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Abstract

Considering that the Pc-Crash multibody dynamics software can reproduce the accident

process accurately and obtain the collision parameters of pedestrian heads at the moment

of head landing, the finite element analysis method can accurately analyze the injury of the

pedestrian head when the boundary conditions are known. This paper combines the acci-

dent reconstruction method with the finite element analysis method to study the injury mech-

anism of pedestrian head impact on the ground in vehicle pedestrian collision accidents to

provide a theoretical basis for pedestrian protection and the improvement of vehicle shapes.

First, a real-life vehicle pedestrian collision is reproduced by Pc-Crash. The simulation

results show that the rigid multibody model can accurately simulate the scene of the acci-

dent, then the speed and angle of the pedestrian head landing moment can be obtained at

the same time. Second, the finite element model of human heads with a detailed facial struc-

ture is established and verified. Finally, the collision parameters obtained from the accident

reconstruction are used as the boundary conditions to analyze the collision between the

pedestrian head and the ground, and the biomechanical parameters, such as intracranial

pressure, von Mises stress, shear stress and strain, can be determined. The results show

that the stress wave will propagate inside and outside the skull and cause stress concentra-

tion in the skull and the brain tissue to varying degrees after the pedestrian head strikes the

ground. When the stress exceeds a certain limit, it will cause different degrees of brain tissue

injury.

1 Introduction

With the development of automobile technology, transportation has become more convenient

and efficient, but it also leads to more traffic accidents, whose contributing factors may be the

driver’s demographic or behavioral characteristics, vehicle’s technical characteristics, roadway

conditions and environmental factors. Therefore, injury crashes become a major concern of

researchers, policy-makers, and the public. In order to mitigate the enormous economic and

emotional burden brought to the society by traffic accidents, people are devoted to reducing

the frequency and severity levels of traffic crashes. Most of the traditional collision frequency

studies were carried out on historical crash data using discrete outcome models [1–5]. In addi-

tion, the pedestrian and bicycle injuries from statistical point of view were also studied [6–8].
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However, in the traffic system, pedestrians are in the most vulnerable position. Compared

with other road users, pedestrians usually face a greater risk of injury and death. The death

rate of pedestrians due to traffic accidents is the highest, accounting for 26% of the total num-

ber of deaths [9]. In 2019, the number of deaths due to traffic accidents in China was approxi-

mately 100,000, of which the total number of pedestrian deaths was approximately 25000,

accounting for 25% of the total number of deaths in traffic accidents in the whole year [10].

According to a statistical report of the World Health Organization (WHO), the head is the

most vulnerable part of the body in vehicle pedestrian accidents, accounting for 26.5%-39.3%

of traffic injuries considering all parts of the human body [11].

In an accident, the main form of damage is impact injury followed by the fall injury in the

secondary collision stage. The secondary injuries include falling, rolling on the ground and

striking other objects. Generally, serious injury to pedestrians is not caused by the second colli-

sion but when the pedestrians’ head directly impacts the ground, which may produce serious

brain injury. At present, domestic and international research primarily focus on the pedes-

trian-vehicle collision, and the research on pedestrian-ground collision is limited. Therefore,

in view of this oversight, it is necessary to analyze the damage mechanism and corresponding

damage risk of pedestrian head impact on the ground through more in-depth research.

In general, scholars often use a rigid multibody model to study the dynamic response of

pedestrians during and after the collision [12–14]. In 2011, Simms et al. [12] performed a colli-

sion simulation of a medium-sized male pedestrian model and a female pedestrian model with

six types of vehicles at a speed of 25–35 km/h. These researchers found that vehicles with high

engine hood edges, such as sport utility vehicle (SUV), were more likely to cause the direct col-

lision between the human head and the ground than those with lower engine hood edges. In

2012, Elliott et al. [13] found that 94% of 72 simulation cases had pedestrian head-to-ground

collision. In 2013, Gupta et al. [14] simulated the impact of a medium-sized man, a woman

and a 6-year-old child with a car and an SUV model, respectively. It was found that lowering

the front contour of the car and raising the front contour of the SUV can prevent the pedes-

trian head from directly hitting the ground, but the mechanism of this situation has not been

elucidated. However, due to the simplicity of the multibody model, it is difficult to obtain the

specific biomechanical parameters of head injury; therefore, there are limitations to using the

multibody model to study pedestrian head landing injuries.

At present, finite element method has been widely used in automotive engineering industry

[15, 16]. And domestic and international researchers began to use the finite element method

to study the mechanism of head landing injury. In 2013, Li et al. [17] established a finite ele-

ment model of the child head and then compared it to the experimental data of a child cadaver,

and they used the finite element model to further study the influence of different drop heights

and surface stiffness on the dynamic response of the head. In 2014, Tamura a et al. [18] used

the finite element method to reconstruct the ground collision. The results showed that the

kinematics and dynamics of pedestrians after the collision were not easy to predict. The study

also suggested that the risk of sustained traumatic brain injury (TBI) due to pedestrian contact

with the ground should be the focus of future research. In 2015, Wang Cong [19] dropped the

finite element model of the head from different heights to a ground surface composed of dif-

ferent materials to study the influence of different drop heights and ground stiffnesses on

brain injury. In addition, under the same conditions, the head model was dropped to the

ground in the front and side, respectively, to analyze the influence of the impact site on brain

injury.

In summary, scholars have primarily studied vehicle pedestrian collisions and pedestrian

head landing injuries. For the former, the studies primarily adopted the rigid multibody model

method. However, the limitation of the rigid multibody is that it is difficult to obtain the
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specific biomechanical parameters of the head, and it is difficult to analyze the specific mecha-

nism of head injury. For the latter, the finite element analysis method was used to study the

damage caused to the head by falling from different heights, but they did not combine their

research with studies of real-life vehicle pedestrian collision accidents. Therefore, this paper

combines the above two methods to study the pedestrian head landing injury mechanism in a

real-life vehicle pedestrian collision accident.

The main contribution of this paper is to provide a set of feasible research methods for the

pedestrian head landing injury in vehicle pedestrian collision accidents. Specifically, the colli-

sion parameters are obtained through accident reconstruction, and then the pedestrian head

landing injury analysis is carried out on this basis. This method can effectively reproduce the

scene of the accident, judge the severity of head injury, and analyze the injury mechanism,

which can provide a reference for further study of pedestrian head protection and improve-

ment of vehicle head shape.

The article structure is as follows: A real-life vehicle pedestrian collision accident is recon-

structed in Section 2. In Section 3, a head finite element model is established and verified, and

then the velocity and angle of pedestrian head impact on the ground, obtained from a rigid

multibody simulation, are taken as the initial conditions of finite element simulation. Section 4

discusses the results of finite element simulation and analyzes the mechanism of pedestrian

head landing injury by observing the propagation path of stress waves. Finally, the conclusions

of this study are summarized in Section 5.

2 Based on Pc-crash instance reproduction and analysis

In this section, based on a real-life accident example, the collision process is simulated by Pc-

Crash, and the kinematics and dynamics of the collision are analyzed.

2.1 Accident overview

The drawing of the accident scene is presented in Fig 1. One day, a van collided with a pedes-

trian crossing the green belt in the middle of the road when it reached a certain section. After

the collision, the pedestrian eventually fell to the ground and stopped in front of the vehicle, as

shown in Fig 1. In the whole collision process, the length of the emergency brake imprint was

10.6 m; the final relative distance between the vehicle and the pedestrian was 11.3 m; and the

pedestrian throw distance was 19 m. The pedestrian eventually died with forehead commi-

nuted fractures and severe craniocerebral injury.

Fig 1. Final location of the accident.

https://doi.org/10.1371/journal.pone.0240359.g001
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The damage to the vehicle is shown in Fig 2. The right side of the front bumper was

deformed, the right headlamp glass was broken, and the right front end of the engine compart-

ment cover was deformed. The front windshield was broken after the collision with the pedes-

trian’s head, and the collision point exhibited a spiderweb pattern.

2.2 Speed calculation

The collision speed is calculated according to the brake imprint. First, according to the energy

conservation theorem, the kinetic energy lost by the vehicle in the braking process is equal to the

work performed by the friction during braking, and then the following results can be obtained:

Fs ¼
1

2
mv2

0
ð1Þ

F ¼ mgðφ� iÞ ð2Þ

where F is the braking friction force, in N; s is the braking imprint, in m; m is the vehicle mass, in

kg; v0 is the initial speed of the vehicle when the braking imprint occurs, in km/h; φ is the road

adhesion coefficient, and φ = 0.7; i is the road slope, and in this instance, i = 0; g is the acceleration

of gravity, in m/s2.

Submitting (2) into (1), the instantaneous speed of the vehicle at the beginning of the imprint is

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðφ� iÞs

p
ð3Þ

In the accident investigation, the brake trace of the vehicle is measured to be 10.6 m.

According to the (3), the collision speed of the general-purpose van during the accident is cal-

culated to be 43.4 km/h.

Fig 2. Damage of van.

https://doi.org/10.1371/journal.pone.0240359.g002
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2.3 Kinematic analysis

The simulation result shows that when the collision speed is 44 km/h, the pedestrian throw dis-

tance of is 19.5 m, which is largely consistent with the field data of the accident investigation.

The final relative position of the vehicle and the pedestrian is also largely consistent with the

field data obtained of the accident investigation, as shown in Fig 3.

The posture of the pedestrian after the collision is shown in Fig 4. When t = 0.020 s, the

right lower leg of the pedestrian is about to collide with the front bumper, which will cause the

bumper depression of the van and the pedestrian’s fractured right lower leg. When t = 0.100 s,

the chest, abdomen and pelvis of the pedestrian collide with the engine hood, resulting in the

deformation of the vehicle hood and the fracture of the pedestrian ribs, then the head of the

pedestrian hits the front windshield, which causes the breakdown of the vehicle front wind-

shield and the serious brain injury of the pedestrian. At the time of t = 1.119 s, the frontal part

of the pedestrian head collides with the ground, causing serious brain injury. The simulation

results show that the vehicle pedestrian collision relationship is largely consistent with the

damages to the vehicle and the pedestrian in the accident.

2.4 Dynamic analysis

Finally, the pedestrian lands, with the forehead being the contact point, as shown in Fig 5. The

relevant parameters when the pedestrian’s head contacts the ground are shown in Figs 6 and 7.

As seen from Figs 6 and 7, the conclusion can be drawn that the moment of the maximum

impact force is t = 1.119 s, the contact force is 4256 N, the instantaneous velocity is 11.11 m/s,

and the angle between the impact direction and the ground is 87˚.

3 Finite element analysis of head landing injury

To evaluate the degree of pedestrian head injury, the main observation indices in the finite ele-

ment analysis are the intracranial pressure, von Mises stress, shear stress and strain. In addi-

tion, by observing the propagation process of the stress wave in the pedestrian’s head, this

Fig 3. Final position of the vehicle and pedestrian.

https://doi.org/10.1371/journal.pone.0240359.g003

Fig 4. Posture of the pedestrian after collision. (A) t = 0.020 s. (B) t = 0.100 s. (C) t = 1.119 s.

https://doi.org/10.1371/journal.pone.0240359.g004
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approach can not only determine the head landing injury but also has important clinical signif-

icance in the development of intracranial injury mechanism.

3.1 Modeling of head finite element

To obtain tomographic images of the human head, computed tomography (CT) and magnetic

resonance image (MRI) scanning are performed on the head of a 50th percentile adult male.

To preprocess the image, the image is imported into the Mimics, the point cloud data is

obtained, and the curved surface is generated by parameterization processing. Before fitting

the curved surface, the poor points should be detected and removed. Finally, the three dimen-

sional geometric model, which primarily includes the skull, facial bones, cartilage, teeth,

meninges, brain, cerebellum and cerebrospinal fluid, is generated by fitting the curved surface

with the B-spline curve. Then, the geometric model is meshed, and the model is imported into

Hyper Mesh. The unit body type is set to the linear hexahedron unit. Finally, the physical prop-

erties of the bone and brain tissue are defined.

Fig 5. Frontal landing moment.

https://doi.org/10.1371/journal.pone.0240359.g005

Fig 6. Contact force curve of pedestrian head.

https://doi.org/10.1371/journal.pone.0240359.g006
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As shown in Fig 8, in the established head model, the pia mater is attached to the upper sur-

face of the brain tissue, the dura mater is attached to the inner skull surface, and the cerebro-

spinal fluid layer is located between the pia mater and the dura mater. Finally, the human head

finite element model is generated, which contains 403,176 units in total.

3.2 Experimental verification of Yoganandan’s head side fall

To investigate the biomechanical characteristics of the human head under quasi-static and

dynamic loads, Yoganandan [20] performed a side drop test on the heads of 12 corpses with-

out antiseptic treatment in 2004. The six axis load cell placed on the impact platform recorded

the time-history curve of the contact force, and the experimental device is shown in Fig 9.

In this paper, the experimental data of Yoganandan [20] is selected to verify the effective-

ness of the head finite element model in side impact. In the simulation process, we fixed the

flat plate in the horizontal direction, placed the side of the head model downward parallel to

the flat plate, and then dropped the head model from a certain height to the flat plate at a fall-

ing speed of 3.5 m/s, 4.9 m/s and 6.0 m/s, respectively, as shown in Fig 10. Finally, the contact

force time history curve of the head model falling to the plate was extracted and compared

with the results of the cadaver experiment.

Fig 11 shows the contact force time history curves of the simulation result and the cadaver

experiment. It can be concluded that regardless of the speed at which the head model falls, the

trend of the contact force time-history curve of the cadaver experiment is almost the same as

that of the simulation curve. When the falling speed set in the simulation is 3.5 m/s, the maxi-

mum contact force of the head model falling to the plate is 5160 N, the maximum value

appears in t = 4.3 ms; meanwhile, when the maximum contact force of the head falling to the

plate in the cadaver experiment reaches 5069 N, the maximum value appears in t = 4.0 ms.

Compared with the experimental results, the time lag of the maximum value in the simulation

is 0.3 ms, and the maximum contact force in the simulation is slightly different from the exper-

imental data. When the falling speed set in the simulation is 4.9 m/s, the maximum contact

force of the head model falling to the flat plate and the experiment with the corpse are approxi-

mately 7218 N, while the maximum value in the simulation appears at 4.2 ms, lagging behind

Fig 7. Speed curve of the pedestrian head.

https://doi.org/10.1371/journal.pone.0240359.g007
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the experimental result by approximately 0.2 ms. When the falling speed set in the simulation

is 6.0 m/s, the maximum contact force of the head model falling to the flat plate is 8685 N, the

maximum contact force of the cadaver test result is 9215 N, the contact force of the simulation

is 5% less than the experimental data, and the landing time is largely the same.

Through the above comparative analysis, it is found that the trend of the simulation results

is largely the same as that of the head collision contact force curve obtained from the cadaver

experiment, and the difference between the simulation results and the experimental results is

Fig 8. Finite element model of the head.

https://doi.org/10.1371/journal.pone.0240359.g008
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small. When analyzing the collision process, the simulation can accurately reflect the intracra-

nial biomechanical response of the pedestrian head, and the model can be used for the evalua-

tion of brain injury during the collision process.

Fig 9. Diagram of Yoganandan cadaver experiment device.

https://doi.org/10.1371/journal.pone.0240359.g009

Fig 10. Schematic diagram of impact direction and position in collision simulation.

https://doi.org/10.1371/journal.pone.0240359.g010
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3.3 Case of van passenger pedestrian collision

First, we established the road model and set the surrounding and lower surfaces as the fixed

boundary conditions according to the actual situation of the road. Then, we set the angle and

the speed of the collision between the forehead of the head model and the ground and com-

pleted the output setting of other results. The simulation of the head landing on the forehead is

shown in Fig 12.

Fig 13 shows the curve of intracranial pressure with time when the pedestrian’s forehead

lands on the ground. During the whole collision process, the intracranial pressure in the fron-

tal part is largely positive, indicating that the brain tissue in the frontal part is in a state of com-

pression, which is caused by inertia.

Fig 11. Contact force curve of simulation and cadaver experiment. (A) v = 3.5 m/s. (B) v = 4.9 m/s. (C) v = 6.0 m/s.

https://doi.org/10.1371/journal.pone.0240359.g011

Fig 12. Diagram of frontal landing simulation.

https://doi.org/10.1371/journal.pone.0240359.g012
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The peak value of the positive pressure on the collision side is 363 kPa. On the other side of

the collision, because the brain tissue and skull are separated to produce tensile force, the

whole collision process is largely negative pressure in the early stage, while the peak negative

pressure on the opposite side of the collision is -147 kPa. According to the research of Ward

et al. [21], when the intracranial pressure of the adult’s head is greater than 235 kPa, it will lead

to serious brain injury, which is consistent with the situation that the victim has serious brain

injury in the pedestrian injury record.

Figs 14 and 15 show the stress wave transmission and distribution in the heads of pedestri-

ans when the pedestrians strike the ground with their foreheads. When pedestrian strike the

ground with their foreheads, the movement of the head is suddenly blocked, the skull stops

moving, the skull at the frontal collision site is deformed, the impact point on the outside is

concave, and the impact point on the inside is convex. Under the action of inertia, the brain

tissue keeps the inertia and continues to move along the initial direction of motion. The protu-

berance of the frontal bone then contacts and collides with the brain tissue. The speed of the

brain tissue movement is reduced and the brain tissue at the contact site is deformed.

Fig 13. Intracranial pressure of frontal collision varies with time.

https://doi.org/10.1371/journal.pone.0240359.g013

Fig 14. Propagation of stress wave in the skull under frontal collision. (A) t = 3.0 ms. (B) t = 4.0 ms. (C) t = 5.0 ms.

(D) t = 6.0 ms. (E) t = 7.0 ms.

https://doi.org/10.1371/journal.pone.0240359.g014
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It can be seen from Fig 14 that when the pedestrian is thrown out, the head of the pedestrian

contacts the ground. When t = 3.0 ms, there is no obvious stress concentration at the contact

position between the forehead of the pedestrian head and the ground. From t = 4.0 ms to

t = 6.0 ms, the stress concentration area at the impact site is increasingly clear. With the con-

tinuous impact time, the contact between the forehead and the ground gradually becomes

clear and then radiates from the impact site to the surrounding area. Part of the stress contin-

ues to move up to the parietal region of the skull and down to the brow, brow arch and supra-

orbital notch. There is a stress concentration in the supraorbital notch, and then the stress

wave also continues to spread to the frontal orbital surface, cribriform plate and tears of the

maxillofacial bone. Because the structure of these areas is weak and the end face is narrow, the

stress concentration appears in these areas.

In the impacting process, there is a distinct stress concentration area in the frontal part of

skull. When t = 6.0 ms, there is a peak value of von Mises stress at the frontal impact, and the

maximum equivalent stress is 448 MPa. Because this area is directly in contact with the

ground, there is a relatively serious stress concentration.

Based on the von Mises criterion of Mcelhaney et al. [22], the fracture will occur when the

von Mises stress exceeds 75 MPa. However, in this instance, the von Mises stress of the frontal

bone is 103.42 MPa; therefore, there will be a relatively serious fracture of the frontal bone,

which corresponds to the comminuted fracture of the frontal bone recorded in the accident

investigation report. Concomitantly, the fracture of the frontal bone will also cause a dural

hematoma. In addition, another part of the stress also propagates to the brain through the cou-

pling of skull and brain tissue. When the stress wave propagates to the coupling, it will appear

as attenuation. Therefore, the von Mises stress of brain tissue under the collision site is signifi-

cantly lower than the von Mises stress of the frontal skull.

Fig 15 shows the stress wave propagation of the brain tissue. It can be seen that from t = 4.0

to t = 6.0 ms, the stress gradually increases in the contact area between the frontal lobe and the

skull, and the area of stress change gradually increases and radiates all around. At the same

time, the stress wave continues to propagate gradually to all of the brain and is reduced in the

direction of collision. There is a large range of stress concentration phenomena in the frontal

lobe under the collision point, in which the stress at the frontal pole has a moderate increase.

When the stress wave propagates to the corpus callosum, the stress will be concentrated in a

certain range. In addition, the relative movement of the skull and brain will cause the contact,

friction and collision of the irregular structure of the skull base, resulting in a large stress in the

local area of the skull base, and the stress at the skull base of the posterior cranial fossa is signif-

icantly greater than at other parts nearby. When t = 6.0 ms, the maximum von Mises stress of

brain tissue appears on the collision side with a peak value of 99.76 kPa. Based on the brain

injury criterion of Baumgartner et al. [23], when the von Mises stress of brain tissue exceeds 38

kPa, it will cause serious injury to the brain of the pedestrian, which is manifested in the death

Fig 15. Propagation of stress wave in the brain under temporal collision. (A) t = 3.0 ms. (B) t = 4.0 ms. (C) t = 5.0 ms. (D) t = 6.0 ms. (E) t = 7.0 ms.

https://doi.org/10.1371/journal.pone.0240359.g015
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of the pedestrian in the clinic. It can be seen that the simulation results are largely consistent

with the pedestrian injury in the real accident.

As shown in Fig 16, we can also observe the shear stress in three directions, which produces

the maximum shear stress in YZ plane with the maximum value of 28.65 kPa and leads to large

shear deformation of brain tissue in YZ plane. According to the tolerance limit of shear stress

of Anderson et al. [24], when the shear stress of brain tissue exceeds 16 kPa, it will lead to mod-

erate diffuse axonal injury (DAI) of the brain tissue, which is shown in the pedestrian brain-

stem hemorrhage recorded in the clinical pathological report. It can be seen that the

simulation results are largely consistent with the pedestrian injury in the real accident.

In addition, we can see from Fig 17 that the maximum strain value appears in the middle

cranial fossa area, and the peak strain is approximately 0.890. According to the tolerance limit

of Bain et al. [25], when the strain of brain tissue exceeds 0.28, there will be traumatic brain

injury in the pedestrian, which is shown in the clinical pathological report as pedestrian brain-

stem injury.

4 Discussion

From the process of stress wave propagation in frontal collision, it can be found that the stress

wave starts from the collision site and propagates along the skull and brain tissue in all direc-

tions. In the process of stress wave transmission, the skull and brain tissue will be damaged in

different degrees. There are two primary ways to propagate stress waves. The first is from the

Fig 17. Strain of frontal brain tissue.

https://doi.org/10.1371/journal.pone.0240359.g017

Fig 16. Shear stress of frontal brain tissue. (A) XY plane. (B) XZ plane. (C) YZ plane.

https://doi.org/10.1371/journal.pone.0240359.g016
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collision side to the opposite side of the collision in the skull, that is, from the collision part of

the skull, the stress gradually travels along the skull cap and skull base, and the stress concen-

trates on the skull base, the collision part and the skull nearby. The second way is from the col-

lision side to the opposite side of the collision in the brain, that is, the stress wave first passes

through the skull and brain, and the stress is concentrated in the brain tissue and the base of

the brain.

The wave attenuation occurs when the stress wave propagates to the craniocerebral cou-

pling; therefore, the von Mises stress of the skull at the impact site is significantly higher than

that of the brain tissue at the impact site, which is consistent with the research results of He

LM et al. [26]. The stress wave propagates from the brain tissue of the collision site to the brain

and gradually attenuates in the process of brain tissue transmission. The stress concentration

will not only appear in the skull and brain tissue of the collision side but will also exist in the

opposite side from the collision. Combined with the specific injury situation of the pedestrian

head, the stress concentration may be an injury mechanism of the head landing injury.

In frontal impact, the stress wave mainly propagates to the maxillofacial region, while in the

multicavity structure of the maxillofacial bone, it is easy to form a stress concentration area

due to the irregular reflection and transmission of the stress wave, and it also absorbs part of

the impact energy. In addition, the parietal bone is arched, and the collagen fibers of its outer

plate are staggered and have multidirectional distribution on different layers. Taking these

fibers as scaffolds to form the bone plate, the shape of the skull top is similar to "thin shell

structure", which can well disperse the external forces. Therefore, no obvious stress concentra-

tion area was found in the temporal and frontal collision of the parietal bone.

5 Conclusion

In this paper, a real-life collision accident is simulated. The speed and angle of pedestrian head

landing moment obtained from the accident reconstruction are taken as the initial conditions,

and the mechanism of pedestrian head landing injury is studied by using the brain finite ele-

ment model with detailed craniofacial structure.

1. The craniocerebral injury after pedestrian head impact on the ground is related to von

Mises stress and strain. The stress distribution and stress wave propagation reflect the

shock response process of craniocerebral injury. It is more intuitive to see the process of

craniocerebral injury. There are two main paths of stress wave propagation.

2. By reconstructing the process of brain deceleration injury caused by pedestrian impact on

the ground in a case, it can be seen that the simulation results are consistent with the actual

situation of brain deceleration injury. Comparing the results of finite element simulation

with the injuries of pedestrians in the accident, it is found that when pedestrians collide

with the ground, there is a stress concentration in the brain tissue and skull under the colli-

sion site, and there is a stress concentration area in the opposite part of the collision and the

irregular part of the skull base, among which the stress in the skull site is the largest.

3. The accurate reconstruction of the collision model of pedestrian brain injury can predict

the severity of injury in various parts of the human body under different working condi-

tions and may provide a reference for further research investigating the protection of pedes-

trian brains and the improvement of vehicle front shapes.
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