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The Case of the Disappearing (and 
Re-Appearing) Particle
Yakir Aharonov1,2,3, Eliahu Cohen3,4, Ariel Landau1 & Avshalom C. Elitzur  3

A novel prediction is derived by the Two-State-Vector-Formalism (TSVF) for a particle superposed 
over three boxes. Under appropriate pre- and post-selections, and with tunneling enabled between 
two of the boxes, it is possible to derive not only one, but three predictions for three different times 
within the intermediate interval. These predictions are moreover contradictory. The particle (when 
looked for using a projective measurement) seems to disappear from the first box where it would have 
been previously found with certainty, appearing instead within the third box, to which no tunneling is 
possible, and later re-appearing within the second. It turns out that local measurement (i.e. opening 
one of the boxes) fails to indicate the particle’s presence, but subtler measurements performed on the 
two boxes together reveal the particle’s nonlocal modular momentum spatially separated from its 
mass. Another advance of this setting is that, unlike other predictions of the TSVF that rely on weak 
and/or counterfactual measurements, the present one uses actual projective measurements. This 
outcome is then corroborated by adding weak measurements and the Aharonov-Bohm effect. The 
results strengthen the recently suggested time-symmetric Heisenberg ontology based on nonlocal 
deterministic operators. They can be also tested using the newly developed quantum router.

The Two-State-Vector Formalism (TSVF) enables quantum mechanics to reveal hitherto unknown aspects of 
quantum reality1, 2. This especially holds for the quantum values that prevail between two measurements. In stand-
ard quantum theory, where only measurement makes a value valid, such “unmeasured values” seem to be mean-
ingless. Yet they are not: In a pre- and post-selected ensemble, the initial and final boundary conditions should 
be treated on equal footing, equally affecting the state in between. Under the resulting two-times inference, such 
states not only become accessible, but further reveal novel and intriguing properties of quantum reality. We there-
fore describe, in what follows, the pre- and post-selected system using a two-time state1, 2:

φ ψ , (1)t tf i

where ψ ti
 and φt f

 are the pre- and post-selected states, measured at ti and tf respectively. We then let these states 
evolve unitarily forward/backward from the moment of pre-/post-selection to any moment ti < t < tf for fully 
determining the properties of the system. The latter is given by the corresponding weak value3 of the correspond-
ing operator A:
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Recently, TSVF has also revived Heisenberg’s picture of quantum mechanics4, 5, by suggesting a description of 
quantum systems through a set of deterministic operators, based on modular momentum in a time-symmetric 
framework. This picture has proved to be comprehensive and illuminating with respect to quantum (dynamic) 
nonlocality. Within it, we employ the well-known analogy between double potential-wells and spin systems6. 
This approach simplifies some calculations when representing the position within the two wells via the Pauli-Z 
operator and the tunneling between the wells via the Pauli-X operator. These two, together with the Pauli-Y 
operator, will be understood hereinafter to be nonlocal operators, sensitive to the relative phase between the 
wells. This difference between operators like the Pauli-Z, which can be measured when looking into a single 
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well, and the Pauli-Y, which incorporates the information from two wells, will turn out to be useful in our 
gedankenexperiment.

In this paper we continue the line of investigation7 of probing the foundations of quantum mechanics through 
apparent quantum paradoxes. In particular, we pursue recent gedankenexperiments where weak values coincide 
with eigenvalues of projective operators8, as well as pre- and post-selected scenarios involving non-trivial dynamics9.  
Specifically, we analyze a simple potential-well system where a unique occurrence is shown to take place: a parti-
cle within a box seems to “disappear” at a certain instant – leaving behind only its bare nonlocal properties – and 
then to “reappear” to in another place and re-assume them. Even within the well-known multitude of earlier 
quantum paradoxes, this evolution is extremely counterintuitive. It is made possible only due to the novel inclu-
sion of tunneling within the pre- and post-selected system.

This work also continues the conceptual advance made by recent works8, 9 of proving TSVF predictions 
with ordinary (projective) quantum measurements rather than (or in addition to) weak measurements. The 
importance of this advance is twofold: Theoretically, it avoids criticism of weak measurements raised so far10–12. 
Experimentally, it has already won impressive realization in the work of13, hence calling for similar realizations of 
other TSVF predictions, in particular the present one.

This article’s outline is as follows. In the first two sections “The Quantum Three Caskets Riddle” and “A 
Time-Symmetric Calculation” we present a novel effect predicted by the TSVF. In “What has Happened”? and 
“The Proof ” the effect is analyzed. The section “Alternative Accounts” considers other possible explanations 
and argues that they are insufficient, while “Measuring the Effect” presents two additional verifications of the 
effect with the aid of weak measurements and the Aharonov-Bohm effect. “The Heisenberg Ontology” relates the 
recently suggested time-symmetric Heisenberg ontology with the present case. “Recent Experimental Realization” 
describes a recent experimental breakthrough, of immediate applicability to the present setting.

Methods and Results
The Quantum Three Caskets Riddle. Like Shakespeare’s Portia presenting the three Caskets to her suit-
ors, let the proverbial Alice of quantum information exercises pose a similar challenge to her Bob. She presents 
to him three boxes, among which a single particle is hidden. Earlier she has made one out of three measurements 
on these boxes, and now she discloses to Bob the outcomes of only the first and last measurements, performed 
at t = 0 and t = tf, respectively. She then challenges him to find the outcome of the intermediate measurement, 
performed in between.

Measurement A. The pre-selection measurement (Fig. 1) was actually a preparation, splitting the wavefunction 
without measurement, that sets the stage for the riddle (For illustration we use a three-port beam splitter similar 
to those in refs 14 and 15. In practice, it could be simpler to use a nested Mach-Zehnder Interferometer as in refs 
16 and 17. In any case, we keep the present experiment at the gedanken level).

Alice has prepared a particle at t = 0 in the state

ψ = + +i(0) 1
3

( 1 2 3 ),
(3)

and placed it superposed within three boxes. Tunneling was enabled between boxes 1 and 2 (but not with 3), such 
that the effective dynamics is given by the Hamiltonian

εσ=H , (4)x

allowing a minor flipping rate ε from spin up to spin down and vice-versa, that is, the particle flips its position 
within Boxes 1 and 2 every T = πħ/2ε. In terms of box occupations, the eigenstates of σx are | 〉 ± | 〉(1/ 2 )( 1 2 ).

Figure 1. The preparation (Measurement A). A three-port beam-splitter splits the wavefunction into three 
parts proceeding towards the three boxes. The narrow passage connecting Boxes 1 and 2 enables tunneling 
between them. A phase shifter adds a phase of -i to the wavepacket in Box 2.
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Measurement B. This intermediate measurement, which Bob has to derive its outcome from those of A and C, 
was actually one out of three possible ones, chosen by Alice:

 i) If the measurement was performed shortly after A (t = t1 very close to t = 0), she has opened only Box 1 
(never 2 or 3) to see if the particle is there.

 ii) If she has waited till = = π
ε

t t2 4
 , i.e. half of the tunneling time between boxes 1 and 2 (not to be confused 

with half of the total experiment time), then she has opened both 1 and 2 (in whatever order) for the same 
purpose.

 iii) If she has further waited until = = π
ε

t t3 2
 (when a full flip occurs), she opened only the second box (never 

1 or 3).

Only one of these three measurements is allowed for each particle.

Measurement C. Finally, Alice has post-selected the particle at = = π
ε

t t f  with the state

φ| 〉 = −| 〉 + | 〉 + | 〉 .t i( ) 1
3

( 1 2 3 )
(5)f

This outcome occurs in 1/9 of the cases. Other outcomes were discarded.

The Challenge. Being told the outcomes of the initial and final A and C, Bob has to derive with certainty those of 
the three optional intermediate measurements Bi, Bii or Biii, i.e. telling Alice:

If you chose to make the measurement at t1 by opening Box 1, you have found the particle there with certainty. 
If you performed the measurement at t2 by opening Boxes 1 and 2, you found the particle in neither. And if you 
have waited further till t3, you found the particle in Box 2.

A Time-Symmetric Calculation. How can Bob find the answer? He has two options, namely to calculate 
the probabilities in the standard way from past to future, or use conditional probabilities in the time-symmetric 
way: Take both measurements, performed before and after the intermediate measurement in question, as equally 
affecting it1. This contrasts with classical mechanics where initial conditions specify the complete information 
regarding the system at all later times. It accords, however, with mathematical reasoning, which is indifferent 
to time’s direction (see Fig. 2), and moreover with standard QM where the initial wavefunction does not fully 
determine the outcomes of all subsequent measurements. This is where TSVF offers its innovation: Add the future 
boundary condition for the complementary information. The resulting account is often surprising, yet in several 
cases can be corroborated with strong measurements1, 2. As will be discussed in the next two sections, this allows 
Bob to find all three outcomes with certainty.

What has Happened? Bob’s calculation proves correct. Alice confirms that all particles that ended up with 
the post-selection C shared the following history (Fig. 2): If she chose to make measurement Bi/Biii, she always 
found the particle in Box 1/2, respectively. But if she performed Bii, then at t2 she found the particle in neither.

This is obviously an odd evolution. With zero tunneling probability between the first two boxes and the third, 
the particle could not move from Box 1, where it would have been found with certainty at t = t1 nor from Box 2, 
where it would have been found with certainty at t = t3, to Box 3. As no current is expected between these boxes, 
no such jump is possible either.

Here then is the reasoning for our predictions (the presentation of the detailed time evolution is postponed 
until Eqs 9 and 10). Let the state of the system be described by a two-time state (see Eq. 1). Let us ignore the nor-
malization from now on, as it does not affect the weak values. The two-time state is evolving due to the tunneling 
between 1 and 2, such that at t1 it is

φ ψ〈 || 〉 = 〈 | + 〈 | + 〈 | | 〉 + | 〉 + | 〉 .t t i i( ) ( ) ( 1 2 3 )( 1 2 3 ) (6)1 1

Hence at t1 both wavefunctions, from past and future, have a positive amplitude in Box 1 (the weak value of the 
projection operator is 1), implying the existence of a particle there.

These wavefunctions, however, contain also a unique, imaginary amplitude in Box 2 (the weak values of the 
projection being −1), implying the “negative” existence of the particle there. This element, crucial for understand-
ing this result, is explained in detail below. This also indicates the contextuality embedded in our experiment18, 19.

Overall, a strong measurement of the particle in box 1 at t1 would find it there with certainty, but also, in “weak 
reality,” the total number of particles within the two boxes is zero. This is consistent with the prediction at t2, when 
the two wavefunctions strongly differ: The two-time state then is

φ ψ〈 || 〉 = 〈 | + 〈 | | 〉 + | 〉t t i( ) ( ) ( 2 2 3 )( 2 1 3 ), (7)2 2

i.e., the information coming from the past tells us that the particle is in Box 1, while the information coming from 
the future tells us that it is in Box 2 with an imaginary amplitude. This combination of past and future information 
(in the form of the two-time state, or the individual weak values) tells us (Fig. 3) that the particle, due its tunneling 
from Box 1 to Box 2, where its existence is “negative,” resides in neither.

However, if Alice waits until = π
ε

t3 2
 , she will find that, with the wave-function’s “positive” and “negative” parts 

tunneling back between Boxes 1 and 2, the particle now certainly resides in Box 2, obliged by the two-time state
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φ ψ〈 || 〉 = 〈 | − 〈 | + 〈 | | 〉 − | 〉 + | 〉 .t t i i( ) ( ) ( 2 1 3 )( 1 2 3 ) (8)3 3

This unique evolution is a direct consequence of the two amplitudes’ continuous change in time, due to which, 
from the very first moment, they were self-cancelling. This self-cancellation, strongly resonating with some previ-
ous works such as20, offers the key for understanding the particle’s intriguing evolution. First, this is not an instan-
taneous “jump” between the boxes. Has the particle been (weakly or strongly) measured in Box 3, it would always 
be found there. In Boxes 1 and 2, however, the situation is much subtler. Together, they contain zero particles. 
At t1, this zero is composed of +1 in the first box and −1 in the second. Then at t2, due to the tunneling allowed 
between these boxes, it turns into two zeroes in both, which is what a local strong measurement would reveal.

This transition has evolved continuously in time. The pre-selected wavefunction evolved according to
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and similarly for the post-selected wavefunction:

Figure 2. Possible time-evolutions of the experiment and the probabilities involved. (a) Only pre- and post-
selections, without any intermediate measurement. (b–d) Pre- and post-selections with one intermediate 
measurement at either t1/t2/t3. (e) Counterfactual prediction for both t1, t2 and t3 (not performed) given both 
pre- and post-selections.
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φ ε ε ε ε′ = − ′ − ′ − ′ + ′t t t i t i t( ) ( cos( / ) sin( / ) cos( / ) sin( / )1), (10)f    

where t′ = 0 at the time of post-selection and grows backwards. When reduced to the first two boxes, these wave-
functions remain orthogonal at any instant. Together they suggest the continuous change in the particle number 
within each of the boxes, with the total remaining 0 at all times.

Notice that the “−1 particle” should not be confused with an anti-particle. In contrast to the latter, which differs 
from its particle only with charge, a “−1 particle” is unique in that all its properties are negative when probed by 
weak measurement. This is an intriguing prediction of the TSVF, implicit already in the original 3-boxes paradox21  
and in Vaidman’s nested Mach-Zehnder experiment16, 17.

As a final note in this section, let us clarify the meaning of the phrase “with certainty” appearing repeatedly 
within the text. Although less naturally, it can be understood also within a single-state-vector approach. At t1 for 
instance, we claim that under our pre- and post-selection, the particle will always be found in Box 1, if we look for 
it there. Why is that? Let us assume, Reductio ad absurdum, that the particle is not there. Hence, we are left with 
the following contribution for the initial state | 〉 + | 〉i(1/ 2 )( 2 3 ). At the moment tf = πħ/ε, this state evolves to 

− | 〉 + | 〉i(1/ 2 )( 2 3 ), which is orthogonal to the post-selected state, hence post-selection never succeeds in such 
cases. The same can be easily shown for the measurements at t2 and t3. Hence, a single-state-vector approach 
works just as well, but we find the two-state approach more intuitive and mathematically simpler.

The Proof. An important theorem21 proves the following for weak values revealed by counterfactual strong 
(projective) measurements: If a strong measurement’s outcome is known with certainty, it equals the outcome of 
a corresponding weak measurement. For a class of dichotomic operators, i.e. operators with only two eigenvalues, 
the inverse is also true21: If the weak value coincides with an eigenvalue of the dichotomic operator, it could also 
be found using a strong (projective) measurement. This theorem allows discussing the present paradox and its 
solution in terms of strong measurements first.

In the two-times Heisenberg picture, all measurement outcomes correspond to the pre- and post-selected case 
(a subscript w could have been added to remind that we are calculating weak values, but then again, all results 
are deterministic and could have been found in the strong sense as well). This picture is especially helpful in the 
present case, which is based on simple dynamics resembling classical precession.

Boxes 1 and 2 are described using the set of operators σ σ σ′ ′ ′ ′I{ , , , }x y z  which in the larger Hilbert space of the 
three boxes take the form:

σ σ σ′ =
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0 1 0
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(The last row and column are zero, since the time evolution does not affect the third box).
As noted above, the σ′z  operator denotes a local position measurement, revealing whether the particle exists in 

the first/second box upon inspection. The operators σ′x  and σ′y  are used to perform nonlocal measurements of the 
relative phase (or modular momentum) between the two boxes4, 5.

The particle’s presence within the first box can be measured either weakly (see Sec. “Measuring the Effect” 
below) or directly (e.g. via a scattering experiment) at time t = t1 ≈ 0 using a projective measurement performed 
at this moment:

σ
Π ≡ =

′ + ′
=

+
=t t

I
t( ) 1 1 ( )

2
( ) 0 2

2
1, (12)

z
1 1 1 1

Figure 3. The story told by weak values. At t = t1 the weak values within the three boxes are 1, −1, and 1. Later 
in time, the weak values within the first two boxes “mix”, (i.e. the left becomes <1 and the right becomes >−1, 
but their sum remains 0) and the weak value in the third box remains 1.
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indicating with certainty the particle’s presence (where the operators are evaluated in the two-time sense). Note 
that, since the pre- and post-selected states are orthogonal within the first two boxes, the reduced identity opera-
tor in this sub-space is actually null.

Similarly, if Alice decides to open the second box at = = π
ε

t t3 2
   she finds it there with certainty:

σ
Π ≡ =

′ + ′
=

+
= .t t

I
t( ) 2 2 ( )

2
( ) 0 2

2
1 (13)

z
2 3 3 3

If, alternatively, the particle is looked for at = = π
ε

t t2 4
  in either or both 1 and 2 using a “strong” projective meas-

urement (where again the “identity” operator is equal to zero within the first and second boxes), then

σ
Π ≡ =

′ + ′
=

+
=t t

I
t( ) 1 1 ( )

2
( ) 0 0

2
0, (14)

z
1 2 2 2

σ
Π ≡ =

′ − ′
=

+
=t t

I
t( ) 2 2 ( )

2
( ) 0 0

2
0, (15)

z
2 2 2 2

indicating now its absence from both boxes.
Despite its absence, however, the particle has left a trace within these two boxes. An indication of its subtle 

presence in them is given by the nonlocal modular momentum operator

σ ′ = −t( ) 2, (16)y 2

making the effect purely quantum. This single-particle nonlocal property has no classical analogue4, 5. Its infer-
ence with the aid of weak measurements is discussed in Sec. “Measuring the effect” below.

Upon local projective measurement, only the local properties of the particle, described by σ′z  can be found in 
Box 3. Yet its nonlocal properties, described by σ′x  and σ′y , reside in 1 and 2, manifesting an odd separation 
between the particle and its modular momentum. This resembles the quantum Cheshire cat22, although in our 
case only the mechanical properties of the particle are discussed, without referring to an inner degree of freedom 
such as spin.

We conclude this section with a note. If Bob delays the post-selection until π π ε′ = +t k( 2 ) /f , where k is some 
integer, Alice has yet another option: Instead of one triplet of times t1, t2, t3 she can have an endless series of such tri-
plets out of which she can choose any π ε′ = +t t k2 /i i i  for i = 1, 2, 3, to perform any measurement Bi as with the 
first three. All the above predictions hold for the new triplet as well.

Alternative Accounts. Can, then, this contradictory triplet of outcomes – namely,

 i. If you measure the particle’s position at t1 in Box 1 it will always be there;
 ii. But if you measure it at t2 in Boxes 1 and 2 it will never be in either;
 iii. Yet if you measure it at t3 in Box 2 it will reappear there,

be accounted for in a more trivial way? Let us give this option fair hearing. One may claim that when we looked 
for the particle at t = t2, it has all along been absent in Boxes 1 and 2 and present in 3.

This alternative, however, can be ruled out by Bell’s theorem. Arguing that the particle has been in a certain 
box all along is a local hidden-variable account, involving, say, one particle in one box plus a guide-wave split over 
the three boxes like in Bohmian Mechanics. This account forbids the corpuscle to instantaneously jump from 
one box to another. It has, however, been ruled out by gedankenexperiments of the kind proposed by Hardy23. 
Consider, e.g., a photon split as in our pre-selection and then sent towards three atoms. Only one atom becomes 
excited, but for this reason all three become entangled24. Now just add, as in the EPR case, another measure-
ment that is orthogonal to excited/ground, and the resulting state will prove that the exciting photon could not 
have been heading towards one atom all along. The same holds for our atom: It could not traverse only one of 
the three paths. The difference between the three different predictions for t1, t2 and t3 thus invokes a genuine 
disappearance-reappearance cycle.

Finally, recall that in option (i), namely opening Box 1 at t1, Alice must refrain from opening Box 2. This 
strains the local alternative further to the point of absurdity, unless one allows for hidden variables originating 
backwards in time from the future post-selection25.

Measuring the Effect. The above analysis can be understood either in terms of counterfactual projective 
measurements with certain outcomes on pre- and post-selected particles, or in terms of actual projective meas-
urements with uncertain outcomes on preselected-only particles (where the post-selected state in Eq. 5, giving 
rise to all relevant values, is not guaranteed).

In what follows, we augment these arguments with two additional tests. The methods presented below, based 
on weak measurements, are again actual, thus allowing measuring all observables with only negligible back-action 
to the quantum system.

Weak measurements. The above gedankenexperiment relied on counterfactual projective measurements. Weak 
measurements5, 26, however, allow analyzing this setup without invoking counterfactuals. In fact, this way we can 
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even perform all three measurements, at t = t1 as well as at t = t2 and t = t3, without collapsing the wavefunction, 
using the suitable pre- and post-selected ensemble. This follows from the unique ability of weak measurements 
to obtain information about the system without collapsing its state. The theorem cited in Sec. “The Proof ” above 
guarantees that the weak measurements’ outcomes, i.e. the inferred weak values, will be equal to the projective 
measurements’ outcomes as described by Eqs 12–15. In other words, weak measurements will confirm the parti-
cle’s disappearance and re-appearance along its evolution, based on a very weak von Neumann coupling between 
the measured particle and a measuring pointer. Indeed, weak measurements have been employed in the past for 
testing the original 3-boxes paradox27.

Inserting a solenoid between the first and second boxes. Assuming now that the particle is charged, in which case 
we would use electromagnetic fields instead of beam splitters. We can now test the predictions of the above sec-
tions in the following way: Let us insert a moving solenoid for a brief moment slightly before t = t1 (see Fig. 4). 
This addition is very potent because due to the Aharonov-Bohm effect, the solenoid is known to change only the 
particle’s modular momentum within these two boxes, i.e. it is changing a nonlocal property. For concreteness let 
us assume that the solenoid is chosen in such a way that the Aharonov-Bohm phase it induces when the charged 
particle is encircling it flips the relative phase between the two boxes in the initial state (see for example ref. 28), 
that is | 〉 + | 〉 + | 〉 → −| 〉 + | 〉 + | 〉i i( 1 2 3 ) ( 1 2 3 )1

3
1
3

 (alternatively, the phase shift can be induced by a 
time-dependent electric potential acting on the first box). This changes the weak value in the second box from −1 
to +1, hence we would find the particle (in the strong, counterfactual sense) with certainty in Box 2, had we 
decided to look for it there.

If, alternatively, the solenoid is inserted slightly beforet = t2 flipping the phase at that later stage, a weak meas-
urement at t = t2 would reveal this change in the relative phase, leading to a modification of Eq. 16. Now σ′ t( )y 2  
would equal +2, and similarly for σ′ t( )x 2  being now −i rather than i, even though the particle is apparently absent 
from the two boxes at t = t2 when local projections on the two boxes are employed. Being outside the spectrum of 
the Pauli-Y matrix, this value of −i can be measured only weakly when repeating the measurement over a large 
ensemble.

The Heisenberg Ontology. We believe that the paradox presented here can be best understood within the 
recently proposed time-symmetric Heisenberg framework4, 5. Our gedankenexperiment suggests a continuous 
transition between an ontology based on local properties (such as location in some box) to an ontology based on 
nonlocal variables (such as modular momentum), which can be verified only by opening two boxes. The latter 
ontology consists of a set of deterministic operators, that is, a set of operators which would yield with certainty a 
specific result when measured (this stands in contrast, of course, with an ontology based on the wavefunction). At 
t1 and t3 the ontological description of the particle is given by the local deterministic operator σ′z , while at t2 it is 
given by the nonlocal deterministic operators σ′x  and σ′y . On other instances the ontology is given by some combi-
nation of local and nonlocal deterministic operators.

Recent Experimental Realization. As pointed out in the Introduction, the present setting is among the 
few recent gedanken tests of TSVF’s predictions with the aid of the standard, projective (“strong”) measurements 
rather than the customary weak ones. Recently, this theoretical advance has been rewarded with a pioneering 
experimental realization13, in a setting resembling the present one, namely, the three boxes paradox21. Okamoto 
and Takeuchi have realized a protocol proposed earlier by Aharonov and Vaidman (AV) for testing the 3-boxes 
paradox29. They managed to turn a photon into a quantum router30, which can divert another photon similarly 

Figure 4. Inserting a magnetic flux source (a solenoid) between the first and second boxes a brief period before 
t = t1. The AB effect would change now the relative phase between the two boxes, thereby also changing the 
presence of the particle.
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to AV’s “shutter” designed to reflect it, such that they could demonstrate the photon being reflected from both its 
possible interaction sites with the particle, fully vindicating AV’s prediction.

As the present, “disappearing and reappearing particle paradox” is a variation of the 3-boxes one, with 
the novel addition of non-trivial time-evolution, it poses a unique challenge for an appropriate adaptation of 
Okamoto and Takeuchi’s experiment. Whereas their setting requires the probing photon to be in spatial superpo-
sition, so as to meet the particle in all its “boxes,” the present experiment requires a more complex superposition, 
in both space and time. Let the photon be superposed, first, with respect to its emission time, such that it may be 
emitted at either t1 towards either Box 1 or Box 3, or at t2 towards Box 3 alone, or at t3 towards either 2 or 3. The 
parts emitted at t1/t3 are thus superposed also spatially, splitting the wave-function into five parts in space and 
time.

The photon is then expected to be reflected from all these varying positions of the tested “shutter” particle. 
An appropriate re-uniting of the split wave-function in both space and time is therefore expected to prove, by an 
interference-like revival of the photon’s initial state, that it has encountered the particle, indeed, in different places 
at different times.

Discussion
We have demonstrated a thought experiment where a particle seems to disappear from a double potential well, 
despite the zero probability for tunneling outside. Even for those accustomed to quantum oddities, such an effect 
seems to be order of magnitude weirder.

When analyzed with a time-symmetric formulation of quantum mechanics, the TSVF, this particle is under-
stood to reside all the time within a third potential well, yet with a unique dynamics occurring in the other two. 
This dynamics suggests that at the beginning, the particle had two, mutually-cancelling amplitudes in the first two 
boxes, which have later indeed cancelled to zero, hence its disappearance as deduced by local projective meas-
urements. Indeed, simpler and more common phenomena like the Quantum Oblivion effect20, 31, lend further 
support for this interplay of “events” and “unevents” as an underlying mechanism of many peculiarities of the 
quantum realm.

An analysis within the time-symmetric Heisenberg picture4, 5, stresses this oddity while suggesting that the 
particle, although never passing through these wells, has nevertheless left a trace, namely its nonlocal modular 
momentum. This prediction holds for several complementary methods, including weak and strong (projective) 
measurements.

The main novelty of this setup is the interplay between local ontology based on local projective measurements 
of a single location, as in Box 1 at t1, and the nonlocal ontology based on measurements of relative phase between 
multiple locations, such as Boxes 1 and 2 at t2. We have shown that there is an independent existence of the latter, 
even in the absence of the former, and indeed, within the recently discussed time-symmetric Heisenberg picture4, 5,  
both local and nonlocal properties have the same foundational status.

Eventually, we have to accept the existence of both local and nonlocal observables in quantum theory, which 
makes it inherently distinct from classical mechanics, being only described by local variables. These results accord 
with other recent findings3, 7–9, 16, 20–22, 29, 31, 32 obtained by complementary methods for unique quantum evolutions 
that seriously undermine the classical nature of time itself.
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