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Abstract

Animals are proposed to learn the latent rules governing their environment in order to maxi-

mize their chances of survival. However, rules may change without notice, forcing animals

to keep a memory of which one is currently at work. Rule switching can lead to situations in

which the same stimulus/response pairing is positively and negatively rewarded in the long

run, depending on variables that are not accessible to the animal. This fact raises questions

on how neural systems are capable of reinforcement learning in environments where the

reinforcement is inconsistent. Here we address this issue by asking about which aspects of

connectivity, neural excitability and synaptic plasticity are key for a very general, stochastic

spiking neural network model to solve a task in which rules change without being cued, tak-

ing the serial reversal task (SRT) as paradigm. Contrary to what could be expected, we

found strong limitations for biologically plausible networks to solve the SRT. Especially, we

proved that no network of neurons can learn a SRT if it is a single neural population that inte-

grates stimuli information and at the same time is responsible of choosing the behavioural

response. This limitation is independent of the number of neurons, neuronal dynamics or

plasticity rules, and arises from the fact that plasticity is locally computed at each synapse,

and that synaptic changes and neuronal activity are mutually dependent processes. We pro-

pose and characterize a spiking neural network model that solves the SRT, which relies on

separating the functions of stimuli integration and response selection. The model suggests

that experimental efforts to understand neural function should focus on the characterization

of neural circuits according to their connectivity, neural dynamics, and the degree of modula-

tion of synaptic plasticity with reward.
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Introduction

Natural environments are complex places in which animals strive to survive, with hidden vari-

ables and stochastic factors such that the information available at any moment is partial, and it

must be sampled at several time points and integrated. What is more, the rules governing the

environment might change with time, leading to conflicting information. For example, an ani-

mal might learn how and where to seek for food, but if the place for feeding cyclically changes,

or the means of obtaining food change, the animal has to switch strategies along [1,2]. In this

case, no unique strategies exist, but several strategies must be learned. More importantly, the

value of a response not only depends on the current scenario, but in the history of events, for

example, the history of recent success of a given strategy. Therefore, it is relevant to study tasks

in which rules might change over time in such a way that the reinforcement of stimulus/

response pairings is inconsistent, i.e. Inconsistent-Reinforcement Tasks (IRTs). In particular,

the Serial Reversal Task (SRT) is an IRT in which two rules alternate over time, demanding the

animal to keep track of previous events in order to maximize reward [3,4]. With enough train-

ing, animals learn to adapt their behaviour as soon as a reversal occurs. However, learning an

SRT through a neural network model can be problematic: since each stimulus/response pair-

ing is positively and negatively reinforced in the long run, learning of one rule may lead to the

erasure of information regarding other rules, conforming a case of catastrophic forgetting [5].

On the other hand, although brain regions like the prefrontal cortex [6,7] and the striatum

[8,9] have been found necessary for learning the SRT, the precise neural mechanisms involved

are not well understood.

The goal of this work is to find the essential properties required by biologically plausible

neural networks to solve an IRT, taking the SRT as paradigm. We focus on stochastic spiking

neural networks (SSNN), a very general kind of neural network model that has been employed

to explain how key features of neural circuits, like excitatory-inhibitory balance [10] and spike

timing-dependent plasticity (STDP) [11], can lead to Bayesian inference [12] and reinforce-

ment learning [13]. For a very general family of SSNNs, we show analytically that strong limi-

tations to learning the SRT emerge when the functions of integration of stimuli information

and response selection are conducted by the same neural population. We propose a model that

is able to learn the SRT and discuss the implications of the results in relation to the neural

mechanisms of decision-making.

Results

We will study the characteristics of an agent controlled by a biologically plausible neural net-

work that learns to solve a SRT, conforming to what we will define as the hypothesis of func-

tionality by learning, which states that the set of configurations that gives functionality is a

small subset of the set of initial configurations. In this way, functionality is acquired by a learn-

ing mechanism that always leads the system from any random initial condition to one of the

functional configurations. The hypothesis implies that the system is not initially designed to

solve a given task from start.

A SRT is a discrimination task in which the mapping between the stimulus and the correct

response is reversed after a given (random) number of trials (Fig 1a). One out of two possible

cue stimuli (s1 or s2) is presented to the agent. During cue presentation the agent has to execute

one out of two possible responses (R1 or R2) in order to get a reward. Which response is correct

depends on the current rule (rule L1: s1! R1, s2! R2; rule L2: s1! R2, s2! R1). A reward

stimulus is shown after cue presentation: r1 for correct responses or r0 for incorrect ones. One

rule withstands until a switch of rules occurs at random. Switching occurs with low probability,

to ensure that a considerable number of trials with the same rule are presented.
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The structure of the task implies that any agent that follows only one stimulus/response

mapping as strategy will fail to get reward in half of the trials. Moreover, information provided

by the stimuli is useless unless the agent is capable of retaining information about the current

rule. Optimal performance can be achieved by adhering to a successful strategy, and to switch

strategies when the current one is no longer successful.

We will consider an agent that is controlled by a spiking stochastic neural network com-

posed of a sensory module Y and an integration/decision module K (Fig 1b). Neurons in mod-

ule Y code the sensory stimuli and project to module K, while neurons in module K project to

the response neurons and to other K neurons. One half of the K population projects to

response neuron R1 (the KR1
subset of module K), the other half to response neuron R2 (the

KR2
subset of module K). We assume that the firing of any neuron within a KR group is enough

to trigger the corresponding behavioural response. Therefore, the K module integrates sensory

information together with information from within the network, and at the same time it

defines the response that is going to be executed.

Fig 1. Serial Reversal protocol and simple network connectivity. (a) Each trial is composed of a cue stimulus presentation, during which

the behavioural response must be executed, and a reward stimulus presentation. Correct responses depend on the stimulus presented and

the current rule, which changes with probability pswitch. (b) Diagram representing the general connectivity of the simple network. Neurons in

module Y codify both cue and reward stimuli, and projects to the K module. K neurons connect with each other and project to one of the two

response neurons. Therefore, K neurons can be sorted in two halves depending on whether they project to neuron R1 (KR1
neurons) or

neuron R2 (KR2
neurons). Firing of any K neuron elicits their target R neuron to fire. Connections between module K and module R are

assumed to be hardwired prior to any learning, such that firing in module K completely defines the executed response. (c) An example

sequence of 3 trials of the SRT for the model depicted in (b) prior to learning, with a minimal K module composed of 8 neurons in which KR1
¼

fn1; n2;n3;n4g and KR2
¼ fn5;n6; n7; n8g. The current rule is L1.

https://doi.org/10.1371/journal.pone.0186959.g001
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In what follows we will show that the network sketched in Fig 1b (referred to as simple net-
work) is incapable of learning to solve the SRT without contradicting the hypothesis of func-

tionality by learning. First we will consider a “reduced” example of the simple network of Fig

1b that nevertheless puts in evidence the nature of the problem (see the Methods section for a

proof regarding both the reduced network and a general version of the simple network).

The firing state of module K will be represented by a vector n(t), where each element ni(t) ∊
{0, 1} represents the firing state of the ith K neuron. Similarly, we define a vector y(t) where

each element yi(t)∊ {0, 1} represents the firing state of neuron yi. As a shortcut, we will use p
(ni(t) = 1) and p(ni(t)) as equivalent expressions that represent the probability of neuron i of

being active at time t. The same holds for p(yi(t) = 1) and p(yi(t)).
We will consider a network with a Y module composed of 4 neurons such that each stimu-

lus is perfectly codified by one specific neuron, i.e. (p(yi|Si) = 1 and p(yi|Sj) = 0 8I 6¼ j) where Si
is the ith element of S = (s1, s2, r1, r0). Module K is composed of 8 neurons, which is the mini-

mum number of neurons required to solve the SRT: one neuron for each stimulus (cue or

reward) for each rule. Each trial T has two time points (t and t + 1), one for cue presentation

and another for reward stimulus presentation. The KR1
group comprises neurons from 1 to 4;

KR2
comprises neurons from 5 to 8. Only one Y neuron and one K neuron fire at each time

point, and the decision is evaluated during cue presentation (Fig 1c). Then, each neuron in

module K has a probability of firing that is given by:

pðniðt þ 1Þ ¼ 1jwðtÞ; yðtÞ; nðtÞÞ ¼
f ðwiðtÞzðtÞÞ

XNK

j

f ðwjðtÞzðtÞÞ
; ð1Þ

where w stands for all synaptic weights in the network, wi is a vector containing the synaptic

weights of afferent connections from all Y and K neurons onto the ith neuron in module K,

and z is a vector containing the firing states of all Y and K neurons such that wij is the synaptic

weight of the jth neuron with firing state zj that projects to neuron i. The function f can be any

function with the sole condition of being strictly increasing with wij. Eq (1) endorses the K
module with characteristics of a “soft winner-take-all” circuit in which a highly excited neuron

inhibits the other neurons in the module through a global inhibitory circuit [12].

Synaptic weights wij change according to the local pre/post synaptic activity and the reward

stimuli r. The change Δwij of a synaptic weight wij is given by a function g:

DwijðtÞ ¼ gðziðtÞ; zjðt � 1Þ; rewðtÞÞ ¼ dzi ;zj;rewðtÞ
; ð2Þ

where zi(t) and zj(t − 1) are the respective firing states of the pre and post synaptic neurons,

and rew is a function of the delivery of reward, such that rew = 1 during the cue and reward

presentation for trials in which the response was correct, and rew = 0 otherwise. The g function

can be in principle any function taking real values δ, with one δ for each combination of pre

and post synaptic state and reward function rew.

We assume that the neural network sketched in Fig 1b fulfils the Markov condition: the fir-

ing state of the system (i.e. which neuron is firing at time t) is only dependent on the firing

state of the network at the previous time. This means that information about past events can

only by carried on in the current state of the system. In the case of a SRT, a cue stimulus should

elicit either the response R1 or R2, depending on the current rule. For example, s1 should elicit

response R1 only during rule L1, or R2 only during rule L2. This implies that s1 should elicit a

response from a subset of the KR1
group when L1 rule is current, or from the KR2

group when

L2 rule is current. Since there is no explicit stimulus acting as a cue of the rule, the differential
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response of the K module in front of the same stimulus can be achieved only if the K neurons

integrate inputs from the Y module together with inputs from the K module itself. This means

that each stimuli must be coded by different groups of K neurons depending on the current

rule. Then, the occurrence of an error should act as pivot, leading the system to the set of states

associated with the other strategy.

We can write the transition probability of the Markov chain that describes the dynamics of

the whole system (network, stimuli and rules):

p½sðt þ 1Þ; Lðt þ 1Þ; yðt þ 1Þ; nðt þ 1Þ;wðt þ 1ÞjsðtÞ; LðtÞ; yðtÞ; nðtÞ;wðtÞ� ¼

p½nðt þ 1ÞjwðtÞ; yðtÞ; nðtÞ�:p½yðt þ 1Þjsðt þ 1Þ�:p½sðt þ 1Þ�:p½Lðt þ 1Þ�
: ð3Þ

Eq (3) is obtained by applying the chain rule of conditional probabilities, and using the fact

that L is independent of stimulus, and that firing state n(t + 1) is independent of any other vari-

able when conditioned to n(t), y(t) and w(t). Note that, since plasticity is assumed determin-

istic, Eq (3) is true if w(t + 1) is the resulting synaptic weight configuration of applying

function g given (n(t), y(t), n(t + 1)). Any transition to a different synaptic weight configura-

tion will have zero probability.

Now we can find the transition probabilities that solve the SRT and study under what con-

ditions a learning process is capable of reaching the solution. Fig 2 shows the directed graph

for the transitions in the state space that solve the SRT. Under rule L1, neurons n1 and n2 fire

with cue s1 and cue s2 respectively, while neuron n3 codes r1 and n4 codes r0. For rule L2, neu-

rons n5 and n6 fire with cue s1 and cue s2, while neuron n7 codes r1 and n8 codes r0. Neurons n4

and n8 are responsible for the strategy switching in the behaviour of the agent. Each time a

transition between rules occurs, an error is committed, and the corresponding error neuron

fires. Eq 1 tells us that the only way to change the transition probabilities is by adjusting the

synaptic weights. Since the f function is strictly increasing with wij, weights must be increased

to favour a transition, or decreased to make a transition less probable.

The transition probabilities depicted in Fig 2 lead to specific transition probabilities for the

firing state of each neuron in module K, conditioned to the firing state of their respective pre-

synaptic neurons (Fig 3). For example, if stimulus s1 is presented at time t and neuron n3 fired

at time t − 1, then the firing probability of neurons n1 at time t should be high, while the firing

probability of the other neurons should be low. This is because each combination of stimulus

and rule must be coded by one specific neuron of the eight neurons that compose module K.

This specificity in transition probabilities required to solve the SRT translates into a specificity

in the solution weight matrix (Fig 4a), due to the strictly incremental relation between firing

probability and synaptic weight depicted in Eq (1).

Based on the hypothesis of functionality by learning, we can say that the network learns to

solve the SRT only if the plasticity function g leads the system to the solution weight matrix of

Fig 4a, regardless of the initial conditions. However, the SRT is problematic in that there are

no combinations of cue stimulus and behavioural response that are always rewarded. To

understand this point, we can compare the SRT with another task, a discrimination task (DT),

which comprises two stimuli and two responses as in the SRT. Moreover, there are two possi-

ble rules which define which stimulus/response pairing is rewarded, as shown in Fig 1a. The

difference with the SRT strives in that in the DT each rule is cued by a specific stimulus (differ-

ent from s1 and s2), which are codified in turn by neurons in the Y module. In this way, the net-

work has direct information about which rule is current at a given moment. This means that

the set of stimulus/response pairings that leads to reward and the set that leads to no reward

are disjoint sets. Fig 4b shows the synaptic weight matrix that allows the network to solve a DT

in which the set of stimulus/response pairings {s1, L1, R1} and {s2, L2, R2} are always rewarded,

Neural mechanisms behind learning a serial reversal task
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Fig 2. Graph representing the transition probabilities of the Markov chain associated with the simple

network of Fig 1 solving the SRT. The active Y and R neurons are excluded from the global state to simplify

the representation, since Y neurons are entirely defined by the stimulus, and R neurons are entirely defined by

the active K neuron. The size of the arrow head represents the magnitude of the transition probability. Dashed

lines depict transitions for which a change of rule occurs. Transitions that have no arrow are considered to

Neural mechanisms behind learning a serial reversal task

PLOS ONE | https://doi.org/10.1371/journal.pone.0186959 October 27, 2017 6 / 26

https://doi.org/10.1371/journal.pone.0186959


while the other combinations are always not rewarded. It can be seen from Fig 4b that, to solve

the DT, it is enough to increment the synaptic weights of connections from the Y neurons that

codify the cues to the K neurons that exert the correct response. This fact is what makes possi-

ble to find a network that converges to the solution matrix for the DT by choosing a suitable g
function, such like a Hebbian plasticity function that leads to increments in the synaptic

weights only when a reward is obtained.

have very low probability. Under these transition probabilities, for each rule there is a different set of neurons

that codes each stimulus, and one neuron per rule that elicits the transition between rules when an error

occurs.

https://doi.org/10.1371/journal.pone.0186959.g002

Fig 3. Specificity of responses in module K given the firing of presynaptic neurons. The matrices show

the probabilities of postsynaptic K neurons being active at time t given the state of the presynaptic neurons in

module Y and module K at time t − 1. Probability magnitudes are consistent with the Markov chain of Fig 2.

This representation gives a hint about how the synaptic weights ought to be. High transition probabilities can

be achieved by setting high synaptic weights between a given presynaptic pair and the target postsynaptic

neuron, and low synaptic weights for all other postsynaptic neurons.

https://doi.org/10.1371/journal.pone.0186959.g003
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However, in the case of the SRT there are no disjoint sets of stimulus response pairings that

separates reward from no reward. In fact, since we assume that the system is initiated without

any information about how to solve the task, it can be seen that:

pðr1jsx; nyÞ ¼ pðr0jsx; nyÞ ¼
1

2
8x; y, and p(n|r1) = p(n|r0) = p(n). In particular:

pðzi; zjjr1Þ ¼ pðzi; zjjr0Þ ¼ pðzi; zjÞ: ð4Þ

This allows us to write the average change hΔwiji for a given wij:

hDwiji ¼
X

zi

X

zj

pðzi; zjjr1Þpðr1Þdzi;zj;r1
þ pðzi; zjjr0Þpðr0Þdzi ;zj;r0

¼
X

zi

X

zj

pðzi; zjÞpðr1Þdzi;zj;r1
þ pðzi; zjÞpðr0Þdzi;zj;r0

¼
1

2

X

zi

X

zj

pðzi; zjÞðdzi;zj;r1
þ dzi ;zj;r0

Þ ¼
1

2
�pzi;zj

�d

; ð5Þ

where �pzx ;xy
¼ ðpðzx ¼ 1; zy ¼ 1Þ; ðpðzx ¼ 1; zy ¼ 0Þ; ðpðzx ¼ 0; zy ¼ 1Þ; ðpðzx ¼ 0; zy ¼ 0ÞÞ

and �d ¼ ðd111 þ d110; d101 þ d100; d011 þ d010; d001 þ d000Þ.

The hΔwiji can be understood as the inner product between the vector �pzx ;zy
representing

the probability distribution of the pre/post synapses pair, and �d, which contains the net change

in wij for each pre/post configuration. The inner product implies a kind of correlation between

the two vectors, and changing a pair of synaptic weights in specific directions requires a precise

adjustment of this inner product:

hDwiji >> hDwmni ) �pzi ;zj
�d >> �pzm ;zn

�d ð6Þ

Fig 4. Synaptic weights between neurons of modules Y and K. (a) Synaptic weights configuration that allows the model to solve the

SRT, consistent with the transition probabilities shown in Fig 2. It can be seen that a specific arrangement of synaptic weights are required.

(b) Synaptic weights configuration that allows the model to solve a DT. In contrast with the SRT, all high synaptic weights correspond to pre-

post synaptic neurons that are systematically active when reward is obtained. Neurons L1 and L2 codify the stimuli that signal which rule is

current in a given trial of the DT.

https://doi.org/10.1371/journal.pone.0186959.g004
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Thus, to get to the solution weight matrix pictured in Fig 4a, a detailed adjustment between

the probability distribution of n(t) and the plasticity function must hold. Adjusting �d to �pzx ;zy

would mean that the plasticity was designed to solve a specific task for a specific initial condi-

tion, contradicting the hypothesis of functionality by learning. Adjusting �pzx ;zy
to �d would

mean that the initial synaptic weights were specifically chosen to solve the task, again contra-

dicting the hypothesis. Therefore, since the requirements for reaching the wij that are solution

to the SRT necessarily contradict the hypothesis of functionality by learning, we must conclude

that the neural network sketched in Fig 1b and described by Eqs 1, 2 and 3 cannot learn to

solve a SRT.

Learning to solve a SRT requires segregation of stimulus history coding

from decision making

The incapacity of the model depicted in Fig 1b for solving the SRT stems from the fact that the

solution weight matrix cannot be reached by any plasticity function g. Conversely, this charac-

teristic arises from two facts:

1. Correct stimulus/response pairings change over time, and there are no cues that give infor-

mation about the current rule. Thus, in order to keep information about the current rule,

the response of the system towards the stimuli must be specially conditioned by the previ-

ous states of the system.

2. The population that codes information about the current rule is the same population that

defines the behavioural motor response.

Fact number 1 implies that the task cannot be solved as a DT, since the reward does not sep-

arates stimulus/response pairs into any two disjoint subsets. Fact number 2 implies that coding

of stimuli cannot be done freely, because when a neuron codes a stimulus by firing, it is also

defining a motor response that is expected to lead to reward. Fact number 1 cannot be avoided

because it stems from the very nature of the task. But fact number 2 can be circumvented in a

model in which coding and decision functions are performed in separated neural populations.

Fig 5a depicts such a model (referred to as complex network; see Methods for a detailed

description of its implementation). There, module K integrates information about cues and

reward as before, and about the response executed as well, but does not defines the motor

response. Neurons in the integration module K project to two decision neurons D1 and D2.

The decision neuron that fires univocally defines which response neuron (R1 or R2) will acti-

vate, leading to the corresponding motor response.

Therefore, module K needs to codify all the information required to solve the task. Ideally,

it would suffice that neurons in module K codified the cue presented and the current rule. Nev-

ertheless, no cue informs about the current rule, and module K only sees stimuli. Therefore,

information about the current rule must be extracted from the history of perceived stimuli.

For example, the sequence (s1, R1, r1) shows that rule L1 was currently working, and it should

continue to do so except a reversal occurs, which is unpredictable but relative rare. In this

manner, a possible solution is that neurons in module K codify each stimulus differently,

depending on the previous stimulus history or contingency. This can be done following the

model presented in Kappel et al [14]. There, it was shown that stochastic spiking neural net-

works with lateral excitation and a global inhibitory feedback, in combination with spike tim-

ing-dependent plasticity (STDP), have as an emergent property the formation of neural

assemblies that encode external stimuli differently depending on the sequence of stimuli that
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preceded. In our case, module K should divide in groups of neurons codifying sequences of 4

stimuli: (s(T − 1), R(T − 1)), r(T − 1), s(T)), implying 16 possible contingencies.

The SRT structure for the following simulations is depicted in Fig 5b. Each trial starts with

the presentation of one cue, 25 ms long. At tdecision = 15 ms from trial onset, the state of neu-

rons in the R module are actualized based on which neuron is firing in module D. At the same

time, the response is characterized as correct or incorrect. During the interval [15 ms,25 ms]

the synapses from module K to module D are modified following Eq (24) (see Methods sec-

tion). The states of the R neurons are sustained unaltered between actualizations. The reward

stimulus, also 25 ms long, is presented immediately after cue offset, being r1 or r0 depending

on the correctness of the response. The rule is reversed every 15–20 trials, unless otherwise

stated.

Conceptually, learning is achieved in two steps. In the first place, neurons in module K
need to form subpopulations that respond differently to each cue at time t, given the past con-

tingency up to the cue presentation at trial T − 1. This is achieved by plasticity rule described

by Eq (23), provided that the system has enough memory so that events in trial T − 1 have an

impact during trial T. Next, neurons in module D need to read the firing of module K, map-

ping each contingency coded in module K to the correct response. This is achieved thanks to

the learning rule described by Eq (24), which is proved to reduce the distance between module

Fig 5. Serial Reversal protocol and complex network connectivity. (a) Diagram representing the general connectivity of the complex

network. Each cue and reward stimulus is coded by the Y neuron population, like in the simple network. Besides, the executed motor

response gives sensory feedback, such that each response is also coded by module Y. Module Y connects to all neurons in the integration

module K, which in turn connect with each other and with each neuron in the decision module D. Each neuron D is hardwired to one neuron

R, so that the response executed is entirely defined by the D module. Synapses between module Y and module K, and within module K are

plastic, subject to plasticity rule defined in Eq (23), which is applied at all times and is not dependent on reward. Synapses between module

K and module D are plastic, subject to plasticity rule defined in Eq (24), which depends on reward. (b) Serial reversal protocol for training the

network depicted in (a). Stimuli are presented for 25 ms, and the motor response to be executed is chosen at tdecision = 15 ms from cue

onset. Plasticity between K and D neurons is applied only if there was reward and within a window spanning from tdecision to the end of cue

presentation.

https://doi.org/10.1371/journal.pone.0186959.g005
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D firing probabilities p(d|r1) and p(d), leading in turn to an increase in p(r1) (see Rueckert

et al. [15]).

The model effectively learns to solve a SRT, as can be seen in Fig 6a. After 10000 trials of

training, the model is capable of changing strategies in the trial immediately following rule

reversal (Fig 6b). The dynamics of synaptic weights along training depends on each kind of

connection (Fig 7).

After learning, neurons in module K fire in sequences (Fig 8) which presumably contain

the information employed by module D to choose the right response. We studied the firing

profile of the K module by computing the probability of firing of each K neuron during tdecision
(Fig 9a). It can be seen that each one of the 16 possible contingencies has a firing profile that is

almost unique. Some contingencies are codified by s single neuron (for example, contingency

15), while other contingencies are codified by a set of neurons that fire more evenly (for exam-

ple, contingency 14). This can be seen more clearly by computing a Similarity Index (SI) for

pairs of firing profiles (Fig 9b). Most pairs have a small SI, and many contingencies are coded

by unique sets of neurons. Therefore, the firing state of the K module together with the

response executed conform a set of states that can be separated in two disjoint subsets when

conditioned to reward, which allows the D module to map each firing state in module K to the

correct motor response by means of plasticity rule described in Eq (24).

It is interesting to note that only half of the 16 contingencies are possible within blocks of

trials under rule L1, being the other half only possible within the block of trials under rule L2.

This implies that learning the contingencies could be subjected to a problem of catastrophic

forgetting. However, this was seldom the case as can be seen from Fig 9, at least for the proto-

col of 15–20 trials for each rule. To further explore this issue, we trained networks in a SRT

during 10000 trials under protocols with blocks of crescent number of trials with the same

rule, and computed the SI and average performance (Fig 10a and 10b). Performance dropped

as quickly as the SI values went up, as trials per block were increased, reaching a plateau for the

Fig 6. The complex neural network learns to solve the SRT. (a) Performance of the model during training, computed as percentage of

correct responses in non-overlapping windows of 100 trials. Reversals during training occurred every 15–20 trials. (b) The trained model

was tested without further plasticity in 2000 trials, with reversals every 20 trials, and performance was computed for each trial, aligning from

the trial where the reversal took place. Performance is low immediately after reversal, but improves quickly. In both panels, mean ± std is

plotted, for N = 10 network initializations).

https://doi.org/10.1371/journal.pone.0186959.g006
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longest blocks. However, it is worth noting that high performance (69%) is still attainable for

blocks of 320 trials, showing that the model has a remarkable resilience to catastrophic for-

getting of information regarding contingencies.

To better understand the dynamics of learning, we computed how well neurons in module

K codified each element of the contingency vector (s(T − 1), R(T − 1), r(T − 1), s(T)) along

training. Every 1000 trials of training we employed the last actualized synaptic weights in a sep-

arated simulation of 200 trials without plasticity, and assessed contingency coding by training

a tree bagger classifier to classify each of the 16 contingencies based on the firing of all K neu-

rons during tdecision. Then, the classifier was used to classify trials sharing one of each of the

components of the contingency vector (Fig 11a). Classification performance (CP) before train-

ing was around 50% for each separate element, and around 6% for the whole contingency,

matching the CP values expected by chance. After 1000 trials of training, the CP of s(T), R(T
− 1) and r(T − 1) were almost 100%. The response stimulus is the only stimulus that lasts 50

Fig 7. Evolution of synaptic weights of a complex network along training. Synaptic weights as they evolve during training are shown,

together with the synaptic weights distribution at the end of training. (a) Weight distribution for Y! K connections is bimodal, with large

values appearing early during training. (b-c) Synaptic weights for R! K and K! K connections follow a strongly skewed distribution. (d)

Connections between module K and module D follow a symmetric distribution around zero.

https://doi.org/10.1371/journal.pone.0186959.g007
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ms, and is only changed after tdecision, meaning that its coding demands the least memory and

thus is expected to be the easiest to code, along with s(T). Coding of reward stimulus r(T − 1)

demands more memory from the system, but nevertheless is coded with similar proficiency to

that of s(T) and R(T). On the other hand, the CP of s(T − 1) grows following a sigmoid-shaped

function that resembles the temporal dynamics of the synaptic weights within the K module.

Within the contingency vector, s(T − 1) is the first stimulus to be presented, and presumably

the one having the strongest memory requirements. Moreover, it is followed by r(T − 1),

which could act as an interferent. The coding dynamics of s(T − 1) is almost identical to the

coding dynamics of the entire contingency vector, and also grows similar to the growth in

behavioural performance (Fig 6a), suggesting that coding s(T − 1) is the bottleneck for contin-

gency coding, and presumably for behavioural learning.

Results in Fig 11a show that module K has enough memory to retain information for at

least 50 ms. To further explore the memory capacity of the system, we tested the model that

learned the SRT by simulating 2000 trials without plasticity. Trials were sorted according to

their membership to each contingency and a Naive Bayes classifier was trained to classify trials

according to their membership to a given contingency, based on the activity of the K neuron

population at time points ranging from the start of s(T) to the end of s(T + 5) (300 ms of

Fig 8. Emergence of sequential firing in the K module. Spiking activity (a) and corresponding postsynaptic potential time courses (b) of

the complex network during 4 consecutive trials of the SRT after achieving high performance. Neurons in the K module fire in sequences of

sustained bursts of activity. Postsynaptic potentials allow each spike to have an influence tens of milliseconds after their emission, linking the

neurons activity across different stimuli presentations. Note that neurons in the D module change their activity after stimulus onset and short

before tdecision. Rule L2 was current along the four trials. Colour bars are in arbitrary units.

https://doi.org/10.1371/journal.pone.0186959.g008
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consecutive activity). The CP was assessed for each contingency separately, and for the set of

16 contingencies (global performance), (Fig 11b). Global performance starts around 50% at

t = 0 ms, which means that the s(T − 1), R(T − 1) and r(T − 1) components were already codi-

fied at trial initiation; uncertainty remained regarding s(T), which is expected since this stimu-

lus had not been presented at t = 0 ms. Global performance picked rapidly, reaching its

maximum of 97% at t = 15 ms. At this time, the response is actualized and thus can differ from

Fig 9. Population coding of stimuli contingencies in module K. (a) The estimated firing probability of each neuron in module K

computed at tdecision, for each one of the 16 possible contingencies. Each row in the heat map represents the population firing profile pc for a

given contingency C. It can be seen that firing profiles do not show significant overlapping. (b) Similarity index (SI) between pairs of

contingencies firing profiles, which is inversely proportional to the 1-norm between firing profiles, and normalized to the interval between 0

(no similarity) and 1 (total similarity). In general the SI values are low. The highest SI was equal to 0.23, between contingencies 8 and 16,

which only differs in their s(T − 1). The second highest SI value was equal to 0.06, computed between contingencies 7 and 8, which only

differs in s(T). There was a tendency for SI values to be high for pairs of contingencies that share the same s(T − 1) or s(T).

https://doi.org/10.1371/journal.pone.0186959.g009

Fig 10. Effect of trials per block on model performance. Networks were trained in the SRT during 10000 trials, and average SI (a) and

performance (b) were computed in 2000 trials without plasticity. Each point in the plot belongs to one network trained with the number of

trials per block specified in the x axis. Average SI values were computed from the SI values between pairs of contingencies with shared s(T)

or s(T − 1), which are the contingencies with the highest SI, as shown in Fig 9.

https://doi.org/10.1371/journal.pone.0186959.g010
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the response in the contingency being analysed, explaining that the maximum global perfor-

mance is found at tdecision.

For good performance, information about the previous trial must be retained until tdecision.

We can see that the memory of the system far exceeds this minimum requirement, with a CP

of 22% at t = 300 ms. Notably, CP values per contingency are clustered in two well defined

Fig 11. Contingency coding and memory after training. (a) The information conveyed by the K module about the contingencies was

estimated by employing tree-bagger classifiers trained on the K module firing profile to classify trials according to their membership to a

given group of contingencies that share some specific element, depicted in the legend. Probe simulations were run before beginning training

(Trial = 0) and then every 1000 trials. Firing profiles where computed at tdecision. Information about s(T − 1) takes more training to be

acquired, acting as a bottleneck for the coding of the whole contingency. (b) Memory about the occurrence of each contingency was

estimated by assessing the classification performance of a Naive Bayes classifier trained to correctly classify the 16 contingencies based on

the K module firing profile computed from t = 0 of trial T, to the end of trial T + 5 (being T the trial when s(T) of the target contingency was

presented). The CP value picks around tdecision as expected since the contingency may change after that time. For contingencies which

involved the r1 stimulus, information is retained above chance levels long after the time of decision. On the contrary, information about

contingencies involving r0 was retained for a shorter period, suggesting that information retention is proportional to the frequency of

occurrence of the contingency. (c) When reward is delivered at random, differences in information retention between contingencies involving

r1 and r0 disappears.

https://doi.org/10.1371/journal.pone.0186959.g011
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groups that differ in how fast classification performance drops. The group of contingencies for

which the system has shorter memory (CP drops fast) is composed of contingencies where r(T
− 1) = r0 (red curves), while memory is longer for rewarded contingencies. It is important to

note that r0 is less and less presented as learning progresses, leading to an underrepresentation

of contingencies containing r(T − 1) = r0. This suggests that the number of times a given con-

tingency is presented during training defines for how long the system retains information

about that contingency. To test this hypothesis, we performed a new training in which both r1

and r0 have equal chances of been presented regardless of the chosen motor response. In this

case, the CP of all contingencies followed a similar temporal course, as expected (Fig 11c).

Discussion

In this work we have studied under what conditions a biologically plausible neural network is

capable of solving a serial reversal task. The distinctive feature of this paradigm is that each

stimulus/response pairing is eventually reinforced, since correct responses depend on the cur-

rent rule. Thus, the sole information about the perceived stimulus and executed response col-

lected at any single point in time is not sufficient to solve the task. This problem is reminiscent

of the problem of catastrophic forgetting, also called the stability/plasticity dilemma, which is

usually stated as the difficulty that many neural network models have in acquiring new infor-

mation without erasing old information [5,16]. Catastrophic forgetting studies usually focus

on paradigms where a set of stimulus response pairings must be learned sequentially. Thus,

the difficulty of the task strives in the distributed representation of stimuli in the neural net-

work, where the same set of synaptic weights are modified each time a new pairing is pre-

sented. It has been shown that forgetting can be alleviated in models that incorporates

different levels of plasticity, i.e. mataplasticity [17,18]. Moreover, previously acquired informa-

tion can be preserved in the correlated firings of the neural population [19]. Thus, it might be

reasonable to think that similar mechanisms could be at work in a behavioural paradigm like

the SRT. However, the results presented in this work show that no plasticity rule or neural acti-

vation function is sufficient to guarantee good performance in the SRT without contradicting

the hypothesis of functionality by learning. In particular, we showed that the SRT cannot be

learned by any network in which the same neural population integrates stimuli information

and at the same time defines the motor response through non-plastic connections.

It is assumed that learning occurs through neural mechanisms that drive the network to a

configuration that solves the task. A prerequisite for learning is that the probability of

sequences of stimuli and responses must be different when conditioned to reward than when

conditioned to no reward; the non-fulfilment of this prerequisite means that reward delivery is

not dependent on behaviour and there is nothing to be learned. Then, the network must

achieve two properties: to differentially code in its states the sets of rewarded and non-

rewarded sequences of stimulus/response pairings, and to map network states to the correct

motor response. It is important to note that this last property (mapping) is only attainable

after the first property (coding) is achieved. In the simple network, once coding is achieved the

mapping is completely defined, since motor responses are pre-defined based on the activity of

the integration/decision module K. But adequate mapping requires appropriate coding as a

prerequisite, implying that simple networks will achieve mappings that allow high perfor-

mance only by chance, which although not impossible, since we considered stochastic net-

works, is something that can hardly be regarded as learning. Moreover, the probability of

finding a solution in this way would be very low, since the solution trajectories are only a small

subset of all possible trajectories. For example, the module K ruled by Eqs (18–24) is capable of

coding the 16 (s(T − 1), r(T − 1), R(T − 1), s(T)) sequences. Let’s consider 16 K neurons, half of
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them leading to R1 and the other half leading to R2. We may assume that each neuron will

code one of the 16 possible contingencies at random, since initial conditions were randomly

chosen. Then, there are 8! x 8! out of 16! possible assignments between Ki neurons and contin-

gencies Cj that lead to 100% of correct responses. This means that, by choosing an initial ran-

dom condition, this K module will exhibit 100% performance with a probability of 7.8x10-5.

Building from the restrictions exhibited by the simple network scheme, we proposed a neu-

ral network model capable of solving the SRT, which relies in assigning the functions of con-

tingency coding and response selection to different neural populations (integration module K
and decision module D in Fig 5a). In this way, all the information required to solve the SRT

(i.e. the coding of the (cue,response,reward) contingencies) is firstly acquired in module K,

and then the module D adapts its response through reinforcement learning in order to maxi-

mize reward. Besides the SRT, the model should perform well in any task that implies unpre-

dictable changes of rules. Also, other related phenomena, like the overtraining reversal effect,

could be recapitulated in the model by the addition of attentional mechanisms, such as

reward-modulated stimulus gain [20].

It is interesting to note that, although the separation of functions achieved in the complex

model allows to untie the problem generated by the reversal paradigm, the coding of the con-

tingencies themselves implies a possible problem of catastrophic forgetting, because it is the

same set of synaptic weights that is required to change to learn contingencies which are pre-

sented in a sequential schedule. Nevertheless, the soft winner-take-all network implemented as

module K showed a remarkable resilience to forgetting. Although information of contingen-

cies within a block of trials with the same rule could persist long enough into the other block,

this is not likely, since the memory of the system declines considerably after 6 trials (Fig 11b).

A possible explanation for the resilience to forgetting could be found by noticing that the dis-

tribution of synaptic weights attained among neurons in module K is sparse (as shown in Fig

7c), a fact that could decrease the chances of interfering representations [21].

The impossibility result shown here has special meaning for brain regions typically related

to decision making like the prefrontal cortex (PFC). The PFC is key to several high level cogni-

tive process such as behavioural plasticity [22], working memory [23–25], rule learning [26]

and decision making [27]. Experiments involving brain lesions have shown that different sub

regions within the PFC and the striatum are differentially involved in the SRT. In particular, it

has been found that the orbitofrontal cortex (OFC), the medial PFC, and the medial and dor-

somedial striatum are required for learning a SRT [8,9,28]. In most cases, lesions of the

involved areas led to slower learning of the SRT, with a higher rate of perseverative errors. In

our model, perseverative errors occur if module K codifies stimuli but does not have enough

memory to codify cues, reward and responses taking place in the previous trial. Since the cod-

ing capacity in module K stems from the competitive dynamics between neurons that occurs

through inhibition, a failure in the inhibitory system would harm coding capacity of module

K, leading to perseverative errors. This is consistent with [29] in which mutant mice with defi-

cit in frontal cortical inhibitory neurons showed more perseverative errors, and impaired

learning in the SRT.

The experimental results enumerated before, together with our theoretical results suggest

that, in order to understand the neural mechanisms required for solving the SRT, and the IRTs

in general, it would be of great value to characterize subpopulations of neurons according to

their afferent and efferent projections and in relation to their firing profile. It could be

expected for example, that the PFC neurons could be sorted in populations of coding neurons,

that code complex contexts and stimuli histories, and decision neurons, that integrate contin-

gency information from the coding population and projects to motor structures like the dorsal

striatum, or the motor cortices. Another interesting possibility is that simple and complex
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networks coexist within different brain regions, for example as circuits spanning the PFC and

the basal ganglia. If this two kind of networks are somehow segregated, then a specific brain

lesion could damage more complex networks than simple networks. The damage in complex

networks would hamper learning in tasks like the SRT, while the remaining simple networks

would still be capable of solving other non-IRT tasks like a simple discrimination, or a delayed

matching-to-sample task.

Synaptic plasticity in the model depicted in Fig 5a fulfils two different functions. In module

K, plasticity allows the system to classify stimuli contingencies. The modulation of plasticity by

reward would make no difference there, since all contingencies are equally rewarded, at least

during the beginning of learning. Evidence of sustained plasticity have been found experimen-

tally, in the form of the continuous formation and erasure of synaptic spines in cortex, which

occurs even in the absence of any obvious reward [30]. On the other hand, plasticity between

module K and module D has the function of allowing the D module to read the firing of K neu-

rons that carries contingency information, and to map it with the correct response. In this case

a reward-modulated form of synaptic plasticity is essential, and related experimental evidence

can be found in the known effects that the neuromodulator dopamine (DA) has on synaptic

plasticity in brain regions like the cerebral cortex [31], hippocampus [32] and striatum [33],

and in the fact that DA neurons code reward and reward-predicting cues [34,35]. This funda-

mental difference in plasticity modes in the model suggests that experimental approaches to

understand neural computation should focus on searching for subpopulations based in their

synaptic plasticity profile, dissecting populations of neurons according to how sensitive their

synaptic changes are to neuromodulators related to reward. Understanding the relationship

between connectivity, firing profile, and reward and non-reward modulated plasticity could

help to discover the building blocks of neural computation.

In brief, the study of a well-known task as the SRT allowed to gain new insights into the

computational limits of an important set of biological neural networks that are commonly con-

sidered as models of learning and decision-making, and to give new theoretical support to the

experimental exploration of the anatomy and function of neural circuits. Future work should

focus on the rules of connectivity that allows greater memory for coding more complex contin-

gencies, and in the kind of algorithms that can be learned by combining different circuit motifs

with reward and non-reward modulated plasticity.

Methods

Proofs for the impossibility of simple neural networks to learn to solve the

SRT

Achieving high performance in the SRT implies that the network responds to stimuli accord-

ing to the transitions depicted in Fig 2. The behaviour of the network will be inherently sto-

chastic, since it is required to respond to stimuli that are themselves stochastic. However,

given the state of the network at time t, the transition probability for the correct response is

expected to be close to one, with all other responses having transition probabilities close to

zero. Without the stochasticity of the stimuli, the network would follow a deterministic limit

cycle, in which n(t) = n(t + m), being m the length of the cycle. In this manner, we say that the

transition probability matrix is a deterministic probability matrix, and that the network follows

a stochastic limit cycle, where the stochastic component of the behaviour is given by external

factors that do not depend on the activity of the network.

With this concepts in mind, we will prove that the reduced neural network cannot learn to

solve the SRT by showing that, given any excitation function f and plasticity function g, the
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network either does not converge, or it converges to one of many possible stochastic limit

cycles, where only a small subset of these limit cycles allows high performance in the SRT.

First, we will study the convergence properties of the reduced neural network, assuming

that external stimuli are not stochastic. We build on the mathematical framework of decision

systems as presented in [36]. There, a decision system is defined, which is composed of a state

space X, a decision space D, and transition probabilities pi(x) ≔ p(i|x) and pi(x, A)≔ p(x∊ A|

x,i), where x∊ X, i∊D, and A is any element of the sigma algebra on X. At each time t, a deci-

sion i is taken given x(t) and pi(x), obtaining i(t + 1). Then, x(t + 1) is obtained, conditioned to

i(t +1) and x(t) through Pi(x(t), x(t + 1)).

The evolution of a stochastic spiking network can be represented within this framework by

the following representation:

D = {(zi, zj)}, the set of all possible pairs of firing network states the network can assume.

Vectors zi is the ith vector of the set of all possible firing state vectors z
X = {(w, z, rew)}, the set of all possible combinations of whole system synaptic weights con-

figurations (w), networks firing states (z) and reward function rew.

piðxÞ ¼ pððzi; zjÞjðwm; zq; rewÞÞ ¼
Fðwm; zi; zjÞ q ¼ i

0 q 6¼ i
;

(

Piðx; x
0Þ ¼ pðwl; zk; rew0jðzo; zvÞ; ðwm; zq; rewÞÞ ¼

1 zo ¼ zq; zv ¼ zk;wl is reachable

0 otherwise
;

(

where wi is the ith vector of the set of all possible synaptic weight configurations for the whole

network. By reachable we mean that wl is the whole synaptic configuration that is obtained

when applying plasticity function g after transition from zo to zv, having rew the value corre-

sponding to that trial given zv, s and L.

Theorem 1 in [36] shows that a decision system converges with probability 1 to a limit cycle

if and only if for each state x there is a decision i such that:

φiðxÞ ¼ lim
n!1

Qn
i ðx;XÞ � c > 0; ð7Þ

where c is a constant and Qn
i is defined inductively as Qnþ1

i ðx;AÞ ¼
ð

x02X
Qiðx0;AÞQn

i ðx; dx
0Þ,

with Q1
i ðx;AÞ ¼ Qiðx;AÞ ¼ piðxÞPiðx;AÞ.

Intuitively, condition (7) is fulfilled only when the probability of transitioning from firing

state zi to zj infinitely often does not vanish, which happens only if the probability converges to

1.

In the case of a reduced network

Fðw; zi; zjÞ ¼
f ðwlziÞ

XNK

m

ðf ðwmziÞÞ
; ð8Þ

where l is the K neuron that is active in state j. The function f is any function with the condition

that is strictly increasing with w∊R.
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It is the fact that synaptic weights change deterministically the reason why Pi(x, x0) is either

1 or 0. This allows us to simplify condition (7) to:

φl;z;rew ¼
Y

n!1

f ðTn
m;q;rewðwlÞzÞ

XNK

j

f ðTn
m;q;rewðwjÞzÞ

� c > 0; ð9Þ

where l is the active neuron in the destination state j, z is the source state,

Tm;q;rewðwlÞ ¼ T1
m;q;rewðwlÞ ¼ v : vk ¼ wl;k; k =2fm; qg; vk ¼ wl;k þ gðzl; zk; rewÞ; k 2 fm; qg, and

Tn
m;q;rewðwlÞ ¼ Tn� 1

m;q;rewðwlÞ. The transformation T takes the vector of synaptic weights of inputs

to neuron l and applies a synaptic change according to plasticity function g (Eq 2) to the

weights corresponding to presynaptic neurons q and m (one for a neuron Y, the other for a

neuron K) that are active, i.e. zm = zq = 1.

Eq (9) holds only if logφl,z,rew converges, which is an infinite sum of logarithms. In turn, the

sum converges if the application of T leads to an increase in the transition probability. Since f
is strictly increasing with w, Eq (9) holds if δ1,1,rew> 0. In other words, the network will con-

verge to a limit cycle if for each pair of active neurons Y and K there is a transition to a neuron

nl such that, if the transition is repeated infinite times, the probability of the transition

increases, something that occurs if the pre/post activation leads to potentiation of the synapse,

i.e. Hebbian plasticity.

As stated before, a neural network that must learn to solve the SRT will not reach a limit

cycle since it is bonded to follow stimuli that are stochastic. However, the evolution of the net-

work can be segmented in transitions that eventually reach probability 1. Namely, for states

defined as (s, ni, L) and (r, ni, L), we can consider transitions conditioned to a given s and L, i.e.

the external stochastic factors which are independent of the network behaviour. For example,

the transition between a given source state (s, ni, L) and destination states (r, nj, L) for any neu-

ron nj, can be considered a decision system. Then, if condition (9) is fulfilled, any of these deci-

sion systems will converge to a “limit cycle” in which only one destination state (r, nj, L) is

chosen. The same holds for transitions between source state (r, ni, L) and destination states (s,
nj, L0). It is important to note that a neural network that solves the SRT needs to converge to a

unique decision even for incorrect trials, i.e. for source states (r0, n, L). This means that g(ni, nj,
rew) > 0 for any rew ∊ {1, 0}.

Any pair of source and destination states can become the limiting transition, the probability

of this happening depending on the initial transition probability, which depends on the initial

synaptic weights. In particular, for networks in which Eq (9) holds, any limiting transition is

attracting since the transition probability rises with probability equal to itself. The SRT is

solved with high performance for only a small subset of all the possible limiting transitions.

Therefore, a simple network which is initialized with random synaptic weights will reach a

synaptic configuration that solves the SRT with very low probability. In particular, the proba-

bility of reaching the solution will be high only if the initial transition probabilities are close to

the solution probabilities.

A more general definition for the simple neural network

The reduced neural network can be extended to a more general definition of simple network,

with arbitrary number of neurons and for which the impossibility result holds. In this case, the

networks dynamics develops in discrete time steps of 1 ms. The SRT is structured in trials

composed of cue stimulus presentation followed by a reward stimulus presentation, each one

lasting tstimulus in ms. The response is observed in the interval [tcue offset−Δtresponse, tcue offset]. The
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sequence of firing states of module K during this time interval univocally defines the beha-

vioural response R.

We will consider a simple neural network composed of NY neurons in module Y and NK

neurons in module K. The firing state of the ith neuron in module Y will be represented by the

variable yi, the ith element of vector y. The firing state of the ith neuron in module K will repre-

sented by the variable ni, the ith element of vector n. Neurons in module Y fire independently

of each other, conditioned to the stimulus presented:

pðyjSðiÞÞ ¼
Y

i2I1y

pðyijSðiÞÞ �
Y

j2I0y

ð1 � pðyjjSðiÞÞÞ; ð10Þ

where I1
y is the set of indexes of Y neurons that are active in vector y, and I0

y is the set of indexes

of Y neurons that are inactive in vector y.

The postsynaptic potential PPi,j elicited by the train of spikes of neuron j onto neuron i is

defined as the product of the post synaptic potential time course xj and the corresponding syn-

aptic weight:

PPi;jðtÞ ¼ xjðtÞwi;jðtÞ: ð11Þ

The variable xj, the postsynaptic potential time course associated with the spike train of

neuron j, is defined as:

xjðtÞ ¼
X

t0
�ðt � t0Þ; ð12Þ

where ∊ is a kernel function, and t0 runs over all the firing times up to time t at which the jth

neuron of the module fired.

The excitability of neuron i in module K is defined as:

uiðtÞ ¼
X

j

f ðPPi;jÞ: ð13Þ

Conversely, its probability of firing is:

pðniðtÞjPPiðt � 1ÞÞ ¼ FðuiðtÞÞ; ð14Þ

where sign(f(PPi,j)) = sign(PPi,j), lim
wi;j!wmax

f ðwijÞ ¼ uþ and limwi;j!� wmax
f ðwijÞ ¼ u� . The function

F is such that limu!uþFðuÞ ¼ 1, limu!u� FðuÞ ¼ 0, F(u) = 1 for u� u+ and F(u) = 0 for u� u−.

In this way, neuron i will fire with probability 1 with the sole firing of a neuron j, provided that

wij is maximal, and will remain silent with probability 1 if wij is inhibitory (negative) and maxi-

mal in absolute value.

Any number of neurons may fire at the same time, and all neurons are conditionally inde-

pendent of each other given PP. Thus, the probability of an activation state n(t) of the whole

module K is given by:

pðnðtÞjPPðtÞÞ ¼
Y

i2I1
nðtÞ

pðniðtÞjPPiðtÞÞ:
Y

j2I0
nðtÞ

ð1 � pðnjðtÞjPPjðtÞÞÞ; ð15Þ

where I1
nðtÞ and I0

nðtÞ are sets of indexes of neurons that are respectively active and inactive in n
(t).
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Neurons are plastic all the time. Synaptic weight wi,j changes according to the function g,

defined as:

Dwi;jðtÞ ¼ gðziðtÞ; PPi;jðtÞ;wi;jðtÞ; rewðtÞÞ: ð16Þ

The Δwi,j values depend on wi,j in such a way that limn!1Tn
zi;PPi;j ;rew

ðwi;jÞ < jwmaxj. This

assures that synaptic weights remain within reasonable prefixed limits. In this case, the variable

rew is defined as:

rewðtÞ ¼
X

t0
gðt � t0Þ ð17Þ

with γ a kernel function and t0 the onset times of stimulus r1.

For a simple neural network defined according to Eqs (10) to (17), the impossibility result

holds. In particular, since the plasticity rule is deterministic, transitions with probability one

will be possible if the corresponding value of Δwi,j is positive. In this case, all the variability in

the network will stem from the stochastic nature of stimuli presentation and rule switching,

and from the uncertainty in the coding of stimuli by the sensory module Y.

Implementation of the complex network

In the implementation of the complex network sketched in Fig 5a, module Y was composed of

two neurons for coding each cue stimulus, two neurons for each reward stimulus, and one

neuron for coding each response. Module K was composed of NK = 150 neurons. All initial

synaptic weights were sampled from a normal distribution of mean = 0 and standard devia-

tion = 1/64. There were no self-connections (wi,j = 0).

Each neuron i in module K has a variable ui:

uiðtÞ ¼ wi;yðtÞxYðtÞðtÞ þ wi;KðtÞxKðtÞ þ biðtÞ; ð18Þ

where wiy is a vector containing the synaptic weights for the connection from each neuron in

the module Y to the ith neuron in module K, while wiK is an analogous vector for the inputs

that neuron i receives from the other neurons in module K. The vector products wi,j(t)xy(t)
and wi,K(t)xK(t) represent the postsynaptic potentials (PP) at time t associated with the train of

spikes at each afferent synapse from module Y and K, respectively. The ith element any vector

x represents the temporal course of the PP, which only depends on the spike emission times,

and is defined as:

xðtÞ ¼
X

t0
�ðt � t0Þ; ð19Þ

where t0 runs over all the firing times up to time t at which the ith neuron of the module

fired, and ∊ is a double exponential kernel function:

�ðtÞ ¼ ðe�
t

t1 � e�
t

t2Þ �Y; ð20Þ

where τ1 = 2 ms, τ2 = 20 ms, and Θ stands for the Heaviside function. The parameter bi con-

trols the excitability of the neuron. This parameter was adjusted at each time t following the
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homeostatic mechanism described in Habenschuss et al. [37]:

DbiðtÞ ¼
m

1

NK
� 1

� �

niðtÞ ¼ 1

m
1

NK
niðtÞ ¼ 0

; ð21Þ

8
>>><

>>>:

which assures that each neuron in the module fires with equal probability, helping to exploit

all neurons in the module, avoiding silent neurons and thus favouring learning. The parameter

μ was set to 0.1.

The firing probability of neurons in the Y module where defined by the stimulus they

coded, such that pðy1
xi
jxiÞ ¼ pðy2

xi
jxiÞ ¼ 0:95 and pðy1

xi
jxjÞ ¼ pðy2

xi
jxjÞ ¼ 0; 8i 6¼ j, where yqxi is

the qth Y neuron coding stimulus xi. The response executed was coded by one Y neuron each,

such that pðyR1
jR1Þ ¼ pðyR2

jR2Þ ¼ 1, and pðyR1
jR2Þ ¼ pðyR2

jR1Þ ¼ 0.

Within module K, the firing probability of neuron i is defined as:

pðniðtÞ ¼ 1Þ ¼
euiðtÞ

X

j

eujðtÞ
; ð22Þ

with index j going through all neurons in module K.

The firing probability of the two neurons in module D are defined just as for neurons in

module K, with the sum in Eq (22) encompassing only the two D neurons. Only one neuron in

module K and module D fires at each time t.
Connections from module Y to module K, from module K to module D, and between neu-

rons in module K are plastic. The connections from neurons Y to neurons K and between neu-

rons in module K change at each time t according to Δwij:

DwijðtÞ ¼ ðe
� wijðtÞxjðtÞ � 1Þa1; ð23Þ

where index i refers to the postsynaptic neuron, index j to the presynaptic neuron, x is the time

course of the postsynaptic potential associated with neuron j, and α1 = 5x10-4 is a learning con-

stant. This plasticity rule is a kind of STDP rule that leads the model to codify each stimulus by

a different population of neurons. Note that the rule does not depend on reward, and weight

changes are applied at each time t.
Connections from module K to module D change over time according to:

DwijðtÞ ¼ ðdiðtÞ � uiðtÞÞxjðtÞrewðtÞa2; ð24Þ

where di stands for the firing state of decision neuron i, ui is its excitability variable, xj the PP
time course of afferent neuron j and α2 = 8x10-4 is a learning constant. The variable rew equals

1 only during the decision window and only if the motor response was correct. Otherwise,

rew = 0.

Simulations and analysis

A training session in the SRT consisted of 10000 trials, while a test session consisted of 2000

trials. For the results in Fig 10, one network per point in the plot was trained during 10000 tri-

als. Each of these trainings had a specific (fixed) number of trials per block with the same rule,

starting from 20 trials per block and increasing the number by factors of powers of 2.
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The similarity index employed in Fig 9b was defined as:

SI ¼ 1 �
kpCi
� pCjk1

2
;

where pc is a vector in which the ith element is the estimated probability of firing of neuron i
conditioned to contingency C. The SI adopts values from 0 (when firing probabilities under

both contingencies are equal for each neuron) to 1 (when every neuron fire with probability 1

under one contingency, and with probability 0 under the other contingency.

We employed classifiers to obtain a measure of the information conveyed by the neuron

population of module K about contingencies. Specifically, for the result shown in Fig 11a we

employed the TreeBagger function in Matlab R2009b to train 50 trees, to match the firing of

the K module at tdecision with their corresponding contingency. The classification performance

was obtained as CP = 100x(1-err), where err is the out-of-bag misclassification probability,

obtained through the oobError function. For the result shown in Fig 11b we employed the Nai-
veBayes function. We trained 100 classifiers onto 80% of each training set and tested perfor-

mance in the 20% remaining. The CP in this case was the average performance of the 100

classifiers in the test set, expressed as percentage. The results shown hold regardless of which

classifier was employed.
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