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A B S T R A C T

COVID-19 quickly swept across the world, causing the consequent infodemic represented by the rumors that
have brought immeasurable losses to the world. It is imminent to achieve rumor detection as quickly and
accurately as possible. However, the existing methods either focus on the accuracy of rumor detection or set a
fixed threshold to attain early detection that unfortunately cannot adapt to various rumors. In this paper, we
focus on textual rumors in online social networks and propose a novel rumor detection method. We treat the
detection time, accuracy and stability as the three training objectives, and continuously adjust and optimize this
objective instead of using a fixed value during the entire training process, thereby enhancing its adaptability
and universality. To improve the efficiency, we design a sliding interval to intercept the required data rather
than using the entire sequence data. To solve the problem of hyperparameter selection brought by integration
of multiple optimization objectives, a convex optimization method is utilized to avoid the huge computational
cost of enumerations. Extensive experimental results demonstrate the effectiveness of the proposed method.
Compared with state-of-art counterparts in three different datasets, the recognition accuracy is increased by
an average of 7%, and the stability is improved by an average of 50%.
1. Introduction

At the end of 2019, a disaster caused by the novel coronavirus
(COVID-19) quickly swept across the world. As a result, the public
health crisis caused by the pandemic brought unprecedented losses to
the world (Wu et al., 2020). Different from the past, while the virus is
spreading rapidly, the false information represented by rumors prolif-
erates through the flood of globalized online social media (Zarocostas,
2020). The diffusion of information is faster than the virus, which
has directly spawned the ‘‘second battlefield’’ for countries around
the world. As the Director-General of the World Health Organization
(WHO) Tedros said that: ‘‘We are not just fighting an epidemic, we are
fighting an infodemic’’ (Lancet, 2020).

The vigorous rising of large-scale online social medias such as
Weibo, Twitter and Facebook have replaced traditional media as an
important platform for people to obtain and release information. Due
to its fast speed, wide range, and strong immediacy, these platforms
have become a hotbed of rumors. Lacking of effective supervision, un-
processed rumors may be quickly distorted and amplified which creates
a highly uncertain information environment, thereby misleading the
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public, affecting social stability, and even threatening national security.
Rumors have become a more and more serious social problem than ever
that requires the attentions and efforts of the whole society (Leng et al.,
2021). Effectively identifying rumors is a very challenging task. Some
rumors have been processed layer by layer and carefully packaged,
and sometimes they are enough to ‘‘make the false true’’. For instance,
some rumormongers fabricate the rumor that the vaccine is being
used to track or microchip people, which has terrible lethality. It has
further spread the epidemic, caused widespread panic among the public
and seriously jeopardized national stability (Maryland, 2021). But in
fact, there is no vaccine microchip, and the vaccine will not track
people or gather personal information into a database. The knowledge,
experience, and emotions of different users varies greatly in all aspects,
leading to the fact that it is almost impossible for users to identify
rumors merely based on their cognitive. The knowledge, experience,
and emotions of different users varies greatly in all aspects, leading to
the fact that it is almost impossible for users to identify rumors merely
based on their cognitive.
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Fortunately, more and more researchers are devoted to exploring
and addressing this issue. Some anti-rumor platforms have been con-
structed by government departments and civil organizations, such as
‘‘Piyao.com’’ established by the Cyberspace Administration of China
and ‘‘Snopes.com’’ established by an American couple. These platforms
take advantages of crowd sensing to encourage users to actively identify
and report suspicious information, then deliver suspicious information
to professional researchers to refute rumors with scientific explanation.
Although this manual-based detection method has high accuracy (Li,
Li, Wang, & Wang, 2018; Xu, Rao, Xu, Yang, & Li, 2019; Zhou et al.,
2022), it needs to go through a series of processes which has obvious
time-lag and cannot adapt to the massive data in online social networks
(OSNs). Moreover, the crowd sensing technology faces a cold start
problem which requires numerous human efforts. Some researchers
are starting to utilize machine learning techniques to automatically
identify rumors (Alkhodair, Ding, Fung, & Liu, 2020; Liang, Yang,
& Xu, 2016). These rumor detection methods based on traditional
machine learning depend to a large extent on the features extracted and
selected manually, which consumes tremendous manpower and time.
The robustness of the feature vector obtained is not robust enough,
which is difficult to deal with complex and changeable scenarios.

Motivated by the success of deep learning, many research utilize
various neural networks to detect rumors (Bian et al., 2020; Ma, Gao,
& Wong, 2019; Yang et al., 2020). The deep learning methods can
obtain better and more essential representative features than feature
engineering methods, so as to achieve better classification results. From
a more practical point of view, researchers are not limited to the pursuit
of rumor detection accuracy, but also hope that they can be detected
earlier (Liu, Jin, & Shen, 2019).

However, to effectively achieve precise detection of rumors, there
are several issues that need to be solved effectively. Firstly, the natural
end-to-end structure of neural networks renders the difficulty to grasp
the key components of the rumor information, resulting in that training
lacks controllability and efficiency. Therefore, it is necessary to extract
key information and optimize the network structure. Secondly, we
notice that most of the studies only consider a single perspective of
rumor detection such as accuracy, while ignoring that the time spent
on detection is equally important in practice. Although some studies
have made efforts in the early detection of rumors, they have sacrificed
the partly stability and accuracy of predictions. Therefore, how to
balance and compromise between different goals and achieve the best
performance is a significant challenge. Thirdly, with the deepening of
the research, various models have been proposed but become more and
more complex and their computational consumption is also increasing.
Therefore, whether an efficient method can be found in the complex
network model to reduce the computational consumption in training
is also a problem worthy of further research. For the existence of
hyperparameters in the model, the common practice is to try different
values through enumeration, and then choose one parameter that can
be used to get the best result from the limited choices, which cannot
guarantee the optimality.

In this paper, we investigate a novel rumor detection method in
OSNs. To grasp the key information and optimize the network structure,
an attention mechanism is introduced. From different perspectives of
detection performance, we put forward three optimization objectives.
To solve the problem of hyperparameters caused by the above op-
timization, a more concise determination method is introduced. The
noteworthy contributions of this paper are summarized as follows.

• We focus on textual rumors in online social networks and propose
a novel rumor detection method. An efficient spatial attention
mechanism is introduced to extract the intrinsic characteristics of
the text content. An effective framework is constructed to extract
the evolutionary characteristics of the rumor in the propagation
process, making it possible to characterize diffusion law of rumors
2

on OSNs.
• We treat the detection time, accuracy and stability as the three
training objectives, and continuously adjust and optimize them
instead of using a fixed value during the entire training process,
thereby enhancing its adaptability and universality.

• To improve the efficiency, we design a sliding interval-based
detection method by constructing different optimization loss ob-
jectives to intercept the required data rather than using the entire
sequence data.

• To solve the problem of hyperparameter selection brought by
integration of multiple optimization objectives, a convex opti-
mization method is utilized to parameterize them so that they can
adaptively change during the entire model learning process and
avoid the huge computational cost of enumerations.

The remainder of this paper is organized as follows. We review
the related works in Section 2. In Section 3, we present the problem
formulation. In Section 4, the proposed method and implementation
framework for rumor detection are presented in detail. In Section 5, ex-
perimental results and performance evaluation are conducted. Finally,
we summarize this paper in Section 6.

2. Related works

With the rapid development of OSNs, rumor detection has received
more and more attentions. The task of rumor detection is to distinguish
whether an information in OSNs is a rumor through some related
information and various computational methods have been proposed,
mainly including four types: crowd sensing related methods, feature
engineering related methods, propagation mode related methods and
deep learning methods.

2.1. Crowd sensing related methods

The crowd sensing related method is the mainstream rumor de-
tection method of the current social network platform. The platform
delivers suspicious information reported by users to experienced editors
or industry experts, then they use their knowledge and experience to
refute rumors with scientific explanation.

Mohler and Brantingham (2018) proposed a crowd-sourced frame-
work based on the novel online Hawkes process estimation algorithm,
using crowd-sourced information such as reports, tips and neighbor
posts to construct a prediction model, which provides convenience
for collecting rumors. Considering the problem of dynamic participant
selection with heterogeneous tasks, Li et al. (2018) minimized the cost
of sensing while maintaining a certain level of probability coverage,
thereby providing a solution to the problem of fewer users in rumor
collection. To encourage users to participate in rumor-reporting, Xu
et al. (2019) designed the incentive mechanism of a crowd awareness
system with multiple collaborative tasks to minimize the social cost, so
that each collaborative task can be performed by a compatible set of
users.

Although the accuracy of crowd sensing related method is very high,
it causes time-lag because it requires users to take the initiative to
report. Moreover, numerous data are generated in OSNs every day, it
is impossible for human beings to process all the data, which may omit
important rumors.

2.2. Feature engineering related methods

Feature engineering related method selects and extracts the features
that can represent the data effectively from the training dataset and
utilizes the features to train to obtain the classification model.

Liang et al. (2016) found that the behavior of rumormongers is
different from that of ordinary users, then proposed a rumor detec-
tion method based on user behavior characteristics and analyzed the

differences between different contents and types. Guo, Cao, Zhang,
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Guo, and Li (2018) analyzed leveraging hierarchical representations
at different levels and the social contexts, and proposed a two-layer
neural network in which important semantic information (such as
account and text features) is introduced. Based on the comprehensive
consideration of semantic features such as topics and emotions, and the
structural features of information dissemination, Wu, Yang, and Zhu
(2015) proposed a hybrid support vector machine classifier based on a
graphics kernel.

However, feature engineering related method relies on manual fea-
ture selection, and it is difficult to obtain high-dimensional, complex
and abstract feature data. Therefore, the robustness of the feature
vector obtained is poor, and it is difficult to comprehensively and
systematically summarize the features of the rumor.

2.3. Propagation mode related methods

The feature that only extracts a single piece of information often
ignores the connection between rumors, but propagation mode related
method can reflect the potential connection between rumors through
its hierarchical structure.

Jin, Cao, Jiang, and Zhang (2014) utilized a three-layer reputation
network composed of events, sub-events and messages to represent the
occurrence of an event, and established connections through semantics
and social relationships, and then proposed a hierarchical propagation
model. Wan et al. (2021) proposed a rumor diffusion model by ex-
ploring the coupling relationship between rumors and anti-rumors, and
then predicted the spread of rumors and proposed the corresponding
intervention measures. Ma, Gao, and Wong (2017) proposed a kernel-
based propagation tree method to identify rumors by evaluating the
similarity between propagation trees, which finds and captures the
salient substructures in the propagation tree of Ru-MORS.

Propagation mode related method is one of the hotspots of research,
but the diffusion of rumors is affected by many factors. At present, the
consistent structure of rumors transmission has not been well explored,
and further research is still needed.

2.4. Deep learning methods

Motivated by the success of deep learning, many research utilize
various neural networks to detect rumors. Yu et al. (2017) proposed a
convolutional neural network-based rumor detection method (CAMI),
which extracts scattered key features and forms high-level interactions
between them. Yuan, Ma, Zhou, Han, and Hu (2019) explored local
semantic relations and global structural information, and proposed a
global and local attention-based network (GLAN) that jointly encodes
local semantics and global structural information for rumor detection.
Song et al. (2021) put forward the concept of a ‘‘credible detection
point’’ and started detection through to realize the early detection of
rumors.

We noticed that the key point of most research only focuses on the
accuracy of detection at present. Although some studies (Song et al.,
2021; Yuan et al., 2019) have begun to focus on early detection, their
approaches are usually to set a fixed threshold. However, the content
of rumors is varied and diverse, the fixed threshold may not be able to
meet the needs of its detection. Furthermore, as the network structure
becomes more and more complex, its calculation complexity is getting
higher and higher. When hyperparameters arise in an experiment, it is
common approach to enumerate, keep trying different values, and then
choose a parameter that works best from a limited selection. However,
this method can only find a relatively suitable hyperparameter and
cannot guarantee optimality. To solve these problems, we treat the
detection point as a training objective, and continuously adjust and
optimize it instead of using a fixed value during the training process,
thereby enhancing its universality. At the same time, accuracy and
stability are regarded as the other two training objectives, and the
detection of rumors can be realized as early as possible while improving
the accuracy. In order to decrease the amount of calculation in the
training process, we use a sliding interval to intercept the required data
3

instead of using the entire sequence data.
3. Problem statement

We comprehensively consider two aspects: the content of the text
and the characteristics of reposting. To state clearly, we present the
following definitions.

Definition 1. We use a sequence M = {𝑚1, 𝑚2,… , 𝑚𝑛} to represent the
set of source microblogs, where 𝑛 is the number of source microblogs
and the source microblog 𝑚𝑖 represents the text content.

Definition 2. Each source microblog 𝑚𝑖 has a relevant repost sequence
and a corresponding set of time denoted as R𝑖 = (𝑟𝑖, 𝑡𝑖). The re-
ost microblogs 𝑟𝑖 = {𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑣𝑖} represent the text content, 𝑡𝑖 =

{𝑡𝑖1, 𝑡𝑖2,… , 𝑡𝑖𝑣𝑖} represents the timestamp when content is published, 𝑣𝑖
represents the length of the repost sequence of the source microblog
𝑚𝑖.

The purpose of rumor detection task is to train a model 𝑓 ∶ M ⇒
𝑃 (𝑦 = 1|R𝑡, 𝜃) ∈ (0, 1) that can predict accurately whether the source
microblog is a rumor or not. Among them, 𝑦 is class label and 𝜃 is
all parameters of the model, and we set 𝑦 = 1 for rumor and 𝑦 = 0
otherwise.

4. Methodology

To solve the problem defined in Section 3, we propose an interval
detection method based on multi-objective loss (IDMO) which extracts
hidden features of microblog contents and reposts sequence, then com-
pletes the detection based on the hidden features in a small time
interval. The overall framework of IDMO mainly includes the following
functional modules:

• Data preprocessing: This module contains text segmentation
and word embedding, which divides a piece of text content into
different words, then filters out important words and converts
them into the form of vectors that can be recognized by CNN
model.

• CNN model based on spatial attention: The spatial attention
mechanism overcomes the lack of memory by intuitively giving
the contribution of each word to the results from different di-
mensions. This module can utilize text contents to extract hidden
features. The main operations include convolution, pooling and
fully-connected layer.

• GRU model with sequence feature: This module can utilize
repost sequences to extract long-distance characteristic features,
where the main operations include reset and update.

• Multi-objective loss function: This module evaluates the train-
ing results from the perspective of multiple loss functions, and
adjusts the parameters of the model accordingly through back-
propagation.

• Parameterization of hyperparameters: It is difficult to deter-
mine the hyperparameters carried by multiple loss functions. To
avoid the huge amount of calculation brought by the enumeration
method, this module converts it into an optimization problem,
and through theoretical analysis, we derive the optimal solution
that guarantees the Pareto optimum.

4.1. Data preprocessing

A word is a basic element of language that carries an objective or
practical meaning, which can be used on its own. Therefore, cutting
the text into words, reducing the coupling between them and charac-
terizing them as input can make the semantic analysis more accurate.
In recent years, Jieba segmentation package (Lai et al., 2019) is widely
used by many researchers because of its simplicity and efficiency. In
this paper, Jieba segmentation is utilized to segment text data and

generate a generalized word cloud based on the score of each word
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Fig. 1. An illustration of the spatial attention mechanism. After process of segmentation and word embedding, the word splice matrix is constructed first. Then, the feature map
𝐹 is extracted after convolution operation and processed by the spatial attention module to obtain the final feature map 𝐹 .
in the text. This approach is reasonable because this method can filter
out common words, retain important words, and avoid meaningless
words being input into the model to interfere with the final result. The
way (He, Chang, Lim, & Banerjee, 2010) to calculate the score is as
follows,

𝑇𝐹𝑤,𝐷𝑖
=

𝑐𝑜𝑢𝑛𝑡(𝑤)
|𝐷𝑖|

, (1)

𝐼𝐷𝐹𝑤,𝐷𝑖
= log 𝑁

1 +𝑁(𝑤)
, (2)

𝑇𝐹 -𝐼𝐷𝐹𝑤,𝐷𝑖
= 𝑇𝐹𝑤,𝐷𝑖

× 𝑇𝐹𝑤,𝐷𝑖
, (3)

where 𝑤 is the keyword, 𝑐𝑜𝑢𝑛𝑡(𝑤) is the number of 𝑤’s occurrences, |𝐷𝑖|

is the number of all words in the 𝐷𝑖 document, 𝑁(𝑤) is the number of
documents in which the word 𝑤 appears in the corpus, and 𝑁 is the
total number of documents in the corpus, respectively.

Then, we need to transform the segmented words into a feature
vector which can be recognized by neural networks, so the efficient
word embedding named word2vec (Ji, Satish, Li, & Dubey, 2019)
is used. Word2vec model can take text contents as the input and
produces real-valued low-dimensional vector representations for the
words that appear in that contents. Let a sequence of words is 𝑊 =
{𝑤1, 𝑤2,… , 𝑤𝑖,… , 𝑤𝑛𝑤} and make a set of words around 𝑤𝑖 within the
specified window size 𝑧 to be the context of 𝑤𝑖. By maximizing the
average log-likelihood conditional probability function between 𝑤𝑖 and
its context words together to learn their word representation as follows,

1
𝑛𝑤

𝑛𝑤
∑

𝑖=1

∑

−𝑧≤𝑗≤𝑧
log 𝑝(𝑤𝑗 |𝑤𝑖). (4)

4.2. CNN model based on spatial attention

The convolutional neural network model is a type of feedforward
neural network that includes convolution calculation and a deep struc-
ture, which has achieved great success in the feature extraction of static
data such as images (Husain & Bober, 2019). However, due to the
lack of memory of historical words with CNN model in the process of
natural language, the weight of historical words will be ignored, and
the location information of important words will be lost, resulting in
low accuracy of feature extraction.

To solve this problem, we introduce the word-level spatial attention
mechanism to extend the CNN model. By considering the importance
of words in sentences, extracting more refinement features of the
same data from different dimensions, thereby more information can
be obtained to improve the memory of historical words in the CNN
model. The contribution of each word to the target feature can be
obtained from this mechanism, so the proposed IDMO has a certain
interpretability.
4

Through text segmentation and word embedding, we can obtain a
series of 𝑑-dimensional word vectors 𝑣𝑖 for each text content (including
the source microblog and reposting microblogs). Then the word splice
matrix 𝑀𝑣 can be constructed as follows,

𝑀𝑣 = 𝑣1 ⊕ 𝑣2 ⊕⋯⊕ 𝑣𝑛𝑣 , (5)

where ⊕ is the concatenation operation, 𝑀𝑣 ∈ 𝑅𝑑×𝑛𝑣 , where 𝑛𝑣 is the
number of word vectors.

The CNN model includes the convolutional layer, the pooling layer
and the fully-connected layer. In the convolutional layer, we utilize the
convolution kernel 𝐾𝑖 ∈ 𝑅𝑑×𝑑𝑘 to scan 𝑀𝑣 and the activation function
ReLU (Glorot, Bordes, & Bengio, 2011) is applied to obtain the feature
map as follows,

𝑐𝑖 = 𝑅𝑒𝐿𝑈 ((𝑊𝑐 ,𝑀
𝑣
𝑖∶𝑖+𝑑𝑘−1

) + 𝑏𝑖), (6)

where 𝑊𝑐 is the corresponding weight matrix and 𝑏𝑖 is bias. Then, in
the pooling layer, the downsampling operation is applied to extract the
most obvious features,

𝑐𝑖 = max{𝑐𝑖, 𝑐𝑖+1,… , 𝑐𝑖+𝑑𝑘−1}. (7)

In the fully-connected layer, we recombine the final feature map �̃� with
ReLU to express the total features 𝐹 of text content as follows,

𝐹 = 𝑅𝑒𝐿𝑈 (𝑊𝑓 �̃� + 𝑏). (8)

Then, we conduct more detailed processing on the source microblog
content from different dimensions. The word-level spatial attention
mechanism is introduced as shown in Fig. 1, which utilizes the inter-
spatial relationship. Through the two operations of maximize pooling
and average pooling, we further refine the features extracted by CNN.
We concatenate and calculate them by a convolution operation as
follows,

𝐴𝑡𝑡(𝐹 ) = 𝜎(𝐾2[max(𝐹 ), 𝑎𝑣𝑔(𝐹 )]), (9)

where 𝜎 is the sigmoid function and 𝐾2 is the convolution kernel. The
existing study (Woo, Park, Lee, & So Kweon, 2018) showed that the
spatial attention mechanism has the best performance when the size of
the convolution kernel is 7 × 7.

Finally, the spatial attention process can be summarized as follows,

𝐹 = 𝐴𝑡𝑡(𝐹 )⊗ 𝐹, (10)

where ⊗ is the Hadamard product and 𝐹 denotes the final feature map
output by CNN model with spatial attention.
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Fig. 2. An illustration of the structural framework. The red dotted box represents the spatial attention module and the green dotted box represents convolution operation.
4.3. GRU model with sequence feature

Recurrent neural network is a neural network for processing se-
quence data which has achieved great success in the field of natural
language processing (NLP). Compared with other neural networks, it
can process sequential data with time-dependent, which is particularly
suitable for processing the reposting sequence of microblogs, so as
to extract the characteristics of forwarding in OSNs. Gate Recurrent
Unit (GRU) is a special RNN, mainly to solve the problem of gradient
disappearance and gradient explosion in the training process of long
sequences, which can perform better in longer sequences than the
ordinary RNNs.

Through CNN, the features of each microblog in the reposting
sequence have been extracted and we feed them to GRU for training.
GRU unit includes reset gate (𝑟), and update gate (𝑧) as follows,

𝑧 = 𝜎(𝑊𝑧[𝐻(𝑡 − 1), 𝑥(𝑡)]), (11)

𝑟 = 𝜎(𝑊𝑟[𝐻(𝑡 − 1), 𝑥(𝑡)]), (12)

𝐻 ′(𝑡 − 1) = 𝐻(𝑡 − 1)⊗ 𝑟, (13)

𝐻 ′(𝑡) = tanh(𝑊𝐻 [𝐻 ′(𝑡 − 1), 𝑥(𝑡)]), (14)

𝐻(𝑡) = (1 − 𝑧)⊗𝐻 ′(𝑡 − 1) + 𝑧 ⊗𝐻 ′(𝑡), (15)

where ⊗ is the Hadamard product, 𝐻(𝑡) is the output of hidden layer,
𝑊𝑧,𝑊𝑟 and 𝑊𝐻 are the weight matrices.

By integrating the above modules, the structural framework of
IDMO as shown in Fig. 2. After process of segmentation and word em-
bedding, the word splice matrix is constructed first. Then, the feature
map 𝐹 is extracted from word concatenation matrix by convolution
operation and processed by the spatial attention module to obtain the
feature map 𝐹 . After that, the feature map 𝐹 is fed into GRU module,
and the output is obtained. Further, the feature map 𝐹 and 𝐻(𝑡) are
spliced, we put it into the classifier to get the final prediction result.
Focal loss  is a method proposed by Lin, Goyal, Girshick, He, and
Dollár (2020) to solve the imbalance of positive and negative sample
ratio in one-stage target detection, which reduces the weight of a large
number of simple negative samples in training, we introduce it as the
following loss function,

(𝑃 (𝑖|𝜃)) = −(1 − 𝑃 (𝑖|𝜃))𝛾 log(𝑃 (𝑖|𝜃)), (16)

where 𝑃 (1|𝜃) = 𝜎(𝐻, 𝑠) and 𝑃 (0|𝜃) = 1 − 𝑃 (1|𝜃), 𝑠 is the weight vector
of the corresponding hidden layer 𝐻 .
5

Fig. 3. An illustration of the detection interval and detection point. The blue line
represents the predicted results, the red point represents the initial detection point and
the orange dashed box indicates the detection interval.

4.4. Multi-objective loss function

To identify rumors as early as possible according to the source
microblog in the process of rumor forwarding, we need to find a initial
detection point for each source microblog. As illustrated in Fig. 3,
before the detection point, the result of identifying curve fluctuates fre-
quently, which means that the rumors are difficult to distinguish during
this period. After this point, the detection result is relatively stable and
tends to be accurate. Once the initial detection point is determined, we
will use it with a fixed-length interval to start the detection process.
This detection interval method effectively saves computing resources
without employing the predictive results of the entire sequence in Song
et al. (2021).

It is worth noting that due to the differences in the content and
forwarding sequence of different source microblogs, the corresponding
detection intervals cannot be completely the same. Therefore, the
method of artificially given detection thresholds (Song et al., 2021) is
no longer applicable. In this section, we propose an adaptive interval
detection method to solve this problem.

Firstly, we introduce two parameters 𝛼 ∈ [0, 1] and 𝛽 ≥ 0 for
each source microblog to determine the location of the initial detection
point, in which 𝛼 is a predetermined threshold and 𝛽 is the time point
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when the predictive result reaches the threshold. When the threshold
is reached for the first time by the predictive result 𝑃 (𝑦|R𝑡, 𝜃) > 𝛼, the
detection process is started and the corresponding time point is 𝛽.

Our purpose is to train a model that can accurately, quickly and
stably identify rumors through the adaptively adjusting the detection
interval. We make adjustments from two aspects: inside the detection
interval and outside the detection interval. Inside the detection interval,
the first part of our objective aims to achieve the accuracy of prediction,
so it is necessary to maximize the predictive result in the detection
interval as follows,

𝐿1(𝜃) =
∑

𝛽≤𝑖≤𝛽+𝑙𝑒𝑛
(𝑃 (𝑖)), (17)

where 𝑙𝑒𝑛 is the length of the detection interval.
To ensure the stability of the final predictive results and avoid

excessive volatility of the predictive trend, the second objective is
to minimize the difference in predictive results within the detection
interval. Considering the convenience of derivation during back prop-
agation, we use smooth Gaussian radial basis function as follows,

𝐿2(𝜃) =
∑

𝛽≤𝑖≤𝛽+𝑙𝑒𝑛
𝑒(𝜀𝑟)

2
, (18)

where 𝜀 is the Gaussian coefficient, 𝑟 = ‖𝑃 (𝑖|𝜃) − 𝑃‖2 refers to
the L-2 norm of the predictive result minus the average and 𝑃 =
1
𝑙𝑒𝑛

∑

𝛽≤𝑖≤𝛽+𝑙𝑒𝑛 𝑃 (𝑖|𝜃).
To achieve effective identification as early as possible in the dif-

fusion of rumors, we introduce time constraint into the third objec-
tive and use the form of log-likelihood to reduce the computational
complexity of derivation as follows,

𝐿3(𝜃) = − log
𝛽
𝐹
, (19)

The initial value of 𝛽 is determined by 𝛼, and then 𝛽 will be continu-
usly updated according to the screening of the detection interval. 𝐹 is
he length of the entire time series.

To take into account the above three objectives in the training
rocess, we integrate them through three weight parameters 𝜆𝑖 (𝑖 =

1, 2, 3) as follows,

𝐿𝑜𝑠𝑠(𝜃) =
∑

𝑖
𝜆𝑖𝐿𝑖(𝜃). (20)

Since these weight parameters need to be set prior to the learning
rocess, rather than obtained through training, they are also called hy-
erparameters. Specific method of determining them will be described
n detail in the next section.

Outside the detection interval, through continuously sliding the
etection interval, the model is trained to adaptively find the most
uitable time point 𝛽𝑛𝑒𝑤 for detection as follows,

𝑛𝑒𝑤 = min
𝛽
{
∑

𝑖
𝜆𝑖𝐿𝑖(𝜃)}. (21)

.5. Parameterization of hyperparameters

In the previous section, we aggregate three loss objectives into a
oss function by introducing three weight parameters. Usually, these
eight parameters are hyperparameters that are set before starting

he learning process, not the values obtained through training. There-
ore, different given weight parameters will greatly affect the training
rocess, which in turn affects the final predictive result. The way to
eal with hyperparameter is through enumeration, constantly trying
ifferent values, and then selecting a parameter that can achieve the
est result from a limited choice. However, this approach can only
ind a relatively suitable hyperparameter, which cannot guarantee the
ptimality. Moreover, as the number of hyperparameters increases, the
omputational consumption for its selection increases exponentially.

In this section, we introduce these hyperparameters into the training
6

rocess, so that they can adaptively change during the entire model
⎣

earning process like non-hyperparameters. The method of learning to
ank (LTR) is used to deal with the weight parameters introduced in
20). The proposed method theoretically guarantees that these weight
arameters are Pareto optimal, which is concise and easy to calculate.

To ensure that all three loss objectives can play the role in the
earning stage of the model, we add the boundary constraints to its hy-
erparameters and the optimal problem can be formulated as follows,

𝐿𝑜𝑠𝑠(𝜆∗1 , 𝜆
∗
2 , 𝜆

∗
3|𝜃) = min

𝜆1 ,𝜆2 ,𝜆3

∑

𝑖
𝜆𝑖𝐿𝑖(𝜃),

s. t.
3
∑

𝑖
𝜆𝑖 = 1 and 𝜆𝑖 > 0, ∀𝑖 ∈ {1, 2, 3}.

(22)

The solution pair that satisfies the KKT (Karush–Kuhn–Tucker) con-
ditions is called Pareto stationary as follows,

Theorem 1 (Karush–Kuhn–Tucker Condition). The solution pair (𝜆∗1 , 𝜆
∗
2 ,

𝜆∗3) is the optimal solution of problem (22) if there exist multipliers 𝜆𝑖 >
0, 𝑖 = 1, 2, 3, such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3
∑

𝑖=1
𝜆𝑖∇𝜃𝐿𝑖(𝜃) = 0,

𝑠.𝑡.
3
∑

𝑖
𝜆𝑖 = 1.

(23)

The detailed proof can be easily found in Ruszczynski (2011). The
conditions can be transformed into the following quadratic optimiza-
tion problem,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
𝜆1 ,𝜆2 ,𝜆3

‖

‖

‖

‖

‖

‖

3
∑

𝑖=1
𝜆𝑖∇𝜃𝐿𝑖(𝜃)

‖

‖

‖

‖

‖

‖

2

2

,

s. t.
3
∑

𝑖
𝜆𝑖 = 1 and 𝜆𝑖 > 0, ∀𝑖 ∈ {1, 2, 3}.

(24)

Sener and Koltun (2018) have proved the solution that satisfies the
condition will minimize the loss function along the gradient. Then, we
first deal with the equality constraints and rewrite the above problem
in the form of vector to derive the optimal solution as follows,
{

min
𝜆

1
2
𝜆𝑇𝐺𝐺𝑇 𝜆

s. t. 𝑒𝑇 𝜆 − 1 = 0 and 𝜆𝑖 > 0, ∀𝑖 ∈ {1, 2, 3}.
(25)

where 𝜆 is the concatenated vector of 𝜆𝑖, 𝐺 is the stacking matrix
of gradient ∇𝜃𝐿𝑖(𝜃), and 𝑒 is the 3-dimensional column vector with
element of 1. Next, we construct the Lagrangian L as follows,

L(𝜆, 𝜇, 𝑔,𝐻) = 1
2
𝜆𝑇𝐺𝐺𝑇 𝜆 + 𝜇(𝑒𝑇𝑤 − 1) + (𝐻 − 𝜆)𝑇 𝑔 (26)

where 𝜇 is the Lagrange multiplier of equality constraint and 𝑔 =
(𝑔1, 𝑔2, 𝑔3)𝑇 is the Lagrange multiplier vector of inequality constraint,
where 𝑔𝑖 ≥ 0,∀𝑖 ∈ {1, 2, 3}. 𝐻 = (ℎ21, ℎ

2
2, ℎ

2
3)

𝑇 is the vector of slack
variable, the purpose of introducing ℎ2𝑖 is to change the inequality
constraint into an equality constraint.

The solution of the problem is given as follows,

∇𝜆L(𝜆, 𝜇, 𝑔,𝐻) = 0, (27)

𝜇L(𝜆, 𝜇, 𝑔,𝐻) = 0, (28)

𝑔L(𝜆, 𝜇, 𝑔,𝐻) = 0, (29)

𝐻L(𝜆, 𝜇, 𝑔,𝐻) = 0. (30)

nd we can derive the solution by solving the following linear system,

𝐺𝐺𝑇 𝑒 −𝑒 0
𝑒𝑇 0 0 0
−𝑒 0 0 𝑒

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝜆
𝜇
𝑔

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝟎
1
𝟎

⎤

⎥

⎥

⎥

⎥

. (31)
0 0 𝑒 0
⎦ ⎣

𝐻
⎦ ⎣

𝟎
⎦



Expert Systems With Applications 213 (2023) 119239P. Wan et al.

p

𝜆

t
b
o
p

𝑀

According to the Moore–Penrose inverse (Wan, Wang, Han, & Wu,
2019), we have

⎡

⎢

⎢

⎢

⎢

⎣

𝜆
𝜇
𝑔
𝐻

⎤

⎥

⎥

⎥

⎥

⎦

= (𝑄𝑄𝑇 )−1𝑄𝑧. (32)

where 𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐺𝐺𝑇 𝑒 −𝑒 0
𝑒𝑇 0 0 0
−𝑒 0 0 𝑒
0 0 𝑒 0

⎤

⎥

⎥

⎥

⎥

⎦

and 𝑧 =

⎡

⎢

⎢

⎢

⎢

⎣

𝟎
1
𝟎
𝟎

⎤

⎥

⎥

⎥

⎥

⎦

. Finally, the solution

air of the hyperparameters can be derived as follows,

= (𝑄𝑄𝑇 )−1𝑄𝑧[1 ∶ 3]. (33)

In this paper, we adopt the Adam algorithm (Kingma & Ba, 2015)
o optimize loss function. Although Adam with stochastic gradient in
atches, our proposed method still provides a theoretical guarantee
f convergence as gradient descent (Lin et al., 2019), which specific
rocedure is illustrated in Algorithm 1.

Algorithm 1: Multi-objective detection interval
Input:

The loss objectives 𝐿1(𝜃), 𝐿2(𝜃) and 𝐿3(𝜃);
Pre-determined value 𝛼 for the initial detection;
Initial value of weight parameters 𝜆1, 𝜆2 and 𝜆3;

Output:
The updated parameters of the model 𝜃;

1: Locate the initial detection point 𝛽 according to 𝛼;
2: Integrate three loss objectives as 𝐿𝑜𝑠𝑠(𝜃);
3: for each batch do
4: Update the parameters 𝜃 of the model by adopting Adam to

optimize 𝐿𝑜𝑠𝑠(𝜃);
5: Update the weight parameters 𝜆1, 𝜆2 and 𝜆3 according to Eq. (33);

6: Update the detection point 𝛽 according to Eq. (21);
7: end for
8: return 𝜃;

5. Experiments

In this section, the interval detection method based on multi-
objective loss is evaluated using numerical experiments. Firstly, we
verify the effectiveness of IDMO with real-world datasets. Secondly,
we conduct an indepth discussion based on experimental results. Fi-
nally, we analyze the sensitivity of the parameters that influence the
experimental results.

5.1. Datasets

To evaluate the performance of the proposed methods, we utilize
three datasets about COVID-19 in the experiments which are extracted
from the real world large scale social network such as Weibo and
Twitter and Snopes.com. Weibo dataset (Song et al., 2021) is published
by Tsinghua University, which contains the rumor content, non-rumor
content and its reposting record. Twitter dataset (Elhadad, Li, & Gebali,
2020) and Snopes dataset (Hanselowski, Stab, Schulz, Li, & Gurevych,
2019) are released under the MIT license, which collects information
about COVID-19, including rumors, non-rumors and unverified con-
tent from Twitter and Snopes.com, respectively. These three datasets
include Chinese language and English language, news media and self-
media, which comprehensively simulate application scenarios of rumor
detection. Details of the datasets description are listed in Table 1.
7

Table 1
Datasets description.

Dataset Weibo Twitter Snopes

Type self-media self-media news media
Language Chinese English English
Number of rumor 3851 2540 4208
Number of non-rumor 4199 1040 1660
Number of unverified – 125 429
Minimum reposting length 3 4 2
Maximum reposting length 59,317 32,315 10,751
Average reposting length 624 482 204

In the process of model training and testing, we employ the holdout
verification method (Pang et al., 2019) to alleviate the problem of
over-fitting, which divides the datasets into training set, verification
set and test set randomly according to the proportion of 80%, 10% and
10%. The training set is utilized to train the parameters of the model,
the verification set is utilized to make a preliminary assessment of the
ability, and the test set is utilized to evaluate the generalization ability
of the model.

5.2. Baselines and evaluation metrics

To fairly compare the performance of different methods, three
evaluation metrics (Yuan et al., 2019) are adopted in this section: the
accuracy, precision and recall. Moreover, to evaluate the performance
of the proposed method in prediction time and predict stability, we
introduce the ‘‘Early Rate (ER)’’ from Song et al. (2021) and propose
the Measure of Stability (MS) as follows,

𝐸𝑅 = 1
|𝑇 𝑒𝑠𝑡|

∑

𝑖∈𝑇 𝑒𝑠𝑡

𝑡𝑖
𝐹𝑖

, (34)

𝑆 = 1
|𝑇 𝑒𝑠𝑡|

∑

𝑖∈𝑇 𝑒𝑠𝑡

𝑡𝑖+𝑙𝑒𝑛𝑔𝑡ℎ
∑

𝑗=𝑡𝑖

‖

‖

𝑃𝑖(𝑗) − 𝑃𝑖
‖

‖2 , (35)

where 𝑡𝑖 refers to the time node when the prediction result reaches a
fixed value (we set the value to 0.875 in the experiment) for the first
time, 𝐹𝑖 is the length of reposting sequence, 𝑇 𝑒𝑠𝑡 is the test set, 𝑙𝑒𝑛𝑔𝑡ℎ
refers to the length of the interval that we want to detect stability after
𝑡𝑖 and 𝑃𝑖 is the average of the prediction results in its interval.

Then, we compare our method with a series of representative base-
lines as follows,

• DSTS (Ma, Gao, Wei, Lu, & Wong, 2015): An SVM with dynamic
time series structure model which can capture the changes of
various social context characteristics over time.

• CAMI (Yu et al., 2017): To form the interaction between impor-
tant features, CAMI utilizes CNN to extract key features scattered
in the input sequence, so as to effectively identify rumors.

• GLAN (Yuan et al., 2019): A rumor detection method with global–
local attention network, which combines local semantic informa-
tion with global structural information to encode.

• CED (Song et al., 2021): An early detection method with
CNN+RNN, which proposes ‘‘credible detection point’’ and a
multi-objective loss function.

• IDMO: We propose the interval detection method of rumor based
on multi-objective loss, which does not use the spatial attention
mechanism when dealing with text.

• IDMO-SA: The interval detection method of rumor based on
multi-objective loss with the spatial attention mechanism.

5.3. Parameters optimization

We repeat the experiment to provide the optimal hyperparameters
for each baseline method. During the training process, we set the initial
dropout rate to 0.5 and search in the range of 0.05. The experimental
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Fig. 4. Dropout rate optimization process in Weibo dataset.

Fig. 5. Learning rate optimization process in Weibo dataset.

results are shown in Fig. 4, the performance of the methods are the best
when the dropout rate of IDMO-SA is 0.45, CED is 0.7 and GLAN is 0.4.
Learning rate is explored from the following range of {0.0001, 0.0005,
0.001, 0.005, 0.01, 0.1}, the corresponding experimental results are
illustrated in Fig. 5. We notice that the accuracy rate reaches the high-
est when the learning rate of IDMO-SA is 0.0005. When the learning
rate of CED and GLAN is 0.001, the methods have the best effect.
Regularization coefficient starting from a very small value (10e−6),
and is searched with 10 times increase. The experimental results will
increase with the increase of the regularization coefficient. When the
optimal result is reached, the experimental results will decrease with
the increase of the regularization coefficient and tend to be stable.
Fig. 6 summarizes the accuracy of IDMO-SA, CED and GLAN when
the regularization coefficient in the range of [10e−6, 10e−3], where
the corresponding optimal coefficient values are 6e−5, 1e−4 and 5e−5,
respectively.
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Fig. 6. Regularization coefficient optimization process in Weibo dataset.

Table 2
The experimental results of Weibo dataset.

Methods Metrics

Accuracy Precision Recall ER MS

DSTS 0.711 0.738 0.731 N/A N/A
CAMI 0.786 0.835 0.832 N/A N/A
GLAN 0.857 0.912 0.871 N/A N/A
CED 0.889 0.876 0.919 0.327 0.641
IDMO 0.910 0.891 0.914 0.544 0.334
IDMO-SA 0.936 0.913 0.946 0.376 0.187

5.4. Performance evaluation

In this subsection, we provide detailed comparison results in Ta-
bles 2–4, which corresponds to Weibo dataset, Twitter dataset and
Snopes dataset, respectively. Note that, Snopes dataset is the dataset
of online news media, which does not have the reposting function
of traditional social networks. But the news media are also rife with
rumors and cannot be ignored. Therefore, we rank their comments by
the time they were published and treat the comment sequence as a
reposting sequence. Considering that the DSTS, CAMI and GLAN cannot
obtain the data required by ER and MS, the proposed method is only
compared with the CED method. We bold all the best results of each
evaluation metric in the tables.

Table 2 illustrates the detailed experimental results of Weibo
dataset, in which the proposed IDMO-SA method achieves the high-
est accuracy rate of 93.6%. In terms of precision and recall, the
performance of IDMO-SA is obviously better than that of baselines,
reaching 91.3% and 94.6% respectively. The early rate of IDMO-SA
reaches 37.6%, which higher than that of CDE (32.7%). However, the
stability of IDMO-SA reaches 18.7%, which is significantly lower than
that of CDE (64.1%). This is because CED ignores partly stability of
the experimental results when pursuing earlier detection, which may
cause errors in the detection results. Therefore, we can see that it is
worthwhile to sacrifice 14.9% of the detection time in exchange for
2.5 times the stability.

Table 3 illustrates the detailed experimental results of Twitter
dataset. Unlike the Weibo dataset, Twitter introduces unverified infor-
mation, which increases the difficulty of learning to a certain extent.
Since the amount of data contained in Twitter is lower than that of
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Table 3
The experimental results of Twitter dataset.

Methods Metric

Accuracy Precision Recall ER MS

DSTS 0.552 0.578 0.860 N/A N/A
CAMI 0.691 0.735 0.532 N/A N/A
GLAN 0.741 0.612 0.731 N/A N/A
CED 0.773 0.696 0.849 0.418 0.610
IDMO 0.765 0.731 0.813 0.561 0.494
IDMO-SA 0.818 0.749 0.896 0.499 0.374

Table 4
The experimental results of Snopes dataset.

Methods Metric

Accuracy Precision Recall ER MS

DSTS 0.461 0.563 0.710 N/A N/A
CAMI 0.677 0.615 0.653 N/A N/A
GLAN 0.589 0.702 0.731 N/A N/A
CED 0.732 0.660 0.769 0.436 0.729
IDMO 0.699 0.671 0.734 0.516 0.427
IDMO-SA 0.801 0.714 0.790 0.437 0.371

the Weibo dataset, which may cause insufficient learning. Therefore,
the values of various metrics in Table 3 are relatively lower than
those in Table 2. Nonetheless, the performance of IDMO-SA are still
significantly improved compared to baselines. In terms of accuracy,
precision and recall, IDMO-SA gets the best results in the experiment,
reaching 81.8%, 74.9% and 89.6% respectively. The early rate of
IDMO-SA has reached 49.9%, which is 19.3% lower than that of CED.
In terms of stability, IDMO-SA reaches 37.4% which increases 63.1%
that of CDE.

Table 4 illustrates the detailed experimental results of Snopes
dataset, which also contains unverified information and less amount
of data. Unlike Twitter that each tweet has a limit on the number of
words, news media usually publish content with more text. This is very
conducive to the training of the attention mechanism. Therefore, the
accuracy of IDMO is increased by about 10% compared to baselines,
which far exceeds the performance on Weibo and Twitter datasets. In
terms of early rate, IDMO-SA (43.7%) achieves the same performance
as CED (43.6%). What is more, it is obviously better than CDE with
respect to stability, and the MS value is reduced by about 96.5%.

5.5. Sensitivity analysis

5.5.1. The initial point of the detection interval
The initial point of the detection interval determines whether to

start the interval detection process, which in turn determines the
overall performance of IDMO-SA. If the 𝛼 value is too high, it may cause
the interval detection to fail to work normally, leading to the rise of ER
and MS. If the value of 𝛼 is too low, the detection threshold will be too
low, in which premature start interval detection for prediction without
insufficient training may reduce its accuracy and increase MS value.

Different values of 𝛼 are compared from the following range of
{0.5, 0.6, 0.7, 0.8, 0.9}, as shown in Fig. 7. We notice that with
the increase of 𝛼, the accuracy of IDMO-SA gradually increases and
tends to converge at 0.8. Comparing 𝛼 = 0.8 and 0.9, we recognize
that the accuracy rate has stabilized to 93.6%, but both ER and MS
have increased to a certain extent. This shows that 𝛼 is not the larger
the better. If 𝛼 is too large, the multi-objective loss module runs too
late, which causes insufficient training in early detection and stability.
Comparing 𝛼 = 0.5, 0.6, 0.7 and 0.8, we also find that 𝛼 too small will
also affect its ER and MS. This is because the results in the early stage of
prediction are very unstable (see Fig. 3). When 𝛼 is small, these unstable
results will turn on the multi-objective detection module prematurely,
9

Fig. 7. Accuracy rate, ER and MS corresponding to different values of 𝛼 in Weibo
dataset.

Fig. 8. ROC curves for different values of 𝛼 in Weibo dataset.

then causing its ER and MS to increase. Therefore, it is very necessary
to find an appropriate 𝛼 in the experiment. ROC curves for different
values of 𝛼 are shown in Fig. 8. The larger the value of sensitivity,
the better the detecting results of the model on true positive samples;
the smaller the value of 1-specificity, the better the detecting results of
the model on false positive samples. We notice that as 𝛼 increases, its
ROC curve is closer to (1, 0), indicating that the performance of the
model is also improving. When 𝛼 = 0.8 and 𝛼 = 0.9, it can no longer
be judged directly by ROC curve. We calculate the area under the ROC
curve (AUC), and notice that when 𝛼 = 0.8, AUC reached a maximum
of 0.894, the performance of the proposed model is best.

5.5.2. The length of the detection interval
The length of the detection interval determines the amount of

training in the detection process, which in turn determines the overall
performance of IDMO-SA. Intuitively, the longer the detection inter-
val, the more adequate the training result and the better its perfor-
mance. However, a too long detection interval may lead to training
redundancy, which will not increase its accuracy while increasing the
computational load.

To find a suitable detection interval length, we compared the ex-
perimental results of different lengths from the following range of {25,
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Fig. 9. Accuracy rate, ER and MS corresponding to different lengths of the detection
interval in Weibo dataset.

Fig. 10. ROC curves for different lengths of the detection interval in Weibo dataset.

50, 100, 200, 300}. Fig. 9 illustrates the accuracy rate, ER and MS of
different lengths. From the experimental results, we notice that as the
length of interval increases, the accuracy rate is gradually increasing,
the ER and MS is gradually decreasing. When the length is 100, the
accuracy rate tends to converge. When the length is 200, although the
length of the interval is increasing, its accuracy rate, ER and MS will
not change anymore. ROC curves for different lengths of the detection
interval are shown in Fig. 10. The larger the value of sensitivity, the
better the detecting results of the model on true positive samples; the
smaller the value of 1-specificity, the better the detecting results of the
model on false positive samples. We notice that as length increases,
its ROC curve is closer to (1, 0), indicating that the performance of the
model is also improving. When length = 100, length = 200 and length =
300, it can no longer be judged directly by ROC curve. We calculate the
area under the ROC curve (AUC), and notice that when length = 200,
AUC reached a maximum of 0.803, the performance of the proposed
model is best.
10
Fig. 11. The early rate change curve with the training process in Weibo dataset.

Fig. 12. The measure of stability change curve with the training process in Weibo
dataset.

5.5.3. The early detection
The early rate is proposed to evaluate the time taken when the

predication result is larger than a certain fixed value (this value is
set to 0.875). The smaller ER value means that the predication result
can reach 0.875 in a shorter time. Fig. 11 illustrates the detailed
trend of ER value changes during the training in Weibo dataset. In the
early stage of the training process, although ER increases slightly in
some regions, it still keep a rapidly decreasing trend on the whole.
As the training process continues, the multi-objective loss function
continuously adjusts the prediction results. As the prediction results
continue to increase, the detection interval moves and adjusts to finally
converge to 0.376.

5.5.4. The stability analysis
Measure of stability in (34) is used to evaluate the fluctuation

degree of the predication results. When a predication value is larger
than a fixed value (0.875), we take the moment as the initial point and
construct an interval with a fixed length (100), then difference between
each predicted value and the average value in this interval is calculated.
Therefore, the smaller MS is, the more stable prediction results are.
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Fig. 12 illustrates the detailed trend of MS value changes during the
training in Weibo dataset. In the early stage of the training process,
the MS value drops sharply which means that at this stage, under
the continuous adjustment of the multi-objective loss function, the gap
between the prediction results is continuously reduced. In the middle
and late stages of the training process, the MS value converged to 0.187,
and the prediction results became stable, which undoubtedly shows the
effectiveness of the multi-objective loss function.

6. Conclusion

In this paper, we propose a novel detection method (IDMO-SA)
of rumors in OSNs. We utilize the text content and timestamp of the
source microblog and corresponding reporting sequence as input, and
extract the key feature maps through the CNN network with spatial
attention mechanism, which solves the problem of missing local im-
portant information. Then, these feature maps are inputted into the
GRU module to further explore more features of the rumor in the
spreading process. To achieve early detection, we treat the detection
point as a training objective and continuously adjust and optimize it
instead of using a prefixed value during the training process, thereby
enhancing its adaptability and universality. Meanwhile, accuracy and
stability are regarded as the other two training objectives to ensure
the reliability of detection. Due to the introduction of hyperparameters
when aggregating multi-objectives which affect the final result, we
utilize a concise and effective method based on convex optimization
techniques to parameterize them so that they can adaptively change
during the entire model learning process. Unlike the traditional method
that requires the entire sequence data set as the test sample, in order to
reduce the computational cost, we propose a sliding interval detection
method, which only needs to find the detection point and perform the
detection within the detection interval. Through continuous learning
of features, the detection points are adaptively adjusted to make it
more universal. Through the experiments, we systematically verify the
effectiveness of the proposed method and the results show that the
proposed method outperforms state-of-art methods.

It is worth noting that we think the more important thing is whether
rumors are intentionally created. Many scientific findings are later dis-
covered wrong, but we do not consider they are rumors. In this paper,
we mainly focus on textual rumors in online social networks. However,
in recent years, rumors have begun to appear in some new forms:
picture rumors, rumors that pictures are mixed with text, video rumors,
and rumors that video and text are mixed, not limited to the form of
text. In the future, we will study the detection of multimedia rumors
(such as pictures, videos, etc.), and further explore from the perspective
of user relationships (such as relationship network structure).
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