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The current understanding of the molecular mechanisms that lead to cancer is not
sufficient to explain the loss or gain of function in proteins related to tumorigenic
processes. Among them, more than 100 oncogenes, 20–30 tumor-suppressor genes,
and hundreds of genes participating in DNA repair and replication have been found
to play a role in the origins of cancer over the last 25 years. The phosphorylation
of serine, threonine, or tyrosine residues is a critical step in cellular growth and
development and is achieved through the tight regulation of protein kinases. Phos-
phorylation plays a major role in eukaryotic signaling as kinase domains are found
in 2% of our genes. The deregulation of kinase control mechanisms has disastrous
consequences, often leading to gains of function, cell transformation, and cancer. The
c-Abl kinase protein is one of the most studied targets in the fight against cancer
and is a hotspot for drug development because it participates in several solid tumors
and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the
opposite effects. Their fundamental role in the maintenance of genomic integrity has
awarded them a role as the guardians of DNA. Among the tumor suppressors, p53
is the most studied. The p53 protein has been shown to be a transcription factor
that recognizes and binds to specific DNA response elements and activates gene
transcription. Stress triggered by ionizing radiation or other mutagenic events leads
to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death.
The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-
binding domain are classified as class I or class II depending on whether substi-
tutions occur in the DNA contact sites or in the protein core, respectively. Tumor-
associated p53 mutations often lead to the loss of protein function, but recent inves-
tigations have also indicated gain-of-function mutations. The prion-like aggregation
of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-
function effects. In the current review, we focused on the most recent insights into
the protein structure and function of the c-Abl and p53 proteins that will provide us
guidance to understand the loss and gain of function of these misfolded tumor-associated
proteins.
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The Folding Perspective of Misfolding

The fundamental dogma in biology for all living organisms
dictates that DNA becomes RNA through the transcriptional
machinery, and this step is followed by the translation of RNA to
specific proteins. From the molecular point of view and using the
most recent DNA technologies, it may seem easy to decode our
genes to get a picture of the entire organism. However, the actual
situation is a more complex and challenging scenario considering
the hierarchical perspective of cells, tissues, organs, and the entire
organismal network.

The next step to be elucidated in the “DNA-to-RNA-to-protein
cascade” and the current challenges faced by researchers include
how a linear strand of amino acids is able to minimize its
free energy and conformational entropy and, ultimately, collapse
into a functional architecture. To assess the reversibility of the
folding/unfolding equilibrium (F–U) of a stretched amino acid
sequence, several spectroscopic approaches coupled to physical
perturbations are available (1–6). Depending on the sequence and
length, a pure protein solution is able to shift the F–U equilib-
rium in a reversible manner. Uncovering this intrinsic feature
of proteins to fold independently gives rise to an astonishing
hypothesis: the assembly of functional protein architectures in the
conformational space proceeds with precision and fidelity by itself
and depends exclusively on the amino acid sequence.

From the cellular perspective, the concept of an energy land-
scape, in which intramolecular forces are mandatory to condense
the most thermodynamically stable ensemble of conformations in
a stochastic search, must now pay attention to influences from
the crowded cellular milieu. The pattern of hydrophobic and
polar residues in a specific amino acid sequence dictates the
preferential contacts and the fingerprint for protein folding and
dynamics. These key elements are likely selected and optimized
during protein evolution to ensure sampling of a restricted num-
ber of conformations and ensure that proteins are “minimally
frustrated” (7). The evolution of protein folding, particularly the
folding of proteins containing multiple domains, provides an
exquisite understanding of highly energetic substates, also known
as protein intermediates. Depending on the protein architecture
and secondary content, small proteins (60–100 residues) may
be converted from their unfolded to their native states without
populating long-lived intermediate states (two-state equilibrium).
In contrast, those with more than approximately 100 residues or
that are composed of at least two globular domains commonly
populate intermediate states during the folding process.

Based on these assumptions, an ongoing puzzle in modern
science concerns the involvement of such high-energy interme-
diates as driving forces to initiate pathological processes, such as
several amyloidogenic disorders and cancer. During a “protein’s
life” within a crowded cell, from the moment at which a nascent
chain is still attached to the ribosome to the moment of death
in proteasomes, amino acid chains suffer high environmental
pressure to guarantee that folding takes place in a precise man-
ner. Conversely, even considering the strictly evolutionary check-
points, i.e., key amino acid interactions to avoid misfolding and a
specialized endoplasmic reticulum (ER) compartment, folding is
not always an infallible process.

In this review, we describe the current understanding in the
field of protein misfolding and consider the formation of mis-
folded species, disordered segments, and aggregation and their
involvement in physiological function and cancer development.
We focus on the c-Abl and p53 proteins and shed light on the
involvement of incorrect conformations in amyloid formation and
the triggering of cell malignancy and cancer progression.

The Cell Against Misfolding

Cell survival and proliferation are strictly dependent on multiple
hierarchic pathways and a highly orchestrated network of thou-
sands of biomolecules and cofactors. To ensure homeostasis, the
building blocks of cells, i.e., protein molecules, require proper
folding and dynamics to ensure their ability to work correctly
and avoid cellular stress and ultimately malignant transformation.
During evolution, cells acquired specialized machinery and a
major housing organelle called the ER to regulate protein folding,
post-translational modifications, lipid and steroid synthesis, gene
expression, cellular metabolism, and calcium signaling.

The ER compartment is a “safe place” responsible for regu-
lating the quality, folding, maturation, and trafficking of newly
synthesized proteins. Features of the ER lumen are a high calcium
concentration and an oxidizing environment (8) as well as a
complete “army” of resident chaperones and enzymes (9, 10) to
guarantee the proper folding and maturation of client proteins.
The best-understood molecular chaperones are the heat shock
proteins Hsp70 and Hsp90, which aid conformational maturation
and target misfolded proteins for ubiquitination and proteolysis,
and the chaperonins, which sequester newly synthesized proteins
or misfolded ones within their structural environment for proper
folding. Up to one-third of cellular proteins are synthesized within
the ER (10), and most of those destined for the extracellular
space are scrutinized for potential toxicity. The most common
modifications in the ER factory, such as signal sequence cleav-
age, N-linked glycosylation, disulfite-bond formation, and gly-
cosylphosphatidylinositol and membrane protein reshuffling and
anchoring, make the process from a naive to a mature polypep-
tide chain slow and not always efficient. Nevertheless, secretory
cells, such as hepatocytes, plasma cells, pancreatic β-islet cells,
and several exocrine gland cells, manage millimolar amounts of
nascent proteins at different stages of folding and assembly with
extraordinary efficiency.

Interestingly, after appropriate folding and modifications,
mature polypeptides are somehow sorted from misfolded species
in the ER and sent to the Golgi apparatus and along the secretory
pathway. Despite extended investigations to uncover the mecha-
nism through which resident vs. client and folded vs. misfolded
species are sorted in the ER for subsequent trafficking to the
Golgi apparatus, this process remains obscure. Sorting models
that attempt to explain this phenomenon are classified as follows:
(i) receptor-mediated transport, (ii) aggregation ofmisfolded pro-
teins, which restricts their ability to be transferred from the ER
to the Golgi apparatus through small transport vesicles, (iii) ER
retention by Golgi retrieval and (iv) the attachment of misfolded
proteins to an ER matrix (11).
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Dynamic control of protein synthesis, degradation, and repair
dictates cell homeostasis. When the protein folding efficiency is
threatened due to protein overload within the ER, cells start to
experience ER stress and activate the “unfolded-protein response”
(UPR). There are three well-characterized signaling sensors trig-
gered by the UPR to overcome ER stress, i.e., inositol-requiring
protein-1α (IRE-1α), activating transcription factor 6 (ATF6),
and protein kinase RNA-like ER kinase (PERK). In this process,
the aim is to eliminate misfolded proteins and to reduce the
load of newly synthesized polypeptides within the ER. This is
accomplished by decreasing the amount of mRNA available for
protein synthesis, slowing the transcription/translation machin-
ery for new mRNAs, and increasing the concentration of molec-
ular chaperones and foldases to process accumulated proteins
within the ER. Of note, the PERK branch of the UPR response
was recently linked to hematopoietic stem cell (HSC) clonal
integrity, in which the clearance of individual HSCs after stress
prevents the propagation of these damaged progenitors (12). The
remaining misfolded proteins not recovered from UPR mecha-
nisms are sent to the ER-associated degradation (ERAD) pathways
known as the ubiquitin/proteasome pathway (ERAD I) and the
autophagic/lysosomal pathway (ERAD II). UPR and ERAD sen-
sors fight to keep the cell alive and overcome cellular stress, and
if these processes are unsuccessful, specializedmachinery initiates
programed cell death (PCD) pathways, such as apoptosis (PCD1),
autophagy (PCD2), or necrosis (PCD3). A cell’s decision to live or
die during cellular stress is a complex, fine-tuned mechanism that
is not fully understood. For more in-depth information on UPR
and ERADmechanisms, please refer tomore specialized literature
(13–20).

Although evolutionary mechanisms have developed to guaran-
tee the quality control of native protein conformations, abnormal
protein synthesis is common and harmful to cells and is involved
in more than 40 protein-misfolding diseases (21), including can-
cer, as was recently demonstrated (22, 23). The concept of a
prion-like seeding mechanism is now behind the most common
amyloidoses and neurodegenerative diseases (24). The tumor-
suppressor p53 is a transcriptional factor that exerts broad anti-
proliferative effects, including growth arrest, apoptosis, and cell
senescence after cellular stress, and has been described as the
most frequently mutated gene in cancer cells (25). It was recently
demonstrated that subunits of the cytosolic group II chaperonin
(CCT) are part of the p53 interactome (26). The correct folding
of wild-type (wt) p53 requires CCT interaction, and the failure to
interact with thismolecular chaperone can promote the oncogenic
functions of p53, even in the absence of typical DNA-binding
domain (DBD) mutations (27). The correct folding of wt p53 in
CCT is not a guarantee that it will safely exert its functions because
mutated p53 (R248Q) aggregates into a mixture of oligomers and
fibrils and sequesters thewt protein into an inactive conformation,
explaining the prion-like behavior of this protein (22, 28). Breast
cancer cells carrying mutated p53 exhibit a massive expression
of aggregated p53 in the nucleus compared with breast cancer
cells carrying wt p53, a condition that has also been shown in
biopsies of breast cancer tissue (22, 29). The mechanism through
which mutated p53, in association with different types of can-
cer, escapes the ER quality control mechanisms and triggers the

dominant-negative effect of its wt counterpart is amatter of debate
and is awaiting further exploration.

The Adaptive Response of Cancer to
Misfolding

The reality of cancer is that these cells exhibit genetic plasticity
and adaptive advantages to survive in harmful environments.
Although cancer cells adapt to trigger angiogenesis, during the
growth of solid tumors, the nutrient and oxygen requirements
exceed those in the surrounded vascular network. Thus, the highly
proliferative and less vascularized environment of several types of
cancers generates low pH (lactic acidosis), low oxygen (hypoxia),
oxidative stress, and low supplies of glucose and amino acids. A
small decrease in pH leads to changes in protein conformation;
e.g., p53 tends to adopt a molten-globule conformation at slightly
lowered pH values (30). It has also been shown that client p53
assumes a molten-globule-like state in the presence of Hsp90
(31). Depleted glucose affects protein glycosylation and ATP pro-
duction, and a lack of oxygen, as an electron carrier, impairs
disulfide bond formation (32). All of these factors contribute to
the accumulation of misfolded proteins within the ER and the
UPR. In normal cells, the stress amplitude triggers pro-survival
or pro-death UPR signaling, but cancer cells escape pro-death
signaling and adapt to grow under these unpleasant conditions.

The binding immunoglobulin protein (BiP), which is also
known as 78-kD glucose-regulated protein (GRP78), is a chaper-
one and the main regulator of the UPR sensors IRE-1α, PERK,
and ATF6. GRP78 inhibits the homodimerization and activity of
PERK and IRE-1α (33, 34) and blocks Golgi-localization signals
and further processing of ATF6 to its active conformation (35,
36). This protein was first discovered due to its upregulation in
response to glucose depletion (37), a common adaptive condition
known as the Warburg effect (aerobic glycolysis) (38, 39). During
ER stress, increased levels of misfolded proteins bind to GRP78 in
a competitive manner, leading to its dissociation from the UPR
regulators IRE-1α, PERK, and ATF6. The dissociation of these
UPR sensors activates ER stress signaling and culminates in the
regulation of gene expression to overcome the stress condition.
In tumorigenic development, downstream signaling triggered by
GRP78 promotes an increase in cell proliferation, protection
against apoptotic events, and the activation of tumor angiogenesis
(40). Indeed, this chaperone plays a central role in the cancer
adaptive response to ER stress.

An increased level of GRP78 has been reported in several solid
tumors, including breast, melanoma, lung, brain, and colon (41–
43), and is also associated with cancer metastasis (44). It plays
a dualistic role: it can control the induction of dormancy at the
beginning of tumor development but also promote pro-survival
(45) and pro-metastatic functions in advanced stages (44). The
localization of GRP78 to the cell surface has been shown to
regulate proliferation and apoptosis in neoplastic and endothelial
cells under severe ER stress (46). In prostate cancer cells, GRP78-
binding partners at the cell surface, such as α2-macroglobulin,
have been shown to increase cell proliferation (47). The use
of antibodies to avoid the interaction of GRP78 with Cripto, a
tumor cell-surface protein involved in the regulation of tumor
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progression, is sufficient to inhibit oncogenic signaling (48). In
addition, ER stress has been shown to accelerate the neovascu-
larization associated with GRP78/T–cadherin complexes (49). In
contrast, the binding of GRP78 at the cell surface with Kringle-5,
an angiogenesis inhibitor, is required for its anti-angiogenic and
pro-apoptotic activities in stressed tumors (50). The overexpres-
sion of GRP78 protects human breast cancer cells from estrogen-
starvation-induced apoptosis (51), and the binding of GRP78
with caspase-7 prevents apoptotic induction by topoisomerase
inhibitors (52). Uncovering the interactome of this important
chaperone associated with ER stress and the neoplastic adaptive
response may provide insights for targeting cancer cells against
tumorigenic development.

Heat shock protein 90 (Hsp90) is another important molecular
chaperone that participates in the adaptive response of cancer
cells. Together with Hsp70 and other co-chaperones, the Hsp90
complex stabilizes and activates more than 200 client proteins
(53). This task is accomplished by several transient low-affinity
protein–protein interactions that help Hsp90 client proteins be
correctly folded or stabilized. The Hsp90 machinery is used by
cancer cells to protect several mutated and overexpressed onco-
proteins, such as mutated p53 and Bcr–Abl, from misfolding
and degradation. However, it is also involved in normal cellular
physiology, including nuclear processes such as those involved in
transcription, chromatin remodeling, and DNA damage-induced
mutation (54).

The transcriptional repressor BCL-6 regulates ataxia telang-
iectasia and Rad3-related (ATR) and TP53 gene expression (55).
The Hsp90 and BCL-6 protein complex represses ATR and TP53
expression in diffuse large B cell lymphomas.Hsp90 inhibition has
been shown to decrease BCL-6 levels due to protein instability,
leading to the activation of target genes (ATR and TP53) and
the apoptosis of lymphoma cells, showing that the Hsp90–BCL-
6 interaction is crucial for lymphoma survival (56). Wt p53 is a
short-lived protein that turns over through the ERAD Imachinery
(57). Hsp90 has been shown to bind wt p53 (31, 58) and is
necessary for protein stability and proper DNA-binding ability
at physiological temperatures (59, 60). However, Hsp70 is also
required to support p53 activity under stress (61). Surprisingly,
Mdm2, a negative regulator of p53, has been shown to chaperone
against p53 (62). When mutated, however, p53 has an increased
intracellular half-life due to impaired ERAD I degradation pro-
cessing (63). Part of this impaired mechanism occurs because of
the aberrant physical association of mutated p53 with the Hsp70
and Hsp90 molecular chaperones, which may protect the protein
from ERAD I processing (64, 65). Geldanamycin (GA), a selective
Hsp90 inhibitor, is able to restore the ERAD I processing of
mutated p53 in tumor cells but is not effective at restoring its
transcriptional factor function (63, 65).

Geldanamycin and other benzoquinone ansamycins not only
target mutated p53 through Hsp90 inhibition but are also effec-
tive at dissociating several kinase–Hsp90 complexes and thereby
alleviating downstream signaling pathways and kinase-induced
oncogenic transformation (66–68). In chronic myeloid leukemia
(CML) or acute lymphoblastic leukemia (ALL), a reciprocal
translocation between the bcr and c-abl genes produces the unreg-
ulated kinases p210Bcr–Abl and p185Bcr–Abl (69). In this type of

cancer, GA has been shown to sensitize Bcr–Abl-positive cells
to cytotoxic chemotherapy (70). Several other drugs, including
novel oxime derivatives of radicicol (71) and novobiocin (72),
have been shown to be effective for the therapeutic interven-
tion of CML by disrupting the Bcr–Abl–Hsp90 complex. Because
Bcr–Abl is destabilized and degraded upon Hsp90 inhibition, it
may represent a new opportunity for blocking CML progression
in Bcr–Abl mutations associated with a drug-resistant pheno-
type (73). T315I p210Bcr–Abl, the most aggressive and insensitive
mutation to the first and second generation of tyrosine kinase
inhibitors, has been shown to remain sensitive toHsp90 inhibition
and to suppress leukemic stem cells in a mouse model (74).
Although Hsp90 participates in the protein stability of several
oncogenic kinases, the molecular mechanisms underlying these
interactions have not been fully elucidated. Recently, a kinase
inhibition study contributed to uncovering the conformational
plasticity of kinases during Hsp90 interaction. For Bcr–Abl, the
disruption of the kinase–Hsp90 complex has been shown to be
independent of whether the chimeric protein was in an active or
inactive conformation, but this was not true for other kinases (75).

Using an analogy from the medieval era in which guardians
fromdifferent clansworked together to defend the empires of their
kings, cellular homeostasis and survival are maintained under
the control of genomic, proteomic, and interactomic guardians
(Figure 1). The opportunist behavior of cancer cells to make
new guardian co-alliances and to transform and manipulate them
to their own benefit may provide an explanation for the main-
tenance and progression of these neoplastic diseases and their
hallmarks (76).

The Impact of Unfolded p53 Segments on
its Functions and Cancer Development

Tumor suppressors are complex macromolecules normally occur-
ring as multi-domain proteins flanked by disordered segments.
The impact of this architecture on protein activity and cellular
function is beyond our current understanding, even using the
most recent state-of-the-art methods in structural biology. Three
well-organized domains have been recognized in p53: an N-
terminal transactivation domain (TAD, spanning residues 1–70),
a sequence-specific DBD (residues 94–293), and an oligomer-
ization domain (OD, residues 324–355). Flanking these regions,
there are two disordered polyproline regions (PPRs): the first is
composed of residues 71–93, which link the TAD to the DBD,
and a second spans residues 294–323 and links the DBD to the
OD. At the most extreme C-terminal region (residues 356–393),
an unstructured basic region ends p53.

The TAD region does not fold independently (77, 78) but
acquires a pair of helices upon binding to the nuclear coactivator
binding domain of the CREB-binding protein (CBP) (79, 80).
The p53 activity and stability are regulated depending on the
TAD phosphorylation of specific serine and threonine residues.
The transcriptional factors p300/CBP and the ubiquitin protein
ligase Mdm2 (Hdm2 for the human ortholog) have overlapping
binding sites within this N-terminal region. Upon DNA damage,
phosphorylation at Ser15, Thr18, and Ser20 results in the dissoci-
ation of Mdm2 from TAD and an increase in p300/CTB affinity,
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FIGURE 1 | Schematic representation of cellular guardians. Tumor
suppressors, chaperones, and kinases represent genome, proteome, and
interactome examples of cellular guardians, respectively. The maintenance of
tumorigenic processes is commonly achieved via new co-alliances and the
transformation of different guardians. The hallmarks of cancer were
highlighted in the scheme.

thus facilitating p53 transcriptional activity (81, 82). Conflicting
data exist concerning the participation of phosphorylated Ser15 in
regulating the ability of p53 to complex with Mdm2 or to mediate
p53 degradation (83–85). A direct effect ofMdm2 binding to TAD
is the inhibition of p53 transcriptional function. However, the
major effect on p53 occurs through its E3-ubiquitin ligase activity
(86). The p53–Mdm2 interaction has been shown to be critical
when the lethality of mdm2-null mice was rescued by simulta-
neous deletion of the TP53 gene (87, 88). The nuclear export
signaling (NES) of p53 is triggered by the mono-ubiquitination
of several lysine residues, which results in a blockade of its tran-
scriptional activity. Otherwise, poly-ubiquitination occurs, which
acts as a signal for degradation in the nucleus or cytoplasm (89).
In addition to binding to the TAD, a second Mdm2-binding site
was identified in the p53 core domain and has been speculated
to stabilize the Mdm2–p53 interaction during degradation (90).
The incorporation of specific modifications to p53, such as NED-
Dylation, is also dependent on Mdm2 expression levels and the
direct binding of Mdm2 to p53. The Mdm2 RING finger E3-
ubiquitin ligase has been shown to be NEDDylated, and after
this step, NEDD8 can be conjugated to the C-terminus of p53
to inhibit its activity (91). The status of ubiquitin binding to

p53 is also determined by Mdm2 protein levels. The p53–Mdm2
binding is quite enigmatic and works through negative feedback.
The activation of p53 induces the transcription of Mdm2, and the
accumulation of Mdm2 inhibits p53 activity. Additionally, Mdm2
is able to block its own transcription (92).

Because a complete loss of transcriptional activity has only been
observed with additional substitutions targeting residues Trp53
and Phe54 (93), it has been suggested that the p53 TAD has
multiple binding elements, which are able to interact with tran-
scription factors and other regulators. The presence of multiple
post-translational modifications and the flexibility of this region
were likely selected during protein evolution to serve as multiple
binding sites and consequently provide a fine-tuned mechanism
for the regulation of p53 activity and stability (94). The exposure of
normal cells to genotoxic agents or non-genotoxic stresses leads to
p53 phosphorylation at approximately 15 serines or threonines in
both the N and C-termini and to the acetylation of approximately
six lysines in the C-terminus (95, 96). Therefore, the end regions
of p53 act as molecular antennas for the proper activity and
interactome signaling of this tumor suppressor.

MdmX (HdmX for the human ortholog) also participates in
p53 signaling and inhibits p53 transcriptional activity (97–99).
MdmX and Mdm2 may work as partners (100, 101) and directly
contribute to tumor formation, as observed by the immortaliza-
tion and neoplastic transformation of retrovirus-mediatedMdmX
overexpression in primary mouse embryonic fibroblasts (102).
Several tumor cell lines express increased levels of HdmX com-
pared with normal cells (103). The systematic screening of HdmX
expression in more than 500 human tumors of different origins
has revealed HdmX overexpression in a wide range of these
tumors (102), suggesting that HdmX may function as an onco-
gene. Moreover, MdmX has been shown to block the p300/CBP-
mediated acetylation of p53 (104), a modification involved in the
tumor-suppressor functions of p53 (105).

The first disordered PPR of p53, which spans residues 71–93,
was demonstrated to bear five partially conserved PxxP motifs
and to participate in protein activity and regulation. The depletion
of this PPR does not influence p53 transcriptional transactiva-
tion but severely affects growth suppression (106). This finding
shows that p53 transcriptional activity and growth suppression
are uncoupled events and that the first PPR region mediates
a critical activity in p53-dependent tumor suppression. Further
studies have identified this region as crucial for p53-mediated
apoptosis but dispensable for cell growth arrest and the suppres-
sion of cell transformation (107). The absence of the first PPR
in p53 has been shown to decrease both the specificity of target
promoters and the induction of apoptotic genes, such as pig3, pig6,
pig11, p85, and btg2 (108). This region is also important for p53
regulation because the lack of PPR increases the Mdm2 affinity
for p53 and makes it more susceptible to the negative regulation
of Mdm2, facilitating protein ubiquitination and nuclear export
(109). Further explorations have clarified the mechanism through
which PPR renders p53 sensitivity toMdm2 inhibition. The Pro82
located in the first PPR is required for p53/Chk2 interaction in
response to DNA damage and subsequent Ser20 phosphorylation
(110). Germline substitutions (e.g., P82L) and somatic mutations
(e.g., P85S and P89S) in bladder tumors (111) in subjects with
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Li–Fraumeni syndrome and ovarian carcinoma (112) have shown
that the first PPR of p53 plays an important role in regulating pro-
tein activity. Although classified as a transcription factor, p53 can
also mediate apoptosis without new RNA and protein synthesis.
This transcription-independent mechanism has been observed in
human vascular smooth muscle cells in which p53 activation is
able to increase surface Fas (CD95) expression by transport from
the Golgi complex (113).

The second PPR located between the DBD and OD contains
seven proline residues. As indicated by the presence of several
prolines within the first and second PPRs, a cautionary note about
these segments concerns the effect of the number of prolines
on the kinetics of p53 folding. Proline regions have conforma-
tionally constrained backbones that may not only interfere with
proper p53 folding but also allow multiple symmetrical orienta-
tions among the TAD, DBD, and OD to enhance the induced fit
conformations upon protein or DNA binding.

The last disordered segment of p53 concerns the basic C-
terminal region (BR) that is also prone to multiple post-
translational modifications. The presence of multiple acetylated
lysines within the p53 BRmakes it similar to histone tails, not only
physically but also functionally. The binding of p300/CBP acetyl-
transferase to p53 TAD is able to acetylate not only histones but
also p53 itself (114). A series of studies have been conducted in an
attempt to uncover the complex role and regulation of p53 acetyla-
tion. Two groundbreaking studies have shown conflicting results
concerning the involvement of p53 acetylation in triggering its
DNA-binding function. First, Gu and Roeder concluded that p53
acetylation by p300 occurs in theC-terminal domain and is critical
for stimulating the DNA-binding function of p53, likely due to an
acetylation-induced conformational change (114). Later, Espinosa
and Emerson showed that the acetylation of the C-terminus by
p300 is not necessary for p53 DNA binding or promoter acti-
vation (115). Further exploration revealed the key steps in the
mechanism of p300–p53–DNA transactivation. Phosphorylation
by Chk2 at Thr18 and Ser20 in the p53 TAD stabilizes p300
docking to the TAD domain (116). This docking was shown to
be essential for the DNA-dependent acetylation of p53, suggesting
that the acetylation sites within the p53 tetramer are occluded in
the absence ofDNA (117). Furthermore, the role of acetylation as a
post-DNA-binding process is important for clamping and stabiliz-
ing the p300–p53 acetylated complex (117). Finally, to identify the
p300-docking motifs in p53 related to protein acetylation, p300
was subjected to peptide selection from a phage-peptide library.
The identification of a second flexible p300-binding motif within
the PPR of p53 has been shown to be required for acetylation and
p53 binding to promoter sites (118). These observations provide
a mechanism to explain how p300/CBP binding to p53 increases
protein stability and transcriptional activity. The p53 BR has been
shown to be acetylated by p300/CBP at Lys372, 373, 381, and 382
(119–121). P/CAF, a histone acetyltransferase (HAT) associated
with p300/CBP, has also been shown to acetylate Lys320within the
second PPR (119). Acetylation at position 373 in p53 by p300/CBP
leads to cell apoptosis, whereas acetylation at 320 by P/CAF leads
to cell-cycle arrest (122). In colorectal cancer (CRC), ArhGAP30,
a Rho GTPase-activating protein, is a crucial regulator of p53
acetylation and activity. This protein binds to the C-terminus of

p53 and facilitates the p300-mediated acetylation of p53 at Lys382.
A low expression of ArhGAP30 is correlated with poor survival
in CRC patients, showing that ArhGAP30 is a potential marker
of CRC (123). This finding shows how p53 acetylation works in
a fine-tuned mechanism that affects the gene-expression patterns
and cell fate in normal physiology and cancer development.

The BR of p53 binds to non-specific sequences in DNA (124–
126) and also regulates the sequence-specific binding of the
core (127, 128). Using analytical ultracentrifugation, an inverse
relationship was observed between the number of acetyl groups
attached to the C-terminus of p53 and its ability to bind DNA
(129). More recently, electron microscopy and single-molecule
experiments have provided a basis to understanding how full-
length p53 scans and recognizes specific DNA-responsive ele-
ments. The synergistic model of scanning and DNA recognition
is based on the ability of the C-terminus to rapidly translocate as
the core domain hops along DNA with transient associations for
rapid scanning (130–132).

The transfer of acetyl groups to the ε-amino group of lysine
residues in histones represents one of the best characterized
post-translational modifications for chromatin regulation. Acetyl
groups are also transferred to non-histone proteins, as shown
above for p53, and modulate protein function by changing stabil-
ity, cellular localization, and protein–nucleotide/protein–protein
interactions. The acetylation status is maintained by the opposing
activities of HATs and histone deacetylases (HDACs) in a con-
trolledmanner. In the case of p53,HDAC-1, -2, and -3 are all capa-
ble of downregulating p53 function, showing that the deacetyla-
tion of p53 is part of themechanism that controls the physiological
activity of p53 (133). However, AMP-activated protein kinase
(AMPK) phosphorylates and inhibits the p53 deacetylase SIRT1,
promoting p53 acetylation and apoptosis in hepatocellular car-
cinoma (134). This finding shows that HDACs are also involved
in cancer development. In CML cells with Bcr–Abl-independent
imatinib resistance, the resistance mechanism includes the aber-
rant acetylation of p53 and other proteins due to the upregulation
of HDACs and the downregulation of HATs, indicatingHDACs as
targets for imatinib-resistant leukemia cells (135). In contrast, the
pathogenic protein AML1/ETO that is involved in t(8;21) acute
myeloid leukemia has been shown to be proteasome-degraded
when treated with panobinostat, a HDAC inhibitor, and does not
require functional p53 or the activation of conventional apoptotic
signaling in a mouse model (136).

The Effect of p53 Mutations and
Aggregation on its Functions and Cancer
Development

The evaluation of 3,281 samples of 12 different tumor types
revealed 127 mutated genes in different signaling and enzymatic
processes, and the TP53 gene was detected as the most frequently
mutated gene (42%of samples) (25). The current database of TP53
mutants (http://p53.fr) reveals 45,000 somatic mutations, most of
which provide advantages to a specific cell clone in its microen-
vironment, increasing its survival or reproduction. These driver
mutations normally trigger clonal expansions and tumorigenic
development (137).
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Factors influencing the TP53 mutational frequency in tumors
may be classified by their high heterogeneity and the different
cancer subtypes, the stage of cancer development, and ambient
factors, such as viral and bacterial infection. Depending on the
cancer type, TP53 mutations can range from <5%, as in cervical
carcinoma, to 90% in ovarian carcinoma. For instance, amolecular
search in breast carcinoma revealed four major subtypes of TP53
mutations with variable frequency, ranging from 12% in luminal
A and 30% in luminal B to 72% in HER2-E and 80% in basal-like
(138, 139). Considering the stage of development, a low frequency
of TP53 mutations was reported for primary prostate tumors
(between 10 and 20%) in contrast to metastatic tumors (up to
50%) (140). In CML disease, the occurrence of TP53 mutation
is more frequent in the blastic phase (141, 142). Concerning
exogenous factors, most human viruses impair p53 activity. In
cervical cancer, the human papillomavirus E6 protein targets p53
for degradation (143). Bacterial infection has recently been shown
to trigger the p53 pathway and to activate p53 isoforms (144).
Moreover, the p53 R249S variant is often observed in liver cancer
as being associated with aflatoxin B1 food contamination (145).

Mutations affecting amino acid sequences (i.e., missense muta-
tions) are commonly observed in the TP53 gene. In the case of
TP53,monoallelic alterations occur within six hot-spot sites in the
DBD (R175, G245, R248, R249, R273, and R282). Even though
missense mutations are predominant in tumors, other genetic
alterations have already been described in TP53 (146), as observed
in osteosarcoma with a high frequency of TP53 gene deletion
(147, 148). Furthermore, TP53 germline mutations cause a rare
autosomal-dominant cancer predisposition called Li–Fraumeni
syndrome (149, 150). Most predisposed subjects present a variety
of tumor types and carry a specific p53 germline mutation with
approximately 90–95% penetrance (151). Similarly, dominant-
negative mutations in TP53 are involved in tumor growth and
development in glioblastoma (152). It is clear that we are still
far from fully comprehending the complex behavior of TP53
mutations and signatures in human cancer and its effects on the
p53 protein network, even considering that TP53 expresses eight
differentially spliced mRNAs and is translated into 12 isoforms.

In fact, there is no unanimous resolution for the following
question: in what circumstances can p53 act as a tumor suppressor
or oncogene? The transcriptional activity of p53 may range from
total inactivation to an activity greater than that of the wt form
(153). The high frequency of p53 mutations in several tumors
and the fact that p53−/− mice display marked early onset and
cancer predisposition depict p53 as an important tumor sup-
pressor (94, 154). In contrast, mouse models have shown that to
work as a tumor suppressor, p53 does not respond to acute DNA
damage but to the oncogene-induced expression of the p19ARF

tumor suppressor, which activates p53 via the sequestration and
inhibition of Mdm2 (155, 156). In addition, mice deficient for
p21, Puma, and Noxa are not able to trigger p53-mediated apop-
tosis, G1/S cell-cycle arrest, and senescence but remain free of
tumor development for at least 500 days compared with p53-null
mice. This finding suggests that the induction of apoptosis, cell-
cycle arrest, and senescence is dispensable for the p53-mediated
suppression of tumor development and that genomic stability
or metabolic adaptation are more important for p53 suppressor

activity (157). Surprisingly, mice bearing three lysine-to-arginine
substitutions at p53 acetylation sites (K117R, K161R, and K162R)
retain the ability to regulate energy metabolism and reactive oxy-
gen species production compared with p53-null mice, showing
that metabolism regulation and antioxidant function are crucial
events for the suppression of early onset tumorigenesis (158).
Knock-in mice expressing an allelic series of p53 TAD mutations
have revealed that the transactivation of p53 is essential for tumor
suppressor activity but is associated with a small set of novel p53
target genes (159).

p53 mutations may lead to different effects: (i) mutant p53 may
lack the activity of wt p53 (loss-of-function – LoF) (ii) mutant
p53 may acquire oncogenic activity without disturbing wt p53,
(iii) mutant p53 may inhibit wt p53 through a dominant-negative
effect and trigger oncogenic functions and (iv) mutant p53 may
inhibit wt p53 protein through a dominant-negative effect and
reduce activity. The acquisition of oncogenic activity by mutated
p53 was first revealed in experiments using the transfection of
mutant p53 into TP53-null cells, which revealed the formation
of tumors in mice (160–162). In addition to the gain of func-
tion, mutated p53 may operate through a dominant-negative
mechanism, with the formation of hetero-oligomers between the
mutant protein and wt p53 (163, 164). A possible dominant-
negative effect may also be observed with mutated p53 and its
ancestral p63 and p73 paralogs. In contrast, mass spectrometry
experiments have revealed that p63 and p73 homotetramers are
able to form mixed tetramers after 30min of incubation. Con-
versely, neither p53 and p73 nor p53 and p63 homotetramers were
able to exchange components after a 24-h incubation, showing
a divergent evolution of the oligomerization domain within the
p53 family (165). Furthermore, a gain-of-function phenotype of
mutated p53 has been shown by the co-aggregation of p63 and
p73 (166), showing that the creation of dominant-negative p53
through hetero-oligomerization is not exclusive. It is likely that
dominant-negative mechanisms occur via high-level oligomeric
states, in which aggregated mutant p53 sequesters wt p53 into
mixed oligomers (22, 23). Several oncogenic functions of mutated
p53 have been characterized, and for more in-depth information,
please refer to specialized literature (167, 168). Of note, the c-
Abl kinase also forms homo- and hetero-oligomers with its bind-
ing partner Abi-1 in a kinase-dependent manner (169). In the
chimeric Bcr–Abl protein, the oligomerization domain of Bcr
has been revealed to be crucial for the transforming function of
this aberrant protein (170), but no relationship has been demon-
strated in terms of the involvement of higher oligomeric states
in leukemogenesis. Few works have linked protein aggregation to
cancer development. Another important tumor suppressor that
is inactivated in several types of cancer, the retinoblastoma (Rb)
protein shares low stability and oligomerization with p53 (171).
In addition, the polymerization of the splicing factor proline
and glutamine (SFPQ) was shown to be essential for the cellular
functions of this tumor suppressor (172) linking aggregation not
only to the pathological aspects of cancer but also to functional
roles of cellular nucleic acid metabolism.

The thermodynamics of wt and mutant p53 (R175H, C242S,
R248Q, R249S, and R273H) were explored at the end of the
1990s through biophysical techniques and revealed irreversible
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denaturation and aggregation under certain conditions for the wt
and studied mutants (173). In 2003, our group designed a study
to examine the aggregation of the p53 core domain (174–176).
More recently, we explored whether the wt and the p53 hot-spot
mutant R248Q aggregates like an amyloid under physiological
conditions andwhethermutant p53 can seed the aggregation of wt
p53 (22). Using a cohort of structural and cellular approaches, we
established the amyloid nature of wt and mutant p53 aggregation.
We showed that a seed of amyloid oligomers formed from the
p53 hot-spot mutant R248Q accelerated the aggregation of wt
p53 into an inactive conformation (22). We showed that a prion-
like behavior of p53 would explain the dominant-negative and
gain-of-function effects ofmutant p53 (Figure 2). Recently, Fersht
showed that different p53 mutants aggregate through a complex
order mechanism and that co-aggregation can occur with wt p53
and p63 or p73 (177, 178). To address the role of aggregated
p53 and the prion-like effect in triggering cancer development
and progression, we observed a greater extent of mutant p53
co-aggregation with amyloid oligomers in breast cancer MDA-
MB-231 cells compared with wt p53 cells (MCF7) (22). In line
with our observations, similar results were observed in the biop-
sies of breast cancer patients carrying specific p53 mutations
(R175H, H193L, I195L, Y234C, G245S, and R248Q) (29) and in
the skin tissue of six patients with basal cell carcinoma (179).
Furthermore, prostate cancer tissues revealed high levels of p53
immunostaining within aggregates containing mutant and wt p53
(180). Finally, cancer stem cells from a unique population of
high-grade serous ovarian carcinoma (HGSOC) revealed that p53
aggregation is associated with its inactivation and platinum resis-
tance. During differentiation to their chemosensitive progeny,

these cells lost their tumor-initiating capacity and p53 aggregates
(181). Moreover, using two-dimensional gel electrophoresis and
mass spectrometry, these authors discovered that aggregated p53
works uniquely by interacting with proteins involved in cancer
cell survival and tumor progression (181). Altogether, based on
this recent ex vivo evidence, the involvement of p53 aggrega-
tion in cancer appears to be undisputed. Although a prion-like
mechanism would explain the dominant-negative and gain-of-
function effects during p53 aggregation, several questions are still
awaiting exploration to define it as an etiological factor for cancer
pathogenesis, invasiveness and metastasis (182).

Prions are transmissible polypeptide particles that undergo
a conformational change from their cellular form (PrPC) to a
β-sheet rich form (PrPSc). This conformational modification is
associated with the transmissible characteristics and pathogenesis
of several diseases, including bovine spongiform encephalopathy
and Creutzfeldt–Jakob disease in humans (183, 184). A genuine
prion should be transmissible in cell and in vivo. Features linking
p53 to prions are the conformational conversion of p53 during
tumorigenesis (wt p53 to mutated p53) and the ability of mutant
p53 to sequester wt p53 into amyloid species. Another interest-
ing shared feature of p53 and PrP is their nucleic acid binding
ability (23, 185–187). Although there are common characteris-
tics between p53 and prions, no transmissible mechanisms for
p53 have yet been demonstrated (182). Controversially, recent
works have independently shown mechanisms of p53 secretion
and uptake by cells (188–190), yielding the possibility that p53
is a transmissible particle. The Kirsten-Ras (K-Ras) oncogene
protein has been shown to participate in p53 suppression by
inducing Snail, and the depletion of Snail is able to induce p53

FIGURE 2 | Prion-like effects of mutated p53. The seeding of mutated p53
(p53Mut) accelerates the amyloidogenic aggregation of wild-type p53 (p53WT)
and may result in the co-aggregation of different cellular partners including p53

homologs p63 and p73, heat shock proteins (Hsps), and the p53 regulator
Mdm2, and may also include additional proteins (?) that have yet to be
discovered. Aggregation leads p53 to lose or gain oncogenic function.
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in K-Ras-mutated cancer cells but not in wt cancer cells (191,
192). Therefore, a direct correlation between K-Ras-mediated
p53 suppression and tumorigenesis has been established in lung
and pancreatic cancers, which have a higher frequency of K-
Ras mutations (193). p53 suppression in response to the K-Ras
oncogene occurs through a Snail-dependent mechanism in which
p53 is secreted from cells and then taken up by K-Ras-mutated
cells in caveolin-1-mediated endocytosis (189). Moreover, full-
length p53 aggregates have been shown to penetrate HeLa and
NIH3T3 cells via macropinocytosis and induce the aggregation of
intracellular p53 (190). Although mouse models are still lacking,
these surprising in cell transmissibility mechanisms of p53 have
prompted new discussions about our proposed prion-like mecha-
nism and have instigated ongoing experiments by our group and
others to demonstrate the involvement of p53 aggregates in cancer
pathogenesis and progression.

p53 aggregation and gain-of-function effects can be minimized
by small molecule intervention. For instance, CDB3 is able to
rescue the conformation of unstable p53 mutants (194), allowing
an increase in the protein half-life to reach the nucleus and act
as a tumor suppressor. In the case of PRIMA-1, its conversion
to compounds that form adducts with thiols in mutant p53 is
sufficient to induce apoptosis in tumor cells (195). Furthermore,
resveratrol has been shown to inhibit carcinogenesis through
the induction of p53-dependent cell death. Indeed, the transient
transfection of wt p53 allowed H1299 cells to become more sen-
sitive to the pro-apoptotic effects of resveratrol (196). Efforts to
increase health quality are based on treatment, diagnosis and
prevention. The existence of a direct correlation between the
prion-like effect of aggregated p53 and tumorigenesis remains
an open question, but we believe that it may provide the basis

for new therapeutic interventions, early diagnosis, and cancer
prevention.

Impact of Unfolded c-Abl Core Segments
on its Functions and Activity Regulation

The proper phosphorylation control of specific serine, threonine,
or tyrosine residues is a fundamental step in cellular growth,
survival, and death and is achieved through the tight regulation
of protein kinases. As shown previously, tumor suppressors have
the opposite effects. Under several types of stress, their funda-
mental role is to maintain genome integrity, and this is achieved
by activating or repressing the transcription of specific genes to
undergo biological processes, including the induction of apoptosis
and growth arrest. Because kinase activity is involved in gene
expression, metabolic pathways, cell growth and differentiation,
membrane transport, and apoptosis, their activity must be tightly
regulated. There are 518 human kinase sequences (1.7% of the
entire genome), and the tyrosine kinase family is the largest with
90 members. This group of kinases is divided into 58 receptor
tyrosine kinases (RTKs) and 32 non-receptor tyrosine kinases
(nRTKs) (197).

c-Abl belongs to the nRTK group and has a modular and
complex architecture flanked by unfolded segments (Figure 3).
The proper dynamics of these segments play an important role
during kinase activation/inhibition and cellular localization. The
c-Abl core is composed of in-tandem Src homology (SH) 3 and
SH2 domains that negatively regulate SH1 kinase activity. The
SH3–SH2–SH1 domains are flanked by disordered regions at the
most N-terminal region of the SH3 domain, which comprises
the N-Cap region (residues 1–83), the short linker (residues

FIGURE 3 | c-Abl architecture is complex and not fully understood.
Schematic representation of full-length c-Abl showing crystal structures
of the core (PDB ID: 1OPK), F-actin-binding domain – FABD (PDB ID:
1ZZP), and flexible segments at the N- (N-Cap) and C-terminal regions
(proline–any residue–any residue–Proline, i.e., PxxP motifs, nuclear

localization signals – NLS, and DNA-binding domain – DBD). The linker
regions in the core are colored red. The cellular partners of specific
domains are shown in brackets. The myristate switch (sphere
representation) is presented in the open (dashed orange line) and closed
(solid orange line) states.
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139–143: NSLEK) connecting the SH3–SH2 domains, and a
longer linker between the SH2–SH1 domains (residues 237–254:
PKRNKPTVYGVSPNYDKW).

Pivotal studies have clarified the participation of SH3–SH2
domains in activity regulation and oncogenic signaling of c-Abl
(198–200). The presence of the SH3 domain has been shown to
inhibit the transforming activity of c-Abl in vivo but has no effect
on the in vitro activity, suggesting that cellular inhibitors may
act in kinase inhibition (200). Not only mutations or depletions
within the c-Abl SH3 domain but also the phosphorylation of a
specific SH3 Tyr residue (Tyr89) are able to disrupt its negative
regulatory effect (201). In the 1990s, the consensus SH3-binding
site was identified as a proline-rich segment (202). In the case of c-
Abl, an intramolecular SH3-domain interaction is able to regulate
c-Abl activity through SH3 binding to the longer linker connect-
ing SH2 to SH1 (203, 204). Although cellular partners have been
shown to inhibit c-Abl activity (205), including retinoblastoma
(Rb) protein (206), Abl-interactor proteins 1 and 2 (207, 208),
ABL-associated protein-1 (209), the 23-kD macrophage stress
protein MSP23 or PAG (210), F-actin (211), and BRCA1 protein
(212), Superti-Furga’s group provided a basis for understand-
ing the auto-inhibition mechanism of the c-Abl protein through
the N-terminal Cap. These researchers concluded that an SH3
domain-dependent cellular inhibitor is dispensable (213). Fur-
thermore, two consecutive crystallographic studies conducted by
Superti-Furga and Kuriyan’s group extended the understanding
of c-Abl auto-inhibition. These studies revealed that during inhi-
bition, a myristoyl/phosphotyrosine switch regulates the docking
and accessibility of the SH2 domain to the C-lobe of the kinase
domain (KD) and that c-Abl can be activated by phosphotyrosine
ligands through binding to a specific motif in the SH2 domain
(FLVR motif) (214, 215).

A second crystal structure of the c-Abl core revealed more
about the participation of theN-Cap segment for c-Abl inhibition.
The phosphorylation of Ser69 in the N-Cap mediates interactions
with the shorter linker connecting SH3 and SH2 (NSLEK region),
showing that this disordered N-terminal region not only partici-
pates in presenting the myristoyl group to the kinase but also may
work as a stabilizer (216). More recently, our group proposed a
cascade-like mechanism for c-Abl inhibition. In this mechanism,
N-Cap–SH2 interactions monitored by chemical shift perturba-
tion analysis would provide guidance for myristate binding in the
C-terminal pocket of SH1 (217). Although no unanimous data
exist concerning the real c-Abl inhibitory mechanism (cellular
inhibitors or auto-inhibition), functional and structural charac-
teristics make an autoinhibitory mechanism more favored and
accepted. In contrast, in a perspective paper published in Nature
Cell Biology, Wang proposed a speculative model of c-Abl co-
inhibition that accommodates both inhibitory mechanisms (218).
It is likely that both mechanisms may influence c-Abl inhibition
depending on the cellular context.

In c-Src, a prominent family of kinases composed of nine
members (c-Src, Yes, Fyn, Hck, Lck, Lyn, Blk, Fgr, and Yrk), a
phosphotyrosine residue in the C-terminal region of the kinase
(pY527) interacts with the SH2 domain (219–221) and is con-
sidered a surrogate mechanism of the N-Cap-myristoyl group.
Controversially, a c-Src crystal structure revealed a similar pocket

for myristate binding (222), and more recently, membrane bind-
ing and myristoylation have been shown to regulate stability
and kinase activity (223). In the case of c-Abl, transiently trans-
fected wt and variant forms lacking myristoyl have been detected
by immunoblots in crude membrane-enriched fractions (215),
showing that membrane targeting may be a multifactorial event.
One possible surrogate for myristate, as an inhibitor molecule, is
phosphatidylinositol-4,5-biphosphate [PtdIns (4,5)P2], the prod-
uct of PLC-γ1 (224). In the case of c-Src, myristoylation is assisted
by a polybasic cluster of amino acids that tightly bind the kinase
to membrane regions (225, 226). These regulatory differences
between c-Src and c-Abl kinase members reveal the complexity
and plasticity of tyrosine-related kinases (227).

Small-angle X-ray scattering studies of an activated c-Abl form,
in which the N-Cap region is depleted and two additional muta-
tions are introduced (P242E/P249E), revealed an elongated shape
consistent with the SH2 domain sitting at the top of the SH1 N-
lobe (216). This SH2-kinase intramolecular interaction has been
shown to be necessary for Bcr–Abl catalytic activity and was val-
idated as an allosteric target for therapeutic intervention because
its disruption completely abolished leukemia formation in mice
(228). Altogether, these data suggest that, upon complete acti-
vation, the N-Cap-myristoyl tether would detach from the SH1
C-terminal pocket. However, a theoretical model proposed that
the equilibrium fraction of c-Abl in which myristoyl is unlatched
is only ~0.5% (229). An intermolecular autophosphorylation of
Tyr412, located at the activation loop, followed by the phosphory-
lation of Tyr245, which is located in the longer linker between the
SH2–SH1 domains, also participates in enzyme activation (230).
To understand the possible role of a detached N-Cap-myristoyl
tether inside the cell, our group asked whether myristoylated c-
Abl would bind to the cellular membrane. Although c-Abl was
initially shown to be present in pseudopodia protrusions, after
stimulation with hepatocyte growth factor (HGF) in thyroid can-
cer cells (231), we demonstrated that the N-Cap-myristoyl tether
may play a role in protein inhibition and also may direct the c-Abl
protein to anchor in the membrane as an additional mechanism
to stabilize this disordered segment, which may also be linked to
early apoptotic signaling (217). Although we proposed a link to
apoptosis during transport to the membrane, the membrane pool
of c-Abl is also linked to cytoskeletal reorganization (232, 233),
cell migration, and neurite outgrowth. For example, c-Abl acti-
vation downstream to the platelet-derived growth factor receptor
(PDGFR) has been shown to require functional phospholipase C-
γ1 (PLC-γ1), creating a bidirectional link between PLC-γ1 and
c-Abl in the membrane ruffling signaling pathway (224).

The Impact of Unfolded C-Terminal
Segments of c-Abl on its Nuclear Functions

c-Abl kinase is not exclusive in the broad spectrum of biological
functions triggered by its activity because neonatal lethality was
observed in c-Abl−/− mice and in mice carrying a truncated
form of the c-Abl in which the C-terminal region was depleted
(234, 235). The C-terminal region of c-Abl is composed of more
than 600 residues with several flexible and disordered segments
containing three nuclear localization signals (NLSs) (236, 237), an
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NES (238) withmultiple proline-richmotifs andmultiple protein-
binding sites; a DBD (239) and a structured F-actin-binding
domain (FABD) (Figure 3). In addition to the FABD (240),
structural information from this C-terminal region is still lacking
probably because of its increased flexibility and the presence of
non-crystallizable segments. Indeed, the DBD of c-Abl does not
bind DNA with a high degree of sequence specificity (241), and

a computational prediction of its potential secondary structure
revealed that it is mainly formed of coil conformations (242).

The presence of NLS and NES confers to the protein the ability
to shuttle between these two cellular compartments depend-
ing on the cellular requirements (Figure 4). The nuclear c-
Abl pool is involved in the control of cell-cycle-dependent and
DNA damage-induced gene expression. The main regulator of

FIGURE 4 | Intracellular signaling of c-Abl. A schematic
representation of the broad spectrum of c-Abl signaling pathways in
different sub-cellular compartments. The nuclei are shown by dashed
lines. Inactivated c-Abl, Rb, p53, Mdm2, and PLCγ-1 proteins are colored
black to distinguish them from activated forms (represented in different
colors). “P” in red means phosphorylation, “Ub” in yellow ubiquitination,

“Ac” in light red acetylation, and the yellow ray is genotoxic stress. Red
and black arrows represent signaling through phosphorylation and
promoting activity, respectively, and red lines with a crossbar indicate
signaling inhibition. Molecules anchored to the membrane are:
PI(4,5)P2 – phosphatidylinositol-4,5-biphosphate, Myr – myristate, and
DAG – diacylglycerol.
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nuclear c-Abl is the retinoblastoma (Rb) tumor suppressor, which
binds through its C-terminal tail to the c-Abl ATP-binding lobe
(206). In resting G1 cells, Rb is found unphosphorylated, and
this is the active state for its growth-inhibitory activity. Upon
G1/S transition, Rb becomes hyperphosphorylated by cdk/cyclin
kinases (243) and releases the Rb/c-Abl complex, allowing c-Abl
to become activated. The assembly of Rb-mediated complexes,
such as the ternary complex of E2F/Rb/c-Abl, has been shown to
be important for cell-cycle arrest (244). Moreover, the cytostatic
effect of c-Abl (245) has been shown to be dependent not only
on Rb but also on p53 (237) (Figure 4). However, Sawyer’s group
observed that growth suppression triggered by c-Abl requires p53
but not Rb (246).

The 52 tandem heptapeptide repeats (YSPTSPS) in the
carboxyl-terminal domain (CTD) of RNA polymerase II are
extensively phosphorylated on serine, threonine, and tyrosine
residues as well as by O-linked glycosylation (247). The RNA
pol II CTD tail has been shown to be a specific phosphorylation
target for nuclear activated c-Abl but not c-Src (248). CTD phos-
phorylation by c-Abl requires an active c-Abl SH2 domain that
binds to partially phosphorylated CTD and increases processivity
(249), but a second c-Abl CTD-interacting domain at the c-Abl
C-terminal region is also required (250).

Nuclear c-Abl is activated through phosphorylation on Ser465
by ataxia telangiectasia-mutated (ATM) kinase after ionizing
radiation (251, 252), which also phosphorylates the major p53-
negative regulator Hdm2 on Ser395 (253, 254) (Figure 4).
Activated c-Abl phosphorylates Hdm2 on Tyr394 (255), and
through this phosphate-exchanging mechanism, Hdm2 impairs
its inhibitory activity toward p53, which becomes active in the
nucleus (256, 257). Although c-Abl and p53 are both activated
upon genotoxin exposure (258), it appears that only p53 is con-
sidered a universal sensor of genotoxic stress (259). Depend-
ing on the extent of DNA damage, p53 signaling can induce
the transcription of genes involved in at least three processes
that govern cell fate: cell-cycle arrest, cellular senescence, and
apoptosis (260).

The Impact of Unfolded c-Abl Segments on
its Cytoplasmic Functions and Cellular
Localization

Wehave recently shown that theN-Cap and SH3 domains of c-Abl
acquire microsecond–millisecond motions upon N-Cap associa-
tion with the SH2-L and that the N-Cap-myristoyl tether likely
triggers the protein to anchor to the membrane in a function-
and stability-dependent mechanism (217). Although membrane
anchoring is linked to early apoptotic signaling, the membrane
pool of c-Abl is also involved in biological processes, such as
membrane ruffling, mitogenesis, and chemotaxis. Upon PDGF
stimulation, PDGFRs dimerize and recruit c-Src and PLC-γ1 to
activate membrane-bound c-Abl (261). Moreover, c-Abl and the
Abl-related gene (Arg) have been shown to form an inducible
complex with PDGFR and change phosphoryl groups (262). After
activation, c-Abl binds to PLC-γ1 and inhibits its lipase activity
through phosphorylation (224, 261).

The cytosolic pool of c-Abl is able to bind the F-actin net-
work (263), and upon binding, its kinase activity is abolished
(211) (Figure 4). A proline-rich region in the C-terminus of c-
Abl has also been shown to sequester G-actin and bundle F-
actin filaments in vitro (263), a mechanism that has also been
observed for Arg (264). The detachment of cells from the extra-
cellular matrix (ECM) does not influence the kinase activity of
the nuclear and cytoplasmic c-Abl pools, but during cell adhesion
to fibronectin, c-Abl becomes activated, and the nuclear pool is
transiently recruited to the cytosol. These results suggest that c-
Abl can induce integrin signaling to the nucleus to coordinate
adhesion and cell-cycle signals (265). During the cell cycle, the
cdc2 Ser/Thr kinase is required for G1/S and G2/M transitions
and is responsible for the hyperphosphorylation of the c-Abl C-
terminal region, which may participate in cell-cycle regulation
(239). Altogether, the one-gene-one-function paradigm is beyond
the c-Abl biological roles. Because of its intrinsic complexity and
flexibility, more than 20 years of research have been required to
begin deciphering its physiological functions, and it is unclear how
many more years will be needed to completely understand this
enigmatic and hard-working kinase.

The Involvement of c-Abl in Leukemia and
Solid Tumors

Chronic myeloid leukemia is a biphasic disease with a chronic
phase ranging from 3 to 4 years that is characterized by a mas-
sive expansion of granulocytic cells. This step is followed by a
blast phase in which cell differentiation is blocked, leading to
extramedullary infiltrates of immature myeloid or lymphoid cells
(blasts) in the peripheral blood, liver, spleen, or lymph nodes.
Beyond the clinical features of hematopoietic malignances, such
as CML, the c-Abl oncoprotein is also involved in malignant
solid tumors of the breast, lung, colon, and kidney (266–269).
In these tumors, the role of c-Abl activation is not linked to
Bcr–Abl translocation but is associated with gene amplification,
protein overexpression, oncogenic tyrosine kinases, chemokine
receptors, oxidative stress, and negative regulatory protein inhi-
bition (270, 271).

The discovery of the oncogenic effect of the c-Abl protein orig-
inates from early studies of the Moloney leukemia virus (MLV),
which triggers a thymic-independent lymphatic neoplasm upon
inoculation inmice (272, 273). The discovery of a small, abnormal
chromosome named the Philadelphia chromosome (Ph) was the
first consistent chromosomal abnormality associated with a spe-
cific type of leukemia (274). In 1973, this shortened chromosome
was characterized as the reciprocal translocation t(9;22) through
quinacrine fluorescence and Giemsa staining (275). The Ph chro-
mosome is found in the myeloid, erythroid, megakaryocytic, and
B lymphoid lineages, indicating that it represents a stem cell-
proliferative disorder.

At the molecular level, Ph translocation creates a hybrid gene
known as bcr–abl that encodes three main protein isoforms
(p190Bcr–Abl, p210Bcr–Abl, or p230Bcr–Abl) with different leukemic
phenotypes (69). Genomic breaks occur within the break cluster
region (bcr) gene at three different regions classified as minor-bcr,
major-bcr, and micro-bcr (276). In the c-abl gene, a non-random
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break also occurs within the first intron (277), and this break
removes the residues corresponding to the N-Cap-myristoyl
tether. As a result, the chimeric Bcr–Abl loses the pivotal N-Cap-
myristoyl inhibitory mechanism and becomes highly active. The
bcr–abl fusion is considered a hallmark of CML pathogenesis.
Because the anchoring of c-Abl to the membrane through the N-
Cap-myristate tether is linked to pro-apoptotic signaling (217)
and Bcr–Abl is exclusively cytosolic (278), we believe that this
“missing link” in the Bcr–Abl chimera may help explain the
apoptotic resistance phenotype of Bcr–Abl-positive cells. Through
the activation of the transcription factor STAT5, Bcr–Abl specif-
ically increases the expression of the antiapoptotic proteins Bcl-
2 and Bcl-X (279–281). Additionally, Bcr–Abl has been shown
to prevent mitochondrial cytochrome c release through the inhi-
bition of Bad by phosphatidylinositol 3-kinase/Akt-dependent
signaling (282). Moreover, the mechanism explaining the anti-
apoptotic mechanism of Bcr–Abl has been shown to occur down-
stream of mitochondrial cytochrome c release, preventing the
binding of Apaf-1 to caspase 9 (283). The involvement of a
membrane-bound c-Abl in apoptotic signaling requires further
exploration.

c-Abl Mutations are a Consequence of a
Drug-Resistance Phenotype

Different from p53, which contains mutations that are associated
with dominant-negative, loss-of-function and gain-of-function
mechanisms in cancer, c-Abl mutations are a consequence
of a drug-resistance phenotype. The front-line and well-
accepted therapy for early diagnosed chronic CML patients
is 2-phenylaminopyrimidine or imatinib mesylate (284, 285),
which has also been shown to be effective for blast crisis
(286). Although effective, continuous treatment with this ATP-
competitive Bcr–Abl inhibitor leads to patient relapse in the
majority of cases due to KD-acquired mutations. However, this
resistancemechanism is not exclusive (287–289). Indeed, imatinib
resistance has been shown to occur without amplification or
mutations in Bcr–Abl (290). Moreover, the overexpression of
multidrug-resistance genes may also participate in imatinib
resistance (291, 292). The exploration of a drug-resistance
signature using microarrays has revealed the upregulation of
apoptosis-related genes and the downregulation of genes involved
in energy metabolism in K562 sublines established with different
dosages of imatinib (293). Imatinib insensitivity is not only related
to a drug-resistance phenotype. Ph-positive stem cells (CD34+)
from patients with chronic phase CML are equally resistant to
the drug (294) and exhibit enhanced MAP kinase activity after
treatment (295). Moreover, microarrays comparing CML CD34+
cells with normal CD34+ cells have revealed Bcr–Abl-induced
functional alterations, such as increased cell-cycle and proteasome
activity (296). Altogether, these imatinib-insensitive stem cells
likely explain the maintenance of a minimal residual disease
phenotype and relapse.

Almost a year after Druker’s work, which showed drug effi-
cacy, a series of patient follow-up studies evidenced a high fre-
quency of point mutations within the KD ATP-binding region
or within the P-loop associated with poor prognosis (297–299).

Controversially, several imatinib-resistant KD mutants have been
shown to remain sensitive to this drug (300). Crystallographic
studies of the wt and the T315I hot-spot mutant have aided the
understanding of the contacts of imatinib within the c-Abl KD
(301, 302) and the mechanisms underlying resistance (303) but
even the second-generation (nilotinib and dasatinib) and several
third-generation ATP-competitive kinase inhibitors succumb to
overcome T315I gain-of-function effects (304–306). The involve-
ment of the myristate pocket in kinase inhibition gives rise to
the targeting of Bcr–Abl through allostericmechanisms. Although
some imatinib-resistant Bcr–Abl mutants are sensitive to the
myristate-like inhibitor GNF-2, T315I is not (307). However, the
association of nilotinib and GNF-5, a close derivative of GNF-
2, was able to prolong the survival of mice in a Bcr–Abl T315I
xenograft model (308). The recent idea of targeting Bcr–Abl is
based on allosteric inhibitors targeting the myristate pocket, the
Bcr N-terminal coiled-coil oligomerization domain (309) or the
SH2–KD interaction (228). Understanding how Bcr–Abl works
in a dynamic and synergistic manner will provide the missing
clues to increase the repertoire of targetable segments for drug
design.

Future Directions

The growing number of proteins with in-tandem structured
and unstructured regions will challenge the next generation
of researchers to uncover the mechanisms underlying their
intramolecular dynamic synergism. Several of these unstructured
segments located at the N- or C-termini or between structured
regions were previously not thought to participate in protein
activity, regulation, cancer initiation, and abrogation. This sce-
nario is currently changing due to a combination of 10 years of
efforts in cellular and molecular signaling and the use of atomic
and sub-atomic methods, such as small-angle X-ray scattering
(310) and NMR. It is now possible to reconstruct models of
partially structured domains and flexible linkers at sub-atomic
resolution, as shown for the quaternary structures of full-length
p53 in a DNA-bound complex (311, 312), and also to estimate
the frequency of the conformational distribution for an ensemble
of totally unstructured segments. These methods are comple-
mentary to atomic resolution methods that are at the limit of
providing information fromdisordered regions.More than 30%of
eukaryotic genomes encode unfolded regions with more than 30
residues, and this number increases to 80% in cancer-associated
proteins. The challenge for the next era will be to reveal the
hierarchical interactome of these very flexible proteins and to
understand how they act synergistically to promote homeostasis
and tumorigenesis.
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