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Objective: Studies have long shown that uncontrolled inflammatory responses in the

brain play a key role in epilepsy pathogenesis. Microglias play an important role in

epileptic-induced neuroinflammation, but their role after epileptic seizures is still poorly

understood. Alleviating epilepsy and its comorbidities has become a key area of interest

for pediatricians.

Methods: A pilocarpine-induced rat model of epilepsy was established. The rats were

randomly divided into four groups: a control group, epilepsy group, TLR4 inhibitor group

(epilepsy+TAK-242), and NF-κB antagonist group (epilepsy+BAY11–7082).

Results: 1. The results of TUNEL staining showed that the expression in rats in the

epilepsy group was the most obvious and was significantly different from that in rats in

the control, EP+BAY and EP+TAK groups. 2. The expression of TLR4 and NF-κB was

highest in rats in the epilepsy group and was significantly different from that in rats in

the control, EP+BAY and EP+TAK groups. 3. The fluorescence intensity and number of

IBA-1-positive cells in rats in the epilepsy group were highest and significantly different

from those in rats in the control, EP+BAY and EP+TAK groups. Western blot analysis

of IBA-1 showed that the expression in rats in the epilepsy group was the highest and

was statistically significant. 4. CD68 was the highest in rats in the epilepsy group and

was statistically significant. 5. In the open-field experiment, the central region residence

time of rats in the EP group was delayed, the central region movement distance traveled

was prolonged, the total distance traveled was prolonged, and the average speed was

increased. Compared with rats in the EP group, rats in the EP+BAY and EP+ TAK groups

exhibited improvements to different degrees.

Conclusion: At the tissue level, downregulation of the TLR4/NF-κB inflammatory

pathway in epilepsy could inhibit microglial activation and the expression of the

inflammatory factor CD68, could inhibit hyperphagocytosis, and inhibit the occurrence

and exacerbation of epilepsy, thus improving cognitive and emotional disorders after

epileptic seizures.
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INTRODUCTION

Epilepsy is a chronic brain disease characterized by a persistent
tendency for seizures (1, 2). Epilepsy affects more than 70 million
people worldwide (3), 60% of which experience childhood
onset (4). In children with epilepsy, 10–30% have temporal
lobe epilepsy (TLE) involving the hippocampus, amygdala,
entorhinal cortex and other limbic system structures, some of
which easily develop refractory epilepsy or persistent epilepsy,
resulting in varying degrees of learning and memory impairment
(5), cognitive dysfunction (6), and mood disorders (7, 8).
However, reducing brain injury and emotional and behavioral
disorders that develop after the onset of epilepsy has become a
problem requiring close attention and considerable effort from
pediatricians to find a solution (9).

Studies have long shown that uncontrolled inflammatory
responses in the brain play a key role in the development
of epilepsy (10–12). During the occurrence of TLE, temporal
lobe injury is caused by the activation of microglias and
astrocytes and the accumulation of inflammatory cytokines,
suggesting that there is an inflammatory response in the brain
during epileptic seizures (13–15). In the brains of children with
intractable epilepsy (16), a large number of neurons are damaged,
and microglias and astrocytes are significantly activated (17).
Reducing the inflammatory response during epileptic seizures,
inhibiting the activation of glial cells, and improving postseizure
brain injury have become practical problems that pediatricians
urgently need to solve. Thus, anti-inflammatory therapy may
become a new strategy to reduce neuronal injury and reduce
epileptic seizures in children (18, 19).

Microglias play an important role in neuroinflammation
induced by epilepsy (20–23). They not only produce a large
number of cytokines and chemokines but also seem to be the
target of cytokine and chemokine signals in the central nervous
system (CNS) (24–26). Inflammatory cytokines increase the
excitability of neurons and are thought to contribute to the
occurrence of epilepsy (27, 28). Microglias secrete specific pro-
inflammatory factors in the brain, and the increased expression
of the M1 phase cytokine CD68 reflects the strong phagocytic
ability of microglias. Toll-like receptor (TLR) signaling is also
involved in cytokine production in epileptic models (29). Studies
have shown that the activated TLR4 pathway (mediated by
MyD88) is part of the molecular response that promotes a pro-
inflammatory environment after status epilepticus (SE) (30), but
the specific mechanism of activation of inflammatory factors
needs further verification.

Microglias mediate macrophages in brain nerve
inflammation. When microglias detect injury, they quickly
migrate to damaged areas and trigger the activation of cascades
(31); importantly, microglias may cause neuronal injury.
Astrocytes are involved in this process, and the dysfunction
of astrocytes in the brains of epileptic patients has been well-
studied, but the role of excessive phagocytosis of microglias in
inducing epilepsy and causing brain damage in epilepsy is still
largely uncertain (32).

MATERIALS AND METHODS

Animals
A total of 88 rats healthy male Sprague-Dawley rats (from the
Medical Animal Center, Shengjing Hospital of China Medical
University), 3 weeks of age and weighing 45.0–60 g, were used
in this study.After adapting to the experimental environment,
the rats were fed in a standard 12/12 h alternating light and dark
animal room at 22–24◦C, with a relative humidity of 50 ± 10%,
and were provided with ample nutritious food and free access to
drinking water.

Experimental Methods
Establishment of the Rat Model of SE and the

Experimental Groups

Modeling Method
The model in the present study was based on the rat model
of SE established by Rossi et al. Healthy male SD rats in the
experimental group were first intraperitoneally injected with 3
mEg/kg lithium chloride (127 mg/kg) and then intraperitoneally
injected with 1 mg/kg atropine sulfate 18–20 h later. Thirty
minutes after an atropine injection, 30 mg/kg pilocarpine was
intraperitoneally injected, and seizures were closely observed.
After 30min, 10 mg/kg pilocarpine was intraperitoneally
injected. This protocol was repeated every 30min until the onset
of SE. The control group was injected with the same volume of
saline. More than half an hour after SE was established, 10 mg/kg
diazepam was intraperitoneally injected, and SE was controlled
to reduce rat death. Spontaneous epileptic seizures repeatedly
occurred in the rats in the chronic stage, and the seizures
spontaneously stopped after more than 1min. No antiepileptic
drugs were administered to control the seizures. The Racine
(33) grading standard was used to evaluate epileptic seizures
in experimental animals. According to the Racine behavioral
scoring table, status epilepticus was defined as a grade IV-V
convulsive state and convulsive state for at least 30min, and
thus these rats were included in the model group with status
epilepticus. Rats that did not present grade IV seizures were
excluded from the model group.

The rats (n = 88 total) were divided into four groups (n =

22 per group): I. Rats in the normal control group were injected
with a volume of saline matching the volume of substances
injected into rats in experimental groups at the corresponding
time point. II. Pilocapine was used to establish SE in SD rats.
Samples were collected 2 days after the corresponding model
was established. III. SD rats were treated by intraperitoneal
injection of a nuclear factor kappa B (NF-κB) inhibitor (BAY
11–7082) in solvent. Rats in the NF-κB inhibitor group were
intraperitoneally injected once a day with 5 mg/kg BAY11–7082
(Sigma, USA) 1 h after the model was established and for the
next 2 days (BAY11–7082 was dissolved in dimethyl sulfoxide
(DMSO) solution and then diluted in corn oil, and the final
concentration of DMSO solution was 1%); IV. The solvent-
treated SD rats were intraperitoneally injected with a TLR4
inhibitor (TAK-242). The selective inhibitor of TLR4, TAK-242
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(Princeton, USA), was intraperitoneally injected into rats at a
dose of 3 mg/kg 1 h after the model was established and once a
day for the following 2 days (TAK-242 was dissolved in DMSO
solution and then diluted in corn oil until the concentration
of DMSO solution was 1%). Samples were collected from rats
in these four groups 2 days after successful establishment of
the model and treatment. Brain tissue samples were collected
from six rats for Nissl staining and double immunofluorescence
staining. Hippocampal tissues were extracted from the other six
rats for Western blotting and polymerase chain reaction (PCR)
analysis (n= 6 per group). The cognitive function test and open-
field test (OFP) were carried out with a Morris water maze 7 days
after successful establishment of the model (n = 10 per group).
This maze is used to measure general motor ability, intelligence,
and anxiety-related emotional behavior.

TUNEL Staining
Sections were dewaxed until water permeated them. Fifty
microliters of 0.1% Triton X−100 (0.1% sodium citrate)
was added to the sections, and they were incubated at
room temperature for 8min. Next, 50 µl of the terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
reaction solution was added dropwise and incubated in a
humid chamber in the dark at 37◦C for 60min. Sections were
subsequently stained with 4’,6-diamidino-2-phenylindole (DAPI)
for 5min. A fluorescence quenching agent was added to the slices,
followed by a coverslip. Microscopically, staining was observed
under a fluorescence microscope, and photos were taken.

Immunofluorescence Staining
The sections were dewaxed in water, and citric acid repair
solution was used for antigen retrieval. Non-specific antigen
binding was blocked by incubation with goat serum for 40min,
and then sections were incubated overnight in a refrigerator at
4◦C in the following primary antibodies: 100 µl of the prediluted
primary antibodies against ionized calcium-binding adapter
molecule 1 (Iba-1) (anti-mouse IgG diluted 1:80, Santa Cruz,
USA), TLR4 (anti-rabbit IgG diluted 1:100, Novus, USA), and
NF-κB (anti-rabbit IgG diluted 1:100, Proteintech, USA). The
fluorescent goat anti-rat and anti-rabbit secondary antibodies
were incubated with the sections (diluted 1:500) for 4 h in the
dark at room temperature, the nuclei were stained with DAPI,
and the slices were sealed. The images were collected using
a confocal microscope. In each section, different locations of
the CA1, CA3, and dentate gyrus (DG)3 in the hippocampus
were randomly selected. The images were captured at 400x
magnification and stored.

Immunohistochemistry
After dewaxing the sections, hydrating the sections, incubating
the sections with the citric acid antigen repair solution, blocking
endogenous peroxidase activity, and blocking nonspecific
antigens, 1 to 2 drops of goat serum (reagent B) were added
to each section; then, the sections were incubated at room
temperature for 40min. Fifty microliters of the CD68 antibody
(anti-mouse IgG, diluted 1:100, Novus, USA) was added to
the sections dropwise and incubated overnight in a refrigerator

at 4◦C. Sections were incubated with the secondary antibody,
and then the sections were incubated with 1 drop of reagent
C and 1 drop of reagent D for 20min for the enzyme-
substrate reaction. For color development, 50 µl of 3,3′-
diaminobenzidine (DAB) working solution was added to the
sections and incubated at room temperature for 20’s. After
staining with hematoxylin for 10 s, the color of the samples
returned to blue, and the samples were then rinsed with water;
sections were then dehydrated, rendered transparent, and sealed.
Images of immunohistochemical staining were captured at 400×
magnification and stored.

Western Blotting
The hippocampal tissues were extracted from frozen separate
single animal extracts each used for western analysis. Tissue
samples were weighed, lysis solution were added, the samples
were fully lysed, and the protein concentration of the samples
were determined. Then, the samples were mixed well with 5X
loading buffer, heated to denature the protein, and cooled to
room temperature prior to use. A 12.5% gel was prepared
for electrophoresis. Electrophoresis buffer, transfer buffer and
blocking solution were prepared. Samples were loaded on the
gel, separated by electrophoresis, transferred to a membrane,
blocked, and incubated with a primary antibody [Iba-1 diluted
1:400, anti-mouse IgG, Santa Cruz, USA; GAPDH diluted
1:2000, anti-rabbit IgG, Proteintech, USA; CD68 (diluted 1:500,
anti-mouse IgG, Novus, USA; TLR4 diluted 1:500, anti-rabbit
IgG, Novus, USA), and NF-κB (diluted 1:500, anti-rabbit IgG,
Proteintech, USA)] overnight at 4◦C. The membrane was
incubated with a goat anti-rabbit IgG secondary antibody
(1:10000) and a goat anti-mouse secondary antibody (1:10000)
to allow visualization of the antibody targets, and images were
captured. The gray value of theWestern blot results was analyzed
using ImageJ software. The gray value of the target protein was
normalized to the gray value of the internal reference protein
for analysis.

Fluorescence Quantitative PCR
Total RNA was extracted from hippocampal tissue with TRIzol
reagent followed by the removal of genomic DNA from brain
mRNA, reverse transcription (RT) and PCR amplification. The
following primer sequences were prepared.

TLR4 forward primer 5′-CAGAATGAGGACTGGGTGAG-
3′, reverse primer 5′-GTTGGCAGCAATGGCTACAC-3′; NF-κB
forward primer 5′-CCAAAGACCCACCTCACC-3′, reverse
primer 5′-TGGCTAATGGCTTGCTCC-3′; and β-actin forward
primer 5′-GGAGATTACTGCCCTGGCTCCTAGC-3′, and
reverse primer 5′-GGCCGGACTCATCGTACTCCTGCTT-3′.
The 2−11Ct values were calculated to indicate the relative gene
mRNA expression level and to analyze the results.

Open-Field Test
The OFP is a common experimental method to detect the
emotional behavior of animals. The device consists of an
open-field reaction box and an automatic data acquisition and
processing system. The size of the open-field reaction box was
100 × 100 × 40 cm (length × width × height). The box was
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FIGURE 1 | Neuronal damage observed in the hippocampal region (×400). *P < 0.05; **P < 0.01; ***P < 0.001.

constructed from medical ABS material, the inner wall was
painted black, and a digital camera was placed 2m above it.
The distance traveled by the rats in the reaction chamber, the
number of times the rats crossed the central area (50 × 50 cm)
and the time the rats stayed in the central area within 10min
were observed.

Statistical Analysis
GraphPad Prism 7.0 analysis software was used for data
processing and statistical analysis. Measurement data are

presented as the means ± standard deviations (means±SD). A t
test was used to compare data between two groups, and one-way
analysis of variance was used to compare data among multiple
groups. P < 0.05 was considered statistically significant.

RESULTS

TUNEL Staining
Damage to neurons in the hippocampal CA1, CA3 and DG
regions was observed (Figures 1I,II,III). In rats in the control

Frontiers in Neurology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 823908

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wu et al. Improving Emotional Behavior After Epilepsy

group, the hippocampal neuron bands were arranged neatly, with
uniform staining and blue nuclei, and dead neurons were not
observed or were only noted occasionally (Figure 1A1–9). In rats
in the epilepsy (EP) group, after continuous SE, TUNEL-positive
cells appeared in each area of the hippocampus in 2 days, and the
nuclei were green (Figure 1B1–9). In rats in the EP+BAY group
(Figure 1C1–9) and EP+TAK group (Figure 1D1–9), there were
fewer TUNEL-positive cells in each area of the hippocampus at 2
d than in rats in the EP group.

Figure 1I Neuronal damage observed in the hippocampal
CA1 region (400×, scale bar: 20µm). Figure 1II Observation of
hippocampal CA3 neuron damage. Figure 1III Neuronal damage
observed in the hippocampal DG region (400×, scale 20µm).
Figure 1IV Statistical analysis of the percentage of hippocampal
neuron death observed in each group. Figure 1 shows green
TUNEL-positive cells in Figure 1A1–D1,A4–D4,A7–D7; blue
DAPI nuclear staining in Figure 1A2–D2,A5–D5,A8–D8; and
colocalization of TUNEL-positive cells and DAPI in Figure 1A3–
D3,A6–D6,A9–D9. Figure 1A1–9 shows data from animals
in the control group, and B1–B9 shows data from animals
in the epilepsy group. Changes in neuronal damage in the
hippocampal CA1, CA3, and DG areas in rats in the EP+BAY
group (Figure 1C1–9) and EP+TAK group (Figure 1D1–9).
Figure 1IV the detection results showed that the expression in
rats in the epilepsy group was the most obvious (P < 0.001)
compared with that in rats in the control group, and there was
a significant difference between rats in the epilepsy group and the
EP+BAY group and EP+TAK group (P < 0.05, n= 6).

Role of the Downregulated TLR4/NF-κB
Inflammatory Pathway in Epilepsy
TLR4 Expression in the Hippocampus of Animals in

Each Group After Downregulation of the TLR4/NF-κB

Inflammatory Pathway
The colocalization results of double immunofluorescence for
TLR4 and the microglial marker IBA-1 were as follows: double
immunofluorescence revealed colocalization of the microglial
markers IBA-1 and TLR4 in the control group, epilepsy
(EP) group, epilepsy+BAY 11–7082 (EP+BAY) group, and
epilepsy+TAK242 (EP+ TAK) group. Two days after SE, TLR4
was expressed in microglias in the hippocampal CA1, CA3, and
DG areas in rats in the control group, but the expression of TLR4
was significantly increased in rats in the EP group. The expression
of TLR4 in rats in the EP+BAY and EP+TAK groups was lower
than that in rats in the EP group (see Figures 2I,II,III).

Changes in TLR4 mRNA expression in hippocampal tissues
were detected by RT–PCR. The results were as follows: The
mRNA expression changes in TLR4 relative to the internal
reference β-actin are shown in Figure 2IV After 2 days, results
for rats in the control group, EP group, EP+BAY group and
EP+TAK group were significantly different. The expression in
rats in the EP group was the highest and was significantly
different from that in rats in the control group, EP+BAY group
and EP+TAK group (∗P < 0.05; ∗∗P < 0.01; ∗ ∗ ∗P < 0.001).
The detection results showed that the expression of rats in the EP
group was the highest and was significantly different compared

with that of rats in the control group, EP+BAY group and
EP+TAK group (P < 0.001, n= 6).

Western blot analysis of TLR4 protein expression in the
hippocampus of rats in each group showed the following.

The molecular weights of TLR4 and β-actin were 64 and 42
kD, respectively (Figure 2V). After 2 days, results for rats in the
control group, EP group, EP+BAY group and EP+TAK group
were significantly different. The expression in rats in the EP
group was the highest and was significantly different from that
in rats in the control group, EP+BAY group and EP+TAK group
(∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001) (Figure 2VI). The detection
results showed that the expression in rats in the EP group was the
highest and was significantly different compared with that in rats
in the control group, EP+BAY group and EP+TAK group (P <

0.001, n= 6).
In Figure 2I, the colocalization results of double

immunofluorescence TLR4 and microglias marker IBA-1 in
the hippocampal CA1 region of rats in each group are shown.
Figure 2II shows the TLR4 expression in the hippocampal
CA3 region of rats in each group. Figure 2III depicts TLR4
expression in the hippocampal DG of rats in each group;
(400×, scale 20µ m). In Figure 2IV, changes in TLR4 mRNA
expression of rats in each group are shown. In Figure 2V, the
expression changes in TLR4 and internal reference β-actin
protein are shown. Figure 2VI shows the relative expression
levels of TLR4 in rats in the control group, EP group, EP+BAY
group and EP+TAK group relative to the internal reference
β-actin and compares the differences. In Figure 2, red IBA-1,
green TLR4 staining, blue DAPI nuclear staining are depicted.
Figure 2A1–D1,A5–D5,A9–D9 shows IBA-1-positive cells;
Figure 2A2–D2,A6–D6,A10–D10 depict TLR4-positive cells
in green; Figure 2A3–D3,A7–D7,A11–D11 shows blue DAPI
nuclear staining; Figure 2A4–D4,A8–D8,A12–D12 display
colocations of positive cells for IBA-1, TLR4 and DAPI.
Figure 2IA1–4 shows data for animals in the control group
and B1–B4 shows data for animals in the EP group, EP+BAY
group (Figure 2C1–4) and EP+TAK group (Figure 2D1–4)
demonstrating changes in the expression of TLR4 in microglias
in the hippocampal CA1 region. Figure 2IIA5–8 shows data for
animals in the control group, B5–B8 shows data for animals in
the EP group, EP+BAY group (Figure 2C5–8) and EP+TAK
group (Figure 2D5–8) demonstrating changes in the expression
of TLR4 in microglias in the hippocampal CA3 region.
Figure 2A9–12 shows data for animals in the control group
B9–B12 show data for animals in the EP group. Changes in TLR4
expression in microglias in the DG area of the hippocampus
in the EP+BAY group (Figure 2C9–12) and EP+TAK group
(Figure 2D9–12) are shown.

NF-κB Expression in the Hippocampus of Each

Group After Downregulation of the TLR4/NF-κB

Inflammatory Pathway
The colocalization results of dual immunofluorescence for NF-κB
and the microglial marker IBA-1 were as follows.

Dual immunofluorescence for NF-κB and the microglial
marker IBA-1 in rats in the control group, EP group,
epilepsy+BAY 11–7082 (EP+BAY) group, epilepsy+TAK242
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FIGURE 2 | TLR4 expression in rats in each group after I downregulated the TLR4/NF-κB inflammatory pathway. *P < 0.05; **P < 0.01; ***P < 0.001.
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(EP+ TAK) group, 2 days after SE, NF-κB expression in
hippocampal CA1, CA3, and DG microglias were low in rats
in the control group, and NF-κB expression was significantly
increased in rats in the EP group. NF-κB expression in rats in
the EP+BAY group and EP+TAK group was lower than that in
rats in the EP group (see Figures 3I,II,III).

The mRNA expression of NF-κB in the hippocampus was
detected by RT–PCR. The results were as follows: The relative
mRNA expression of NF-κB and internal reference β-actin is
shown in Figure 3IV. After 2 days, results for rats in the control
group, EP group, EP+BAY group and EP+TAK group were
significantly different. The expression in rats in the EP group was
the highest, which was significantly different from that of rats in
the control group, EP+BAY group and EP+TAK group (∗P <

0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). The detection results showed
that the expression in rats in the EP group was the highest, with
a significant difference compared with that of rats in the control
group, EP+BAY group and EP+TAK group (P < 0.001, n= 6).

Changes in NF-κB protein expression in the hippocampi
of rats in each group were detected using Western blotting.
The molecular weights of NF-κB and β-actin were 65 and 42
kD, respectively. Two days after epilepsy, there were differences
among rats in the control group, EP group, EP+BAY group,
and EP+TAK group (Figure 3V). The expression of rats in
the EP group was the highest, and there was a significant
difference compared with rats in the control group, EP+BAY
group and EP+TAK group (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P
< 0.001) (Figure 3VI). The detection results showed that
the expression of rats in the EP group was the highest
and was significantly different compared with that of rats
in the control group, EP+BAY group and EP+TAK group
(P < 0.001, n= 6).

Figure 3I NF-κB expression in the hippocampal CA1 region
after I downregulated the TLR4/NF-κB inflammatory pathway.
Figure 3II shows NF-κB expression in the hippocampal CA3
region after I downregulated the TLR4/NF-κB inflammatory
pathway. Figure 3III shows NF-κB expression in the
hippocampal DG region after I downregulated the TLR4/NF-κB
inflammatory pathway (400×, scale 20µm). Figure 3IV indicates
the relative expression levels of NF-κB mRNA in rats in the
control group, EP group, EP+BAY group and EP+TAK group
relative to the internal reference β-actin and the comparative
differences. In Figure 3V, the expression of NF-κB and the
internal reference β-actin is shown. Figure 3IV shows the relative
expression levels of NF-κB in rats in the control group, EP group,
EP+BAY group, and EP+TAK group relative to the internal
reference β-actin and compares the differences. In Figure 3, red
IBA-1, green NF-κB staining, blue DAPI nuclear staining are
shown. In Figure 3A1–D1,A5–D5,A9–D9 red indicates cells
positive for IBA-1. Figure 3A2–D2,A6–D6,A10–D10 shows cells
positive for NF-κB in green. Figure 3A3–D3,A7–D7,A11–D11
shows blue DAPI nuclear staining. Figure 3A4–D4,A8–D8,A12–
D12 depict colocation of positive cells for IBA-1, NF-κB, and
DAPI. Figure 3IA1–4 shows data for animals in the control
group, B1–B4 in the EP group, EP+BAY group (Figure 3C1–4)
and EP+TAK group (Figure 3D1–4) regarding changes in
the expression of NF-κB in microglias in the hippocampal

CA1 region. Figure 3IIA5–8 shows data for animals in the
control group, Figure 3B5–B8 shows data for animals in the
EP group, EP+BAY group (Figure 3C5–8) and EP+TAK group
(Figure 3D5–8) regarding changes in the expression of NF-κB
in microglias in the hippocampal CA3 region. Figure 3A9–12
shows data for animals in the control group; Figure 3B9–B12
shows data for animals in the EP group. Changes in NF-κB
expression in microglias in the DG area of the hippocampus
in the EP+BAY group (Figure 3C9–12) and EP+TAK group
(Figure 3D9–12) are shown.

Activation and Polarization of
Hippocampal Microglias in Each Group
After Downregulation of the TLR4/NF-κB
Inflammatory Pathway
Expression of IBA-1 Protein in Hippocampal

Microglias in Each Group After Downregulation of the

TLR4/NF-κB Inflammatory Pathway
The expression of microglias in the hippocampus of each group
was observed by fluorescence staining as follows: Fluorescence
staining was used to observe the changes in the morphology and
number of microglias in the hippocampal CA1, CA3, and DG
regions of each group (Figures 4I,II,III). In rats in the control
group, the hippocampal neuron bands were arranged neatly, with
uniform staining, and the nuclei were blue. Occasionally, the
microglias were seen as rod-shaped branches that were stained
fluorescent green (Figure 4A1–9). In rats in the EP group, the
number of microglias increased, and the cell volume increased in
each area of the hippocampus 2 days after continuous epilepsy
(SE), showing an amoebal shape, green fluorescence staining and
blue nuclei (Figure 4B1–9). Compared with rats in the EP+BAY
group (Figure 4C1–9) and EP+TAK group (Figure 4D1–9), the
number of IBA-1-positive cells in each area of the hippocampus
decreased at 2 days compared with that in rats in the EP group.
The morphology of microglial cells decreased to different extents
compared with those of rats in the EP group, and the number of
activated microglias decreased. After treatment, most microglias
were in a branched, rod-like, resting state.

Compared with that in rats in the control group, the
fluorescence intensity of IBA-1 in rats in the EP group was
increased (P < 0.001), the fluorescence intensity of IBA-1 in rats
in the EP+BAY 11–7082 group was slightly decreased (P < 0.01),
and the fluorescence intensity of IBA-1 in rats in the EP+TAK-
242 group was decreased (P < 0.001). The condition of rats in
the EP+BAY 11–7082 and EP+TAK-242 groups improved to
varying degrees (Figure 4). The number of microglias increased
(P < 0.001) in rats in the EP+BAY 11–7082 group compared
with that in rats in the EP+BAY 11–7082 group, and the number
of microglias decreased (P < 0.05). In rats in the EP+ TAK-242
group, the number ofmicroglial cells in rats in the IBA-1 unit area
mm2 decreased by P < 0.001, and rats in EP+BAY 11–7082 and
EP+ TAK-242 groups showed different degrees of improvement,
as depicted in Figure 4.

The expression of IBA-1 protein in the hippocampus was
detected by Western blot.
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FIGURE 3 | NF-κB expression after I downregulated the TLR4/NF-κB inflammatory pathway. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 4 | Expression of IBA-1 protein in each group. *P < 0.05; **P < 0.01; ***P < 0.001.

Frontiers in Neurology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 823908

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wu et al. Improving Emotional Behavior After Epilepsy

The molecular weights of Iba-1 and β-actin were 17 and 42
kD, respectively. After 2 days, results for rats in the control
group, EP group, EP+BAY group and EP+TAK group were
significantly different. The expression in rats in the EP group
was the highest, which was significantly different from that in
rats in the control group, EP+BAY group and EP+TAK group.
The detection results showed that the expression in rats in the
EP group was the highest, with P < 0.001, compared with that of
rats in the control group, P<0.05, compared with that of rats in
the EP+BAY group, P < 0.01, and compared with that of rats in
the EP+TAK group.

Figure 4I shows protein expression of IBA-1 in microglias
of the hippocampal CA1 region in rats in each group.
Figure 4II shows protein expression of IBA-1 in microglias of the
hippocampal CA3 region in rats in each group. Figure 4III shows
protein expression of IBA-1 in microglias of the hippocampal
DG region in rats in each group (400×, scale bar = 20µm).
Figure 4IV shows the statistical analysis of the fluorescence
intensity of microglial IBA-1 in the hippocampus of rats in each
group. Figure 4A shows the statistical analysis of data for each
group in the CA1 region, Figure 4B shows that for the CA3
region and Figure 4C shows the statistical analysis of data for
each group in the DG region. Figure 4V depicts the results of
the statistical analysis of the number of IBA-1-positive microglial
cells in each region of the hippocampus in rats in each group.
A shows the CA1 region, B shows the CA3 region, and C shows
the DG region. Figure 4VI shows the protein expression changes
in IBA-1 and the internal reference β-actin. Figure 4VII shows
the relative expression levels of IBA-1 in rats in the control
group, EP group, EP+BAY group and EP+TAK group relative
to the internal reference β-actin and compares the differences. In
Figure 4A1–D1,A4–D4,A7–D7, green indicates cells positive for
IBA-1. In Figure 4A2–D2,A5–D5,A8–D8, blue indicates nuclear
DAPI staining. In Figure 4A3–D3,A6–D6,A9–D9, colocation of
IBA-1-positive cells and DAPI is shown (n= 6, ∗P < 0.05; ∗∗P <

0.01; ∗∗∗P < 0.001).

Expression of CD68 Protein in Hippocampal

Microglias in Rats in Each Group After

Downregulation of the TLR4/NF-κB Inflammatory

Pathway
The expression of CD68 in the hippocampus was detected by
Western blot.

The molecular weights of CD68 and β-actin were 100 and 42
kD, respectively. After 2 days, results for rats in the control group,
EP group, EP+BAY group and EP+TAK group were significantly
different. The expression in rats in the EP group was the highest
and was significantly different from that in rats in the control
group, EP+BAY group, and EP+TAK group.

Immunohistochemical results showed that CD68 presented
granular dispersion in the hippocampal CA1, CA3, and DG
regions (Figure 5C). Immunohistochemical CD68-positive cell
analysis showed that the expression in rats in the EP group was
higher than that in rats in the control group, EP+BAY group and
EP+TAK group (Figure 5D).

Figure 5A shows the change in CD68 and internal reference β-
actin protein expression. Figure 5B shows the relative expression

levels of CD68 in rats in the control group, EP group, EP+BAY
group, and EP+TAK group relative to the internal reference
β-actin and compares the differences. Figure 5C shows CD68
immunohistochemistry. Red arrows indicate CD68-positive cells
(100×, scale bar 200µm). Figure 5D shows the statistical
analysis results of CD68-positive cells in rats in each group. The
detection results showed that the expression of rats in the EP
group was the highest among the CD68 indicators, and there was
a significant difference (P < 0.01) between rats in the EP group
and the control group and between rats in the EP+BAY group
and EP+TAK group (n= 6, ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

The Effects of Each Group’s Condition on the

Emotional and Behavioral Functions of Rats Were

Detected Using an Open-Field Assessment
Figure 6A shows the behavioral trajectories of rats in each group
in the open-field experiment. Figure 6B shows the statistical
analysis of the residence time in the central region of each
group of rats in the open-field experiment. Figure 6C shows the
statistical analysis of the movement distance in the central region
of each group of rats in the open-field experiment. Figure 6D
shows the statistical analysis of the total movement distance
traveled by rats in the open-field experiment. Figure 6E shows
the statistical analysis of the average velocity of rats in each group
in the open-field experiment. The results showed that the central
region residence time of rats in the EP group was delayed (P <

0.001), the central regionmovement distance was prolonged (P<

0.001), the total distance was prolonged (P < 0.001), the average
speed was increased (P < 0.001), and the central region residence
time of rats in the EP+BAY 11–7082 group was shortened (P
< 0.01) compared with the outcomes for rats in the EP group.
Compared with the outcomes for rats in the EP+ TAK-242
group, the median residence time of rats in the EP+TAK-242
group was shorter (P< 0.01), themedian distance traveled by rats
in the EP+ TAK-242 group was shorter (P < 0.01), the median
distance traveled by rats in the EP+ TAK-242 group was shorter
(P < 0.01), the median distance traveled by rats in the EP+ TAK-
242 group was shorter (P < 0.01), the median distance traveled
by rats in the EP+ TAK-242 group was shorter (P < 0.001), the
total distance traveled by rats in the EP+ TAK-242 group was
shorter (P < 0.001), and the median speed rats in of the EP+
TAK-242 group was slower (P < 0.001). Rats in EP+BAY 11–
7082 and EP+TAK-242 improved by varying degrees (n= 10, ∗P
< 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

DISCUSSION

TLE is one of the most common focal epilepsies in adolescents
and adults (34). Approximately one-third of patients experience
drug resistance; in patients with drug-resistant epilepsy and
frequent seizures, there are varying degrees of learning, memory
and mood disorders (35), which may be directly affected by the
process of epilepsy (36), resulting in cognitive and emotional
behavior problems in children (37). Treatment options for
cognitive and mood disorders after epilepsy onset are limited,
given that the mechanisms of TLE are unclear. Moreover, there
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FIGURE 5 | (A–D) Changes in CD68 protein expression in the hippocampus of rats in each group after SE seizures. *P < 0.05; **P < 0.01; ***P < 0.001.

are new requirements for pediatricians regarding treatment
strategies for comorbidities that develop after epilepsy onset (38).

Microglias are an important bridge linking immunity and
epilepsy. The role of microglias in epilepsy is gradually being
recognized, and the TLR4 signaling pathway is considered to be
one of the important bridges connecting innate immunity and
acquired immunity (39). TLR4 is mainly expressed in microglias
and mediates microglial activation (40). TLR4 activates the
TIR domain containing adaptor IFN-β (TrIF)-related adaptor
molecule (TRAM). The TRAM combines with TRIF to induce
late activation of MAPK and NF-κB (41) and ultimately to
increase cytokine expression and inflammatory damage (42, 43).
NF-κB is a nuclear transcription factor closely related to immune
regulation. However, the TLR4/NF-κB inflammatory signaling
pathway has not been widely studied in epilepsy, and the role of
neuroinflammation in epilepsy has gradually received attention.
The control of the inflammatory response has been considered

a conventional clinical treatment method and is expected to
become a complementary therapy strategy in the future (44).

This study found that the expression of activated IBA-1
increased in microglial cells in rats in the epileptic group, with
the cell volume increasing and amoeba-like and expression of
the M1-type cytokine CD68 increasing. Pertinently, CD68 is a
transmembrane glycoprotein expressed by human monocytes
and tissue macrophages with phagocytic activity (45), and the
expression of CD68 was increased in rats in the epileptic
group. The expression of IBA-1 and CD68 decreased after
treatment with the NF-κB inhibitor Bay11–7082 and the TLR4
inhibitor TAK-242. The protein levels of TLR4 and NF-κB
were significantly increased in rats in the epileptic group
compared with those of rats in the normal saline group. These
results suggest excessive activation of NF-κB in microglias and
activation of inflammatory pathways in pilocarpine-induced
epileptic models. This activation trend was inhibited after
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FIGURE 6 | (A–E) The effect of each group’s condition on the emotional and behavioral functions of rats detected using the OFP. *P < 0.05; **P < 0.01; ***P < 0.001.

treatment with the NF-κB inhibitor Bay11–7082 and the TLR4
inhibitor TAK-242, resulting in decreased expression of IBA-1
and CD68 proteins and decreased TLR4 and NF-κB proteins
compared with that of rats in the epileptic group, suggesting
that downregulating the TLR4/NF-κB pathway inhibits the
activation of the inflammatory signaling pathway of microglias
and produces antiepileptic effects.

Studies have shown that emotions occur in specific regions of
several parts of the cerebral cortex, such as the amygdala, ventral
striatum, putamen, caudate nucleus, and ventral tegmental area
(46). TLE is more common in limbic system involvement,
suggesting that children with TLE may be more prone to mood

disorders (8, 47–49). In this study, The results were found in
the open-field experiment that the retention time in the central
region of rats in the EP group was delayed compared with that
in rats in the control group, the locomotor distance traveled
in the central region was prolonged, the total distance was
prolonged, and the average speed was increased. Rats in the
EP+Bay11–7082 and EP+TAK-242 groups improved to varying
degrees after treatment. Results for rats in the EP group were
significantly different from the those of rats in the control group,
EP+BAY group and EP+TAK group. These data show that
the inhibition of the TLR4/NF-κB inflammatory pathway can
improve the emotional and behavioral disorders of epileptic rats.
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Studies have shown that a large number of hippocampal neurons
die after epileptic seizure (25, 50–52), which may be related to
microglias promoting epileptic-induced neurogenesis (53, 54).
In the TUNEL experiment, neuronal apoptosis was greater in
rats in the EP group, and the expression in rats in the two
treatment groups, the EP+BAY group and EP+TAK group, was
better than that of rats in the EP group. It is suggested that
neuronal apoptosis after the epileptic seizure could be reduced
by downregulating the TLR4/NF-κB inflammatory pathway. This
may be caused by reducing the direct neuronal damage caused by
inflammatory factors and increasing the neuronal damage caused
by reducing phagocytosis to inhibit the activation of microglias,
reduce excessive neurogenesis in the brain and alleviate brain
injury after epileptic seizures.

CONCLUSION

At the tissue level, the downregulation of the TLR4/NF-κB
inflammatory pathway in epilepsy inhibited microglial activation
and CD68 expression, inhibited hyperphagocytosis, inhibited the
occurrence and exacerbation of epilepsy, and thus improved
cognitive and emotional behavior after epilepsy. In addition,
downregulation of the TLR4/NF-κB inflammatory pathway was
proven by means of open-field experiments to improve cognitive
and emotional behavior function after epileptic seizures in
young rats.
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