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The aim of this study was to evaluate the stress distribution of monocortical and bicortical implant placement of external hexagon
connection in the anterior region of the maxilla by 3D finite element analysis (FEA). 3Dmodels were simulated to represent a bone
block of anterior region of the maxilla containing an implant (4.0 × 10.0mm) and an implant-supported cemented metalloceramic
crown of the central incisor. Different techniques were tested (monocortical, bicortical, and bicortical associated with nasal floor
elevation). FEA was performed in FEMAP/NeiNastran software using loads of 178N at 0∘, 30∘, and 60∘ in relation to implant long
axis. The von Mises, maximum principal stress, and displacement maps were plotted for evaluation. Similar stress patterns were
observed for all models. Oblique loads increased the stress concentration on fixation screws and in the cervical area of the implants
and bone around them. Bicortical technique showed less movement tendency in the implant and its components. Cortical bone of
apical region showed increase of stress concentration for bicortical techniques. Within the limitations of this study, oblique loading
increased the stress concentrations for all techniques. Moreover, bicortical techniques showed the best biomechanical behavior
compared with monocortical technique in the anterior maxillary area.

1. Introduction

Adequate primary stability of osseointegrated implants is
considered one of the most important rules for the success
of rehabilitation using dental implants [1, 2]. Among factors
that influence the primary stability, the bicorticalization of
the implant has been considered by some studies [2, 3].
Initially, bicorticalization was used to improve the stability of
implant on the bone tissue for anterior and in the posterior
region of the maxilla [3], mainly for immediate loading
procedures [2]. In the low-density bone (worst prognosis for
osseointegration), this technique could be effective when it is

associatedwith underpreparation of implant socket, resulting
in the increase of primary stability [4]. However, there is no
consensus if this increase of primary stability could reduce
the stress distribution on bone tissue.

Researches indicate higher stress and strain concentra-
tions in low-quality bone tissue [5, 6]. In this bone type, in
upper jaw, bicorticalization placement of the implant could
allow the use of a longer implant, improving the stress and
strain distribution. Some authors believe in its beneficial
improvement for implantology [2, 4]. On the contrary, some
studies indicate probable bone atrophy by disuse on medium
region of the implant due to increase of stress concentration
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Table 1: Description of models developed for this study.

Implant Surgical technique Loading

4.0 × 10.0mm
external hexagon

Model 1 0∘

Monocortical anchorage 30∘

Conventional placement 60∘

Model 2 0∘

Bicortical bone anchorage 30∘

Bicortical placement 60∘

Model 3 0∘

Bicortical bone anchorage 30∘

Bicortical placement
associated with nasal floor
elevation

60∘

on occlusal and apical cortical bones and decrease of stress
in the medium implant region [7–9]. Hence, advantage of
bicorticalization technique is not a consensus yet.

Retrospective clinical study indicates lower survival
rate of bicorticalized implants compared to monocortical
implants [7]. On the other hand, clinical studies showed
high predictability of implants placed at nasal floor, reach-
ing survival rate of 96% in two to five years of follow-
up [10]. Recently, cohort retrospective study of 32 patients
that received 100 implants placed at anterior region of
the maxilla associated with nasal floor elevation indicated
survival rate of 100% in 27 months of follow-up. It was
pointed out that this high survival rate occurred due to
bicortical stabilization on nasal floor [11]. However, few
studies evaluated biomechanical behavior of bicorticalization
in the anterior region of the maxilla. In a biomechanical
point of view, the stress distribution around bicorticalized
implants is extremely relevant to indicating the best surgical
technique for implant placement, mainly to predict overload
tendency of implant-supported prostheses fabricated after
implant placement.

Computerized simulation has been widely used for
biomechanical evaluation in implantology [12–16], including
some analyses of anterior region of the maxilla [17, 18]. Finite
element analysis (FEA) is one of the most used techniques.
Thus, the aim of this study was to compare the biomechanical
behaviors of single implant-supported prostheses in the
anterior region of the maxilla comparing surgical techniques
of implant placement.

2. Materials and Methods

2.1. Three-Dimensional Modeling. The modeling methodol-
ogy was based on previous studies [12–15]. For this study
three 3D models were created (Table 1, Figure 1). Each
model presented a bone block of upper right central incisor
area where an implant was positioned to support a single
cemented crown. The implant simulated was an external
hexagon implant type with dimensions of 4.0 × 10.0mm
(Conexão Sistemas de Prótese Ltda, Arujá, Brazil).

The geometry of bone tissue was obtained by CT-Scan
recomposition of transversal images of anterior region of

Table 2: Mechanical properties of all simulated materials [14, 15].

Material Elastic modulus
(𝐸 – Gpa)

Poisson’s ratio
(V)

Cortical bone 13.7 0.3
Trabecular bone 1.37 0.3
Titanium 110 0.35
NiCr alloy 206 0.33
Feldspathic porcelain 82.8 0.35

the maxilla by aid of InVesalius 3.0 software (CTI, São Paulo,
Brazil). The finishing and simplifying of surfaces were made
in Rhinoceros 4.0 software (NURBS modeling for Windows,
Robert McNeel & Associates, Seattle, USA), including bone
division of cortical bone layer of 1mm surrounding tra-
becular bone. The bone density was considered as type III
bone [19]. Model 1 (monocortical anchorage) presented bone
height of 12mm and remaining bone of 2mm height over
the implant apex (Figures 1(c) and 1(f)). Model 2 (bicortical
anchorage) presented bone height of 10mmwith the implant
apex placed at apical cortical bone (nasal floor) (Figures 1(d)
and 1(g)).Model 3 (bicortical anchorage associatedwith nasal
floor elevation) presented 8mm of bone height remaining
2mm of cortical bone surrounding the apex that was placed
at apical area of nasal floor similarly as described by Summers
for sinus lift technique (Figures 1(e) and 1(h)) [20].

Geometries of implant and its components (UCLA and
screw) were obtained by simplification of its original design
of external hexagon type (Conexão Sistemas de Prótese Ltda.,
Arujá, Brazil) in the SolidWorks 2010 (SolidWorks Corp.,
Massachusetts, USA) and Rhinoceros 4.0 software (Figures
1(i), 1(j), and 1(l)).

Metal-ceramic crown was constructed from superficial
scanning of occlusal surface of an artificial tooth (upper
central incisor) obtained from a dental mannequin with
the assistance of a surface scanner (3D MDX-20, Roland
DG, Shizuoka-ken, Japan) according to previous studies [15].
Then, in Rhinoceros 4.0 real dimensions of the crown were
established simulating an average thickness of 1mm of felds-
pathic ceramic involving the infrastructure that was joined
to internal surface of UCLA modeled as cited previously
(Figure 1(k)). The modeled crown was positioned together
with the implant and screw in the bone block.

2.2. Finite Element Analysis Configuration. All geometries
were exported to FEMAP 11.0 software (Siemens PLM Soft-
ware Inc., California, USA) for finite element preprocessing
phase. The meshes were obtained using parabolic solid
elements (Figures 1(b)–1(l)). Mechanical properties of all
simulated materials were attributed to the generated meshes
according to literature data (Table 2) and all materials were
considered isotropic, homogeneous, and linearly elastic.

Symmetric welds were simulated for all contacts, with
the exception of the abutment/implant contact, which was
simulated by symmetric contact. Restrictions were assumed
as fixed in 𝑥, 𝑦, and 𝑧 direction and applied at construction
lines of the upper region of the bone block in the nasal floor
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Solid modeling—conventional model

(a)

Mesh sample—conventional model

(b)

Cortical bone—
conventional model
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Cortical bone—
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nasal floor elevation
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Trabecular bone—
conventional model
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bicortical model

(g)

Trabecular bone—nasal
floor elevation
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Figure 1: Solid modeling and generated mesh samples of all structures. (a) Modeling of model 1; (b) meshes of model 1; (c) mesh of cortical
bone of model 1; (d) mesh of cortical bone of model 2; (e) mesh of cortical bone of model 3; (f) mesh of trabecular bone of model 1; (g) mesh
of trabecular bone of model 2; (h) mesh of trabecular bone of model 3; (i) mesh of implant of all models; (j) mesh of UCLA of all models; (k)
mesh of crown of all models; (l) mesh of screw of all models.

region for each model.The applied force was 178N, at 0∘, 30∘,
and 60∘, in relation to implant long axis at palatine surface of
the incisor according to reference study [18].

NeiNastran 11 software (Noran Engineering, Inc., Cal-
ifornia, USA) performed the finite element solutions. All
solutions were exported to FEMAP 11.0 for postprocessing
and visualization of stress maps and displacement values in
areas of interest for analysis. The solid mesh convergence
error values were obtained for all structures of interest to the
study and can be seen in Table 3.

2.3. Criteria of Stress Analysis. Displacement patterns were
used to verify the tendency of movement of all models. Some
values (in millimeters) of specific areas were obtained for
comparison between models. Maximum principal stress was
used to analyze stress on bone tissue as recommended to
analyze compression and traction patterns of friablematerials
[12–16]. The von Mises stress was used to analyze implants
and its components as recommended to analyze ductile solid
materials [14, 15]. Both analyses have units in Mega Pascal
(MPa).

3. Results

3.1. von Mises Stress Analysis. The von Mises criteria showed
stress concentration near UCLA/implant interface and in the
fixation screw. The pattern of distribution was similar for all

models. However, the increase of loading direction (0∘ to 60∘)
generated higher stress concentrations. No differences of von
Mises stress were observed among models in the cervical
region of the implant/crown. Apical region of the implant
of bicortical technique associated with nasal floor elevation
presented less concentration of stress (Figure 2).

3.2. Maximum Principal Stress Analysis. In general, stress of
compression was located at buccal side of the bone in contact
with the cervical collar of the implant and stress of traction
was located in the opposite side (Figures 3 and 4). Sagittal
view (Figure 3) showed similar patterns of stress distribution
for all techniques, mainly near to implant neck area. The
bicortical techniques showed higher stress concentration of
traction on bone in the implant apex area as compared to
that of monocortical technique. The increase of the loading
inclination (0∘ to 60∘) showed higher stress concentration,
reaching over 100MPa in some areas including the area
surrounding the collar of the implant.

By occlusal view (Figure 4), the models showed higher
stress concentration surrounding the implant neck, mainly
for 60∘ of loading direction. Moreover, bicortical technique
associated with nasal floor elevation showed less extensive
area of stress of traction at lingual side as compared to that of
monocortical anchorage technique (Figure 4, arrows, orange
area).
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Table 3: Solid mesh convergence error.

Models Loading Implant Screw Cortical bone Trabecular bone

Conventional technique
0∘ 0,00026 0,00011 0,00024 0,00008
30∘ 0,00390 0,00442 0,00159 0,00014
60∘ 0,00870 0,00970 0,00280 0,00018

Bicortical technique
0∘ 0,00033 0,00011 0,00043 0,00004
30∘ 0,00409 0,00465 0,00209 0,00012
60∘ 0,00947 0,01032 0,00381 0,00018

Nasal floor elevation
0∘ 0,00030 0,00012 0,00045 0,00006
30∘ 0,00416 0,00477 0,00218 0,00014
60∘ 0,00944 0,01056 0,00333 0,00019

Table 4: Description values of models (in millimeter).

Surgical technique Loading Implant Screw Cortical bone Trabecular bone

Conventional technique
0∘ 0,012 0,013 0,012 0,012
30∘ 0,057 0,101 0,056 0,045
60∘ 0,101 0,194 0,099 0,079

Bicortical technique
0∘ 0,008 0,009 0,008 0,007
30∘ 0,046 0,089 0,046 0,035
60∘ 0,081 0,172 0,081 0,062

Nasal floor elevation
0∘ 0,006 0,007 0,006 0,006
30∘ 0,037 0,077 0,036 0,026
60∘ 0,065 0,150 0,064 0,045

3.3. Displacement Analysis. All models presented similar
pattern of displacement distribution (Figure 5). The increase
of the loading inclination (0∘ to 60∘) tends to increase the
displacement tendency. Bicortical technique associated with
nasal floor elevation showed smallest values for all analyzed
regions followed by bicortical technique and conventional
technique (Table 4). In some regions, as cortical bone, the
reduction of displacement tendency was 50% for bicortical
technique association with nasal floor elevation as compared
to that for conventional technique.

4. Discussion

In this study, bicorticalization techniques seemed more
effective biomechanically because they reduced the stress
distribution in the bone tissue in the area around collar of the
implant and showed less tendency of displacement. Literature
has emphasized the importance of primary stability for
osseointegration,mainly due to favoring the osteogenesis and
bone turnover [2].Therefore, adequate primary stability is an
indispensable condition for surgical procedures of implant
placement [2], principally in clinical situation of immediate
loading of implants [21]. Consider that bicorticalization
increases significantly the removal torque as compared to
that ofmonocortical anchorage of implants [2]; consequently,
there is an improvement of biomechanical stability using
bicortical technique [22].

Bicorticalization techniques offered possibility of trans-
mission of stress to upper cortical bone (in the nasal
floor) dissipating stress transferred by occlusal loading.Thus,

bicorticalized bone tissue could act as biologic mechanism
to prevent occlusal overload [23]. Similar methodology
indicated higher stress reduction of bicortical technique as
compared to that of monocortical anchorage technique [24].
This information agrees with Huang et al., 2009 [25], who
demonstrated that a bicorticalized implant of ≥8.5mm-long
decreased the stresses in both cortical and trabecular bone by
50% compared to a monocortical implant. Thereby, benefits
of bicorticalization are expected such as reduction of stress
levels in low quality bone as found in the anterior region of
the maxilla and this occurred in this study.

Studies showed that oblique forces are more dangerous
to the peri-implant bone tissue [12–15, 18, 24], especially
for rehabilitation using external hexagon implants [12]. In
our results, 60∘ of loading direction showed higher stress
concentration. External hexagon implants concentrate stress
nearest implant neck region as compared to other internal
connections [12] and this tendencywas observed in our study.
Once again this fact could explain higher tendency for screw
fracture and/or loosening in external hexagon implants [12].
Considering this type of implant and conditions of the study,
the results indicate that bicorticalized implants have similar
stress distribution compared to monocortical placement.
However, the movement tendency is lower for bicortical
techniques in this area and this fact could contribute to
decreasing the loss of tightening of fixation screws. Other
connections could showdifferent results; thus, further studies
should be performed to establish this comparison. Moreover,
compressive and tractive stress also presented similar results
to the literature [18].
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Figure 2: The von Mises stress analysis of implant, UCLA, crown, and screw fixation in sagittal view for different techniques.
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Figure 3: Maximum principal stress analysis of bone tissue in sagittal view for different techniques.

Despite disuse atrophy cited in adjacent areas of cortical
bones locked by an implant [7, 9] our results showed higher
levels of stress concentrations localized at upper cortical bone
with no significant differences in stress patterns of trabecular
bone, showing only slight reduction in tractive stress when
considering bicortical technique in the lingual region of
cortical bone. Thus, considering finite element analysis as
a static analysis, it is not possible to determine biological
evidences, as well as correlation with disuse atrophy, as
suggested by some studies [7–9].

In this study, the apical bone tissue involving the implant
was simulated as mature cortical bone and could have con-
tributed to the results. There is no published study clearing
the density of grafted bone after this technique. Findings
of biomechanical simulation suggest that the graft quality
changes the biomechanical performance of implants and
it is critical to consider the clinical situations where poor
grafted bone quality has been observed [26]. In this way,
as this simulation considered optimal performance of the
bone graft, these results should be analyzed with care since
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Figure 4: Maximum principal stress analysis of cortical bone in occlusal view for different techniques.

several troubles are reported regarding this technique as
bleeding, swelling, pain, hematoma, graft infection, implant
displacement, rhinitis, and sinusitis [11, 27, 28]. Certainly, any
of these situations mentioned will not result in a good bone
graft.

Although citations of bicorticalized implants have less
survival rate by some studies [7] and good predictability
by others [10], even increasing the survival rate [11], no
analysis of bruxism, antagonist arch, cantilever extension,
parafunctions, or other factors was investigated. Therefore,
results of these studies could be carried out carefully. In
this study it was indicated that bicorticalized implants are
mechanically viable as rehabilitation option.

FEA studies possess limitations since it is a computational
simulation and factors as restrictions of models, materials

properties, load values, and application type could change the
results and are limited as compared to clinical evaluations.
However, this technique allows adequate biomechanical
comparative study of regions of bone/implant interface in
different situations, suggesting the more suitable situation
under a biomechanical point of view. Controlled randomized
clinical trials should be performed to evaluate and compare
the described technique.

5. Conclusions

Considering the limitations of this study
(1) oblique loading increased the stress concentrations

independently of the simulated surgical technique of
implant placement;
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Figure 5: Displacement analysis of all models in sagittal view for different techniques.

(2) qualitative analysis of stress and displacement showed
that bicortical techniques showed the best biome-
chanical behavior compared with monocortical tech-
nique in the anterior maxillary area.
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