github.com/GNapier/SpaceTimeClusteringDiseaseTrends to make the
results reproducible. However, the measles susceptibility data cannot be provided due to the agreement
with the data provider.

3.4. Competitor models

In the real data studies in Section 5, we compare the model proposed above in terms of overall model fit
to two different competitor models. Both models have the general form

Ykt ∼ p(ykt|μkt), k = 1, . . . , K , t = 1, . . . , N ,

g(μkt) = Okt + x�
ktβ + ζkt .

(3.4)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://github.com/GNapier/SpaceTimeClusteringDiseaseTrends
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Here the spatio-temporal structure is modeled by ζkt , and the first model we consider is similar to the
main effect and interaction model proposed by Knorr-Held (2000) and is given by ζkt = φk + δt + ψkt .
Here, φk is a spatial main effect modeled with the CAR prior proposed by Leroux and others (2000) and
given by (3.2), while δt is a temporal main effect also modeled by the CAR prior proposed by Leroux and
others (2000). Finally, the space–time interaction terms are modeled by ψkt ∼ N(0, σ 2) and correspond
to the type I interaction term suggested by Knorr-Held (2000). This model differs from the proposal of
Knorr-Held (2000) in that Leroux rather than BYM (Besag and others, 1991) CAR priors are used for
(φk , δt), because this provides a closer comparison to model (3.1).

The second model we consider for case study 2 has area-specific linear temporal trends and is similar
to that proposed by Bernardinelli and others (1995) and is given by ζkt = φk + δk t. Here, (φk , δk) are
the intercept and slope for area k and are both modeled by the Leroux CAR prior. Both models are fitted
using MCMC simulation via the R package CARBayesST rather than INLA, because it allows a fairer
comparison with our simulation based inference used for model (3.1).

4. SIMULATION STUDY

We conduct a simulation study to quantify our model’s ability to correctly cluster areas based on their
temporal trends, as well as comparing the performance of the (MC)3 algorithm proposed here against a
standard MCMC algorithm using Metropolis and Gibbs updating steps.

4.1. Data generation

The study region is the K = 271 IZ that make up the Greater Glasgow & Clyde health board (the study
region for case study 2), and each simulated data set is generated on this region for N = 9 time periods (as
in case study 1). We consider the Poisson log-linear variant of model (3.1) in this study because it aligns
with case study 2, and the exact model specification is presented in Appendix D of the supplementary
material available at Biostatistics Online. In all simulations, we generate data with S = 4 temporal trends:
constant; linearly increasing; linearly decreasing; and a change point trend; which are the ones used in
case study 1. We consider the four different simulation scenarios labeled (i) to (iv) in Figure 1, which have
different levels of separations between the four trends. Scenario (i) corresponds to the biggest differences
between the four trends and should be the easiest for correct clustering, where as in scenario (iv) the four
trends are much more similar making clustering much harder. Within each of the four scenarios (i) to (iv)
we consider three different allocation mechanisms of areas to trends via different inclusion probabilities
λ = (λ1, λ2, λ3, λ4), where λ1 is a constant, λ2 is a linearly increasing, λ3 is a linearly decreasing, and λ4

is a change point trend. The three different allocation mechanisms are:

• (A) on average equal numbers of areas assigned to each trend—λ = (0.25, 0.25, 0.25, 0.25);

• (B) all areas have a linearly decreasing trend—λ = (0, 0, 1, 0); and

• (C) on average unequal numbers of areas assigned to each trend—λ = (0.5, 0.1, 0.2, 0.2).

Mechanism (B) allows us to assess model performance when a user includes trends in the model that are
unnecessary. We generate 100 simulated data sets under each of the 12 scenario and allocation mechanism
combinations, and fit model (3.1) with both the (MC)3 and MCMC algorithms in each case. Inference is
based on 1000 samples, which are obtained by generating 60 000 samples and removing the first 50 000
as burn-in and thinning the remaining 10 000 by 10 to reduce the autocorrelation.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
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Fig. 1. The true trends used in the four scenarios of the simulation study.

4.2. Main results of the simulation study

The main results of the simulation study are presented in Figures 2 (scenarios (i) and (ii)) and 3 (scenarios
(iii) and (iv)), which display histograms of the correct classification percentages (i.e. the percentage of
areas allocated to the correct trend function) across the 100 simulated data sets. For each scenario the left,
middle, and right columns represent allocation mechanisms (A) to (C) respectively, while the results for
the (MC)3 algorithm are in the top row whilst those for the MCMC algorithm are in the bottom row. The
numbers above each plot summarize the correct classification distributions, via the overall (all 100 data
sets) correct classification percentages and the lowest and highest values for a single simulated data set.

Overall, allocation (B) proved to be the easiest to classify using both the (MC)3 and MCMC algorithms,
with almost 100% correct classification rates in all cases. This is likely to be because it only has one trend
present in the data, making it easier to identify. For allocations (A) and (C) when more than one trend
is present the (MC)3 algorithm performs uniformly well, with overall classification probabilities ranging
between 89.15% and 99.46% in all cases. In contrast, the MCMC algorithm generally performs poorer,
with overall classification probabilities ranging between 78.53% and 93.79%. Furthermore, the (MC)3

algorithm correctly classified over 80% of areas in an individual data set 95.5% of the time across all
allocations (A) and (C), which compares to only 79.1% for the MCMC algorithm.

The MCMC algorithm exhibited poorest performance when the trends were most different (scenario
(i)), which is likely to be because it got stuck in a local mode in the multimodal posterior distributions.
Thus, its performance improved as the trends became more similar in scenarios (ii) and (iii), although
by scenario (iv) the trends are very similar which makes the clustering harder. In contrast, the (MC)3

algorithm exhibits its worst performance in scenario (iv) when the trends are most similar, which is to be
expected. However, the (MC)3 algorithm also performs slightly less well in scenario (i) compared with
scenario (ii) despite the trends being more different in scenario (i), which again may suggest that for a
small number of simulated data sets it struggles to move between the modes in the multimodal posterior
distributions. This problem is far less pronounced however for the (MC)3 algorithm compared with the
MCMC algorithm, as the histograms of the correct classification probabilities in Figure 2 evidence.

4.3. Further results from the simulation study

The results above show that fitting model (3.1) with the (MC)3 algorithm has excellent clustering ability
across the range of scenarios considered, where as fitting with the MCMC algorithm gives less reliable
performance. However, once the clustering of areas to temporal trends has been undertaken, interest lies
in the magnitude and shape of the trends via the estimated (β, γ ) parameters. The accuracy of these
parameter estimates, and hence the accuracy of the estimated trends, are summarized in Appendix D of
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Fig. 2. Histograms showing the percentage of areas allocated to the correct trend for each simulated data set in
scenarios (i) (top) and (ii) (bottom). In each case, the top row relates to the (MC)3 algorithm, and the bottom row
relates to the standard MCMC algorithm. The numbers give the overall (all 100 data sets) correct classification
percentages and the lowest and highest values for a single data set.
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Fig. 3. Histograms showing the percentage of areas allocated to the correct trend for each simulated data set in
scenarios (iii) (top) and (iv) (bottom). In each case, the top row relates to the (MC)3 algorithm, and the bottom
row relates to the standard MCMC algorithm. The numbers give the overall (all 100 data sets) correct classification
percentages and the lowest and highest values for a single data set.
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the supplementary material available at Biostatistics Online and again shows that the (MC)3 algorithm
generally performs best. Finally, the simulation study has thus far fitted each model based on the assumption
that all of the true trends observed in the data are included in model (3.1), which may not be realistic.
Therefore Appendix D of the supplementary material available at Biostatistics Online presents the results
from repeating the simulation study and fitting model (3.1) without the linearly decreasing trend, to see
what happens when one of the true trends is omitted.

5. RESULTS OF THE CASE STUDIES

Inference for the clustering model is based on the (MC)3 algorithm, because the simulation study showed
it outperformed the simpler MCMC alternative. To enable a comparison of overall model fit, we apply the
two competitor models outlined in Section 3.4, although we note that these models cannot undertake any
clustering of the areas as our model can. These competitor models are fitted using MCMC simulation via
the R package CARBayesST for consistency with the MCMC inferential approach utilized here, although
INLAs could also be used.

5.1. Case study 1 results

The binomial logistic variant of model (3.1), Ykt ∼ Binomial(Nkt , θkt), is used to model the number of
children susceptible to measles Ykt in area k and 2-year time period t, where θkt denotes the probability
of being susceptible. Our questions of interest are: (i) did all IZs exhibit a change point in measles
susceptibility as a result of the retraction of the Wakefield and others (1998) article in 2004; and (ii) did
the change point occur in 2004 for all IZs, or was it earlier or later for some? To answer these questions
we fit models with a change point trend (increasing then decreasing) as well as constant, linear increasing
and linear decreasing trends, the latter three corresponding to no effect of the retraction of the Wakefield
paper on measles susceptibility. To assess the sensitivity of the results to the choice of change point we fit
three different models, where the change point is at: (A) 2002, (B) 2004, and (C) 2006. Additionally, to
answer question (ii) we fit a fourth model (D) with two change point trends in 2004 and 2006. Inference
for this study was based on 10 000 MCMC samples, which were generated by burning in each chain for
200 000 samples and then thining the next 100 000 samples by 10 to reduce their autocorrelation.

The overall fit of each model is summarized by the Watanabe-Akaike Information Criteron (WAIC,
Watanabe, 2010), which together with the effective number of independent parameters (in brackets) are
given by: (A) 53 780 (801), (B) 52 708 (490), (C) 53 481 (757), and (D) 52 720 (497). Model (B) fits the
data best, which agrees with our prior knowledge that the retraction of the Wakefield paper occurred in
2004. Additionally, model (D) which includes a second change point to model (B) does not reduce the
WAIC further, suggesting that having the 2004 change point alone best fits the data (none of the IZs were
assigned to the 2006 change point trend in Model (D)). For a comparison of overall model fit, the model
similar to that proposed by Knorr-Held (2000) and outlined in Section 3.4 has a WAIC of 52 554 (420),
which suggests that it fits the data slightly better than the mixture model proposed here. However, it does
not allow the areas to be clustered based on shared temporal trends.

For model (B), the best fitting clustering model, 1233 of the 1235 IZs are allocated to the trend with
a change point in 2004, whilst the remaining two IZs have a constant trend. The posterior probabilities
that those areas are allocated to the 2004 change point range between 0.34 and 1, with a median posterior
classification probability of 0.99. In contrast, the two areas assigned to the constant trend were done so
with probabilities 0.34 and 0.36, respectively, so there is large uncertainty in their classifications. The
allocations of areas to trends for models (A) to (C) are similar and are presented in Appendix E of the
supplementary material available at Biostatistics Online.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
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Fig. 4. The estimated temporal trends and 95% credible intervals (dotted lines) from the measles susceptibility (top)
and respiratory hospitalization (bottom) case studies.

The estimated trend functions in model (B) are displayed in the top panel of Figure 4, where the
increasing and decreasing trends are not shown as no IZs were allocated to them. The trends are plotted on

the scale of the proportion of pre-school children susceptible to measles, that is θ̂t = exp
(
β̂1+f̂s(t|γ̂ s)

)
1+exp

(
β̂1+f̂s(t|γ̂ s)

) . The

figure shows an increase in susceptibility from 0.147 to 0.169 between 1998 and 2004 before a decrease
in subsequent years, with susceptibility at its lowest (0.079) in 2014. These results suggest that almost all
areas were affected by the retraction of the Wakefield article in 2004, as only two IZs were not classified
to the 2004 change point trend. As a result, it suggests that in this case fitting a single change point trend
model for all areas would likely fit the data nearly as well as our clustering model.
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5.2. Case study 2 results

The Poisson log-linear variant of model (3.1), Ykt ∼ Poisson(Ektθkt), is used to model the number of
respiratory hospital admissions Ykt in IZ k and year t, where θkt is the risk of hospitalization relative to
Ekt . Our aim is to determine which areas in Greater Glasgow have exhibited an increased risk of disease,
which have exhibited a decreased risk, and which have showed no change over the 10-year study period,
as well as estimating what impact these changes have had on health inequalities. Therefore we fit S = 3
trends in this model, a monotonic increase, a monotonic decrease, and no change. To assess the sensitivity
of the results, we fit three separate models: (A) linear trends, (B) monotonic trends with 1 internal knot,
and (C) monotonic trends with two internal knots; with only 1 or 2 evenly spaced knots considered due
to a small number of time points. Inference for this study was based on 10 000 MCMC samples, which
were generated by burning in each chain for 100 000 samples and then thining the next 100 000 samples
by 10 to reduce their autocorrelation.

The WAIC and the effective number of independent parameters (in brackets) for the three models are:
(A) 21 649 (829), (B) 21 625 (818), and (C) 21 620 (814), suggesting that all three models exhibit similar
fits to the data. For comparison, the main effect and interaction model outlined in Section 3.4 has a WAIC
of 20 349 (1006), while the area specific linear trends model has a WAIC of 21 126 (634). Thus both these
models fit the data slightly better than the mixture model proposed here, but do not allow any clustering
of areas based on shared temporal trends.

The bottom panel of Figure 4 displays the estimated temporal trends and 95% credible intervals on the

risk scale, namely θ̂t = exp
(
β̂1 + f̂s(t|γ̂ s)

)
, where the three components of the figure show estimates from

the linear (A) and monotonic ((B) and (C)) trend models. Models (B) and (C) show almost no curvature and
linear lines fit easily within the 95% credible intervals, which re-enforces the similarity in their model fits
observed above. The allocation of the 271 IZs to the 3 temporal trends shows little sensitivity between the
three models, with pairwise agreement ranging between 96.3% and 98.5% (details are given in Appendix
E of the supplementary material available at Biostatistics Online). Just under half of the areas are allocated
to the constant trend suggesting no change in the risk of respiratory hospitalization over time, with the
remaining areas almost equally assigned between the increasing and decreasing risk trends. These equal
numbers reflect the raw data plot presented in Appendix A of the supplementary material available at
Biostatistics Online, which shows similar levels of spatial variation in the left and right ends of the plot.
The spatial standard deviations in the estimated risk θ̂kt are 0.30 in both 2002 and 2011, which suggest
that the magnitude of the health inequalities are unchanged over the 10-year period.

Finally, the spatial classification of areas to the three trends and the posterior classification probabilities
are displayed in Figure 5, where the results relate to the spline trend with q = 2 internal knots. The
left panel shows the posterior probability that each area is assigned to each trend, with the three parts
of that figure grouping areas according to their maximum a posteriori trend. The figure shows there
is relatively little posterior uncertainty in the classifications for areas assigned to the increasing and
the decreasing trends, with classification probabilities between 0.5 and 1 and the remaining posterior
probability share being mainly taken by the constant trend. In contrast, the classifications of areas to the
constant trend are much more uncertain, with probabilities mostly lying between 0.5 and 0.75, with the
remaining probability shared equally between the increasing and decreasing trends. This is likely because
the constant trend is the middle of the three possibilities, hence the greater uncertainty. The map in the right
panel of Figure 5 shows the spatial classification, where the darker the shading the higher the posterior
classification probability. For example, the darkest shading indicates that the posterior probability for
that trend was above 0.75. Interestingly, the map shows spatial grouping of the trends, with areas north-
east of the river Clyde typically showing an improvement in terms of risk while areas south-east of
the river predominantly exhibit increased levels of risk. This spatial clustering was not enforced by the
model, but one also observes that many pairs of neighboring areas that exhibit different trends (e.g.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy024#supplementary-data
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Fig. 5. The left panel shows the posterior probabilities that each area (given on x-axis) is assigned to each trend, while
the right panel shows the classification based on the maximum a posteriori probabilities. For the latter, the darker
the shading the higher the posterior probability for that trend. All results are from the model with a spline trend with
q = 2 knots.

increasing and decreasing), suggesting that enforcing spatial clustering would not have been appropriate
here.

6. DISCUSSION

We have presented a novel spatio-temporal mixture model for clustering areas based upon shared paramet-
ric or shape-constrained temporal trends, which allows specific hypotheses to be tested about the data under
study. As the main goal of our model was to identify groups of areas that exhibit similar temporal trends,
our approach is complementary and not in competition with other space–time models such as Knorr-Held
(2000) and Bernardinelli and others (1995), whose primary aims are spatio-temporal risk estimation rather
than trend-based clustering. Existing approaches for trend-based clustering such as Choi and others (2011)
have been based on unconstrained forms such as random walks, but this could result in two or more of
the estimated trends having similar shapes, reducing the utility of the clustering. We used the maximum
a posteriori rule for choosing which of the S trends an area is allocated to because it produces a hard
classification, and the simulation study in Section 4 showed this performs well across a range of scenarios.
This study also showed the utility of the (MC)3 model fitting algorithm we have developed, which con-
sistently outperformed a simpler MCMC alternative. The model, together with the data for case study 2,
are available at https://github.com/GNapier/SpaceTimeClusteringDiseaseTrends
to make this research reproducible.

The key insight from the measles susceptibility case study is that there was a consistent Scotland-wide
effect of the retraction of the Wakefield and others (1998) paper in 2004, with all but two of the IZ being
assigned to the change point trend. Between the articles publication in 1998 and its retraction in 2004 this
trend showed around a 2.2% increase in measles susceptibility, rising from 14.8% in 1998 to a peak of
17% in 2004. Following the retraction of the article the measles susceptibility rate has continued to fall,
being at an all-time low in 2014 of 7.9%. Thus it seems that while there is spatial variation in the rates of
measles susceptibility, the temporal trends are very consistent showing little between IZ variation across
Scotland.

The key insight from the respiratory hospitalizations case study is that the level of health inequality
across the Greater Glasgow & Clyde health board has hardly changed from 2002 to 2011, with estimated
spatial standard deviations in risk of 0.30 in both 2002 and 2011. Furthermore, just under half of the IZ

https://github.com/GNapier/SpaceTimeClusteringDiseaseTrends
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have shown no change in the risk of admission over the 10-year time period, with the remaining 50%
of areas being almost equally divided into increasing and decreasing trends. However, most of the areas
that exhibited an increased risk are in the south of Glasgow, where as most of the decreased risks are in
the north of the city. This city-wide north–south divide is an interesting finding, and the National Health
Service Scotland will be interested in understanding the reasons for this phenomenon.

The methodological framework outlined here has allocated each spatial unit independently to a
temporal trend, because this does not force areas close together to exhibit similar trends. However if
one had such a priori spatial clustering beliefs, then the model could be expanded to take account
of this, perhaps by extending the a priori clustering probabilities λ to λk and forcing them to be
correlated spatially. The other key area of future development surrounds the overall quantification of
health inequalities, and the work here has examined these in the context of a single health outcome.
However, an in-depth study of health inequalities requires the consideration of multiple diseases simul-
taneously, and thus we will extend the methodology developed here to the multivariate domain. Within
the United Kingdom the biggest killers are cancer and cerebrovascular coronary heart and respiratory
diseases (http://www.gov.scot/Topics/Statistics/Browse/Health/TrendMortalityRates), and thus a multi-
variate extension of the methodology will focus on overall health inequalities in these four diseases.
Finally, a computational development would be to improve the computational efficiency of the (MC)3

algorithm by making use of multiple CPU cores.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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