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Abstract

Background: Human induced pluripotent stem cells (hiPSCs) can form any tissue found in the body, making them
attractive for regenerative medicine applications. Seeding hiPSC aggregates into biomaterial scaffolds can control
their differentiation into specific tissue types. Here we develop and analyze a mathematical model of hiPSC aggregate
behavior when seeded on melt electrospun scaffolds with defined topography.

Results: We used ordinary differential equations to model the different cellular populations (stem, progenitor,
differentiated) present in our scaffolds based on experimental results and published literature. Our model successfully
captures qualitative features of the cellular dynamics observed experimentally. We determined the optimal parameter
sets to maximize specific cellular populations experimentally, showing that a physiologic oxygen level (∼ 5%)
increases the number of neural progenitors and differentiated neurons compared to atmospheric oxygen levels
(∼ 21%) and a scaffold porosity of ∼ 63% maximizes aggregate size.

Conclusions: Our mathematical model determined the key factors controlling hiPSC behavior on melt electrospun
scaffolds, enabling optimization of experimental parameters.
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Background
Tissue engineering combines biomaterials and cells, cre-
ating functional structures that can replace damaged
regions of tissue [1, 2]. Pluripotent stem cells can differen-
tiate into any cell type found in an organism, making them
a valuable tool for tissue engineering [1–3]. In 2006, Taka-
hashi and Yamanaka discovered that mature cells could
be reprogrammed back into a pluripotent state, which
introduced the option of using patient derived stem cells
as a tool for engineering tissues [4]. These cells were
termed induced pluripotent stem cells (iPSCs). Control-
ling the differentiation of human iPSCs into functional
tissues remains difficult because complicated cell signal-
ing networks regulate this process [5–9]. Both physical
and chemical cues control stem cell differentiation [5–9],
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and the signalling mechanisms involved may be con-
trolled, chaotic, random, or a combination of these types
[10, 11].
Stem cells can produce additional stem cells or they can

differentiate, which occurs when their gene expression is
altered to reflect a terminal state [8]. During the differ-
entiation process, cells go through distinct transition to a
progenitor state where they are not considered stem cells
or differentiated cells [9, 10]. Distinct cellular markers,
such as proteins, can distinguish the state of a cell in the
differentiation process [8, 12–14]. While previously dif-
ferentiation was thought to be irreversible, mature cells
can revert from the terminally differentiated state into the
stem state in both nature and the lab [9, 15]. While mature
cells rarely revert from a differentiated state, progenitors
revert back into stem cells more frequently [9, 16]. Our
model considers these three cell states (stem, progenitor,
and differentiated).
These different cellular populations interact through

various mechanisms, including release of soluble factors
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and binding of membrane proteins [17]. These mecha-
nisms activate signaling pathways that vary in their speed
and effective distance. Collectively these mechanisms lead
to major differences in the overall effect of the signal
on stem cell behavior in terms of proliferation versus
differentiation. For example, the cellular responses to con-
tact (a mechanical process) and oxygen levels (a chemical
process) would likely have different mechanisms. In tis-
sue engineering, the scaffold provides mechanical cues
to the seeded stem cells, inducing differentiation through
mechanical input [5, 14, 18, 19]. Stiffness affects the type
of cell resulting from differentiation: cells differentiate
into neural, mesenchymal, and bone with increasing scaf-
fold stiffness [19]. Moreover, substrate stiffness modulates
how neural stem cells differentiate into mature cells of the
nervous system, including neurons, astrocytes, and oligo-
dendrocytes [5]. In addition to stiffness, porosity affects
stem cell differentiation and proliferation because con-
tact induces these processes, but excessive contact inhibits
aggregate growth. Scaffold topography also influences
stem cell growth and differentiation [14]. For example,
fiber diameter of fibrous scaffolds affect aggregate growth:
suboptimal fiber sizes inhibit cellular proliferation [14].
Here we use melt electrospinning to fabricate our bio-
material scaffolds. Melt electrospinning produces highly
reproducible engineered microfiber scaffolds with con-
trollable properties, such as fiber diameter and porosity,
that provide topographical cues. Our group has done
extensive work designing and fabricating such scaffolds
for promoting the neuronal differentiation of pluripotent
stem cells. While solution electrospinning is commonly
used to fabricate scaffolds for tissue engineering appli-
cations, it presents many challenges such as the use of
toxic solvents and the lack of reproducibility. In either case
scaffolds can degrade over time, resulting in decreased
stiffness, increased porosity, and changes in topography.
Here we model how human iPSC-derived neural aggre-

gates grow and differentiate on biomaterial scaffolds pro-
duced by melt electrospinning poly caprolactone. The
experimental procedure that precedes the aggregate seed-
ing is outlined in Fig. 1. Our model requires the aggregates
to make contact with the electrospun substrates to initiate
differentiation. Previous experimental observations indi-
cate that neural aggregates in suspension do not progress
from the progenitor state to the terminally differenti-
ated state, but seeding them upon a biomaterial substrate
triggers differentiation [14].
There has been significant research into stem cell prolif-

eration and differentiation, both experimentally and using
mathematical models [2, 5–7, 10, 11, 13, 20–22]. The cur-
rent work incorporates multiple intrinsic and extrinsic
factors that affect stem cell population dynamics, making
it distinct from previous studies. The intrinsic character-
istics include cell-cell signalling, differential responses to

extrinsic effects, and state-specific metabolic properties.
The extrinsic properties include scaffold effects, oxygen
and waste effects, depth of culture medium, and con-
trol of differentiation via growth factors. Using coarse
approximations of many of these processes allows us to
include more experimental properties in a single model.
This model gives insight into how the experimental proce-
dures could be altered to maximize a specific population
of cells. In particular, we show that a physiologic oxygen
level (∼ 5%) increases the number of neural progenitors as
well as differentiated neurons compared to atmospheric
oxygen levels (∼ 21%) and a scaffold porosity of ∼ 63%
maximizes aggregate size.

Methods
Experimental methods
A custom-made melt electrospinning setup was used
to fabricate poly-(ε-caprolactone) (PCL, number average
molar mass (Mn)∼ 45,000, Sigma Aldrich Chemical Co)
biomaterial scaffolds [14]. Melt electrospinning was per-
formed using nozzles with diameters of 200μm and 500 μm
to fabricate scaffolds referred to as loop mesh 200 and
loop mesh 500, respectively [14]. Increasing nozzle size
corresponds to an increase in fiber diameter and a
decrease in porosity [14]. The resulting porosities were
23% for loop mesh 200 and 40% for the loop mesh
500. Figure 2 shows two examples of the final scaffolds.
hiPSCs were cultured on a Vitronectin XFTM matrix
in the presence of TeSRTM-E8TM medium [23], then in
STEMdiffTM Neural Induction Medium (NIM) for 5 days
to induce neural differentiation to the progenitor cell state.
Aggregates containing neural progenitor cells were then
seeded onto scaffolds and cultured in NIM for 12 days
to induce differentiation to the terminally differentiated
cell state.
Bright field images were taken daily of neural aggre-

gates seeded on each set of scaffolds using the IncuCyteTM
live imaging platform. The associated software was used
to measure the cell body cluster area for each of the
12 day culture period. Cell viability of the neural aggre-
gates seeded on these scaffolds was analyzed after 12 days
using a LIVE/DEAD® Viability/Cytotoxicity Kit (Invitro-
gen) [24, 25]. Terminal neuronal differentiation of hiPSCs
was assessed by performing immunocytochemistry tar-
geting the neuronal protein, Tuj1 [14, 25].

Model development
Figure 3 shows our model system and the interactions
between cellular populations. For the derivation of the
model, the aggregate cell population was divided into
three subpopulations: stem, progenitor and differentiated
cells, denoted respectively by S, P, and D, with the total
number of cells denoted by T where T = S + P + D .
The feasible region for these variables is S,P,D ∈[ 0,∞).
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Fig. 1 Experimental protocol for neural aggregate formation and seeding on to melt electrospun scaffolds. Human induced pluripotent stem cells
(colony shown on the left) were cultured in Aggrewell plates in the presence Neural Induction Medium (center) to form aggregates of neural
progenitor cells. The neural aggregates are then seeded onto melt electrospun scaffolds where they differentiate into neurons (right)

The rates of the cellular processes are positive (though we
allow the possibility r = 0) and are given as follows:

α : Death rate of stem cells
β : Death rate of progenitor cells
γ : Death rate of differentiated cells
p1 : Proliferation rate of stem cells
p2 : Proliferation rate of progenitor cells
d1 : Differentiation rate of stem cells to progenitor
cells
d2 : Differentiation rate of progenitor cells to
differentiated cells
r : Reversion rate of progenitor cells to stem cells.

The units for the above rates are proportion per minute.
All three subpopulations undergo death, but only the

stem and progenitor populations proliferate as differenti-
ation was considered terminal. Progenitor cells can revert
into stem cells.
The model also includes the oxygen and waste concen-

trations experienced by the aggregate, denoted by O and
W, respectively, and diffusion from the air-medium inter-
face. O and W are represented by percentages ranging
from 0 to 100. The concentrations of O and W in the
air surrounding the culture are denoted Oair and Wair ,
with the same feasible regions as O and W. All three

cell populations consume oxygen and produce waste. The
resulting model is

dS
dt

= − αS − d1S + 2p1S
1 + S + P + D

+ rP

dP
dt

= − βP − d2P − rP + 2p2P
1 + P + D

+ d1S

dD
dt

= − γD + d2P

dO
dt

= − u1S − u2P − u3D + Oflux(S,P,D,O)

dW
dt

=w1S + w2P + w3D + Wflux(S,P,D,W ) ,

(1)

where the dependence of S,P, and D on O and W are
through the rate parameters, α,β , γ , d1, d2, p1, p2, and r,
and where ui are the oxygen consumption rates, wi are the
waste production rates, and Oflux and Wflux are the rates
of diffusion ofO andW between the neural aggregate and
air above the medium.
The units are minutes for time, centimeters for distance,

and percentage for gas concentration within the medium.

General structure of themodel
The “compartments” of this compartmental model consist
of the populations of stem, progenitor and differentiated

Fig. 2 Scanning electron microscope images of loop mesh 200 (left) and loop mesh 500 (right) scaffolds
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Fig. 3 Schematic diagram of the three cell states with cellular feedback. Black arrows indicate transitions between states. Red arrows indicate
negative feedback

cells along with the concentrations of oxygen and waste.
This choice of model was based on a number of consider-
ations. First, these cell states can be distinguished in the
lab and cells can be held at each state. Second, each state
has unique properties, some of which have been deter-
mined experimentally. Finally, the cellular scale is coarse
enough that there is useful data for modeling from experi-
mental work and from the literature, but fine enough that
the results of themodel can be interpreted and transferred
to the lab protocol. Each of the cell populations undergoes
the appropriate cellular processes for its state. The stem
cells can proliferate, differentiate, and die. The progenitor
cells undergo four processes: proliferation via division, dif-
ferentiation to terminally differentiated cells, reversion to
stem cells, and cell death. Differentiated cells can only die.
Proliferation of earlier states is inhibited by the presence
of cells in the same and later states.
Using ordinary differential equations (ODEs) to model

cell populations means that they are continuous rather
than integer-valued variables, which can cause unrealistic
results when cell numbers fall to low values. Here the cell
populations number in the hundreds to thousands of cells,
limiting any behavioral artifacts that may arise from using
ODEs, and in particular, stochastic effects.
Local oxygen and waste concentrations also were incor-

porated. Oxygen levels influence stem cell proliferation
and differentiation [8, 20, 21, 26–28]. Additionally, O2 and
CO2 influence neural stem cell differentiation and these
levels can be changed experimentally [8, 20, 21, 26–28].
Thus, including these variables can help determine how
to optimize current experimental protocols. The model
uses CO2 (a cellular waste product that can be measured
experimentally) as a proxy for waste.

Scaffoldmodeling
The model incorporates the scaffold properties through a
cell-scaffold contact rate, (C), which we take to range from
1 to 10, where 1 represents a 90% porous scaffold and 10
represents a solid scaffold, i.e., 0% porosity. This contact

rate, C, increases with decreasing porosity, but does not
go below 1 because we consider lower values to represent
the scenario where the cells would not adhere to the sub-
strate. The neural aggregate is roughly spherical, so 100%
contact does not mean that all the cells are in contact with
the scaffold, but rather that the maximum possible pro-
portion of cells are making contact with the scaffold. This
maximum possible contact is estimated heuristically to be
about 10%. The relationship between porosity and C is

C = (100% − Porosity) · (0.1) ,

where the porosity has units of percent and the factor 0.1
represents the maximum possible contact.
Experimentally, scaffold porosity was decreased by

increasing fiber diameter rather than by increasing the
density of fibers with the same diameter. Altering porosity
in this manner is not optimal as it also changes pore size. It
was used in this study because of experimental limitations.
We do not explicitly account for changes in fiber diam-
eter and pore size in the model. However, the data used
to fit some of the effects of scaffold porosity come from
scaffolds with different fiber diameters, so the effects are
implicitly included in the model. Another factor related
to scaffolds is the topography. The loop mesh scaffolds
are 2D scaffolds formed by randomly aligned layers of
loop fibers. We did not include the effects of topography
because it has previously been optimized experimentally
[14] and it would add a significant level of complexity to
the model.
The effect of scaffold porosity on differentiation and

proliferation is not linear. If the scaffold is too porous,
the aggregates cannot adhere, and they fall through the
scaffolds gaps. Additionally, a too-porous scaffold does
not act on the cells strongly enough to signal for pro-
liferation and differentiation. Conversely, a non-porous
scaffold inhibits proliferation because contact inhibition
comes into play. A non-porous scaffold does not affect dif-
ferentiation to the same degree. The effect of contact on
differentiation plateaus at a certain rate of contact. These
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effects are modeled as functional terms in the prolifera-
tion and differentiation rates of the stem and progenitor
cell variables.

Determination of functional effects
Many parameters in Eq. (1) depend on O, W, and C in
non-trivial ways. These functional effects multiply the
baseline experimental rates for each of the processes.
They are included multiplicatively because they are all
independent effects. Data were taken from experiments
that were testing alteration of only one condition at a
time. The qualitative and quantitative data are taken from
literature using similar cells and under similar culture
conditions in order to minimize differences arising from
factors that were not of interest.
Each effect was first determined qualitatively, then fit

to quantitative data. The functions were fitted manually
because limited data were available. All of the functions
for the effects take values greater than 0, where values
above 1 increase the rate and values below 1 decrease the
rate from the baseline value. Once the functional effects
are determined, it is useful for later analysis to find the
maximum andminimum values for each. Table 1 gives the
individual functional effects, as well as the ranges for each
over the appropriate domains of O, W and C. Figure 4
shows the individual effects and Table 2 shows how these
functions are built into the parameters.
The complete parameter coefficients of the model are

products of the above functional components and the
experimental parameter values.

Determination of experimental rates
The experimental rates were determined from multi-
ple sources, including experimental data and data from
literature based on similarity to our experimental set-up.

Considerations include cell type and culture conditions
(O2 concentration of 21%, CO2 concentration of 5%, tem-
perature of 37 ◦C, etc.).
For each parameter, a combination of the functions in

Table 1 multiplies the experimental parameter value to
produce the compound parameter value as detailed in
Table 2.
In terms of notation, the compound parameter is given

by α, and the experimental parameter value is referred to
as ᾱ, and similarly for the other parameters.

Diffusion
Diffusion through the medium from the air to the neu-
ral aggregate, and from the neural aggregate to the air,
leads to changes in the concentrations of oxygen andwaste
around the neural aggregate during the experiment. The
diffusion of oxygen and waste is affected by the scaffold
porosity. Lower porosity scaffolds decrease local diffu-
sion by limiting flow under the aggregate. This effect is
modeled by terms multiplying the diffusion terms, but
the form of this functional effect could only be estimated,
because quantitative data were not available.

Oxygen and waste equations The complete oxygen and
waste equations are comprised of consumption and pro-
duction of oxygen and waste, respectively, by each cell
population, and diffusion, occurring in or out depend-
ing on the relative concentrations of gases between the
local environment, i.e.,O andW, and the external environ-
ment, i.e., Oair and Wair . The rates for consumption are
taken from literature [29] and converted to a percentage
as previously described. Each cell population has a specific
consumption rate because metabolic requirements vary
with differentiation state. Stem cells consume high levels
of oxygen [29, 30] as they complete the cell cycle faster

Table 1 Components of functional effects on parameters and extremal values

Function Minimum point Maximum point Function range

f1 1
1+10O − 0.3Oe−0.3O + 1 (3.57, 0.66) (0, 2) [ 0.66, 2]

f2 1
1+5O − 0.3Oe−0.3O + 1 (3.77, 0.69) (0, 2) [ 0.69, 2]

f3 1
1+2O − 0.5Oe−0.3O + 1 (3.89, 0.51) (0, 2) [ 0.51, 2]

f4 (0.4O − 1)(0.4O + 1)e−0.5O + 1.01 (0, 0.01) (5.2, 1.26) [ 0.01, 1.257]

f5 (0.6O − 1)(0.6O + 1)e−0.5O + 1.01 (0, 0.01) (4.6, 1.67) [ 0.01, 1.67]

f6 10
9

(
1 − 1

1+e−0.1(W−25)

)
(100, 0) (0, 1.03) [ 0, 1.03]

f7 1 + 1
1+e−0.5(W−16) (0, 1) (100, 2) [ 1, 2]

f8 15
O+5 (100, 0.14) (0, 3) [ 0.14, 3]

f9 C
C+1 (1, 0.5) (100, 0.99) [ 0.5, 0.99]

f10 4C3e−0.5−0.8C (100, 0) (3.75, 6.37) [ 0, 6.37]

f11 200
200+C (10, 0.95) (1, 0.99) [ 0.95, 0.99]

f12 100
100+C (10, 0.91) (1, 0.99) [ 0.91, 0.99]

f13 1
1+e−10(O−0.25) (0, 0.076) (100, 1.00) [ 0.076, 1.00]
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Fig. 4 Functional Effects of O (top),W (middle), and C (bottom). When applicable, black markers indicate experimental data used for fitting

than their differentiated counterparts [7, 31, 32]. As cells
differentiate, the cell cycle lengthens, and slower cycling
times lead to decreased oxygen consumption [7, 31, 32].
Note that the oxygen consumption rates are multiplied by
f13 (see Table 1) tomodel how cells alter oxygen use during
anoxia.
Cells also produce waste products, which affect cellu-

lar processes upon accumulation [33, 34]. Thus, cells may
slow or arrest proliferation, and even trigger apoptosis in
a high waste environment [33, 34]. In this model, we use
CO2 as a proxy for cellular waste. According to literature,
the production of CO2 closely matches the consumption
of O2 (units in mol). Thus, the values for O2 consumption
were used to determine the CO2 production, using a

different factor for the mol to % conversion, which was
determined in a similar fashion to the oxygen conver-
sion factor. The waste production rates are multiplied by
f13 (see Table 1) to model the way in which cells alter
metabolic activity during anoxia.

Diffusion equations Typical cell culture medium has a
relative density to water of 1.00−1.06 (STEMCELL Tech-
nologies, personal communication, June 9, 2016). Thus,
we used the density of water (1.00) for our model. The
diffusion terms are given by

Oflux =JO2(S,P,D,O) · Aagg(S,P,D) ,
Wflux =JCO2(S,P,D,W ) · Aagg(S,P,D) ,
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Table 2 Experimental and compound parameter values

Par Experimental value range (×10−5) Ref Functional effect range Compound value range

α = ᾱf1f7 [ 0.1, 2.6]∗ [14] [ 0.66, 4] [ 0.00000066, 0.00010]

β = β̄f2f7 [ 1.6, 2.6] [14] [ 0.685, 4] [ 0.000011, 0.000104]

γ = γ̄ f3f7 [ 1.6, 2.6] [14] [ 0.51, 4] [ 0.00000816, 0.000104]

p1 = p̄1f5f6f10 [ 69, 120] [7, 29, 37] [ 0, 11.81] [ 0, 0.014]

p2 = p̄2f5f6f10 [ 45, 160] [7, 29, 37] [ 0, 11.81] [ 0, 0.019]

d1 = d̄1f4f9 [ 10, 17] [8] [ 0.0050, 1.24] [ 0.00000050, 0.00021]

d2 = d̄2f4f9 [ 7.3, 8.2] [8] [ 0.0050, 1.24] [ 0.00000036, 0.000102]

r = r̄f8 [ 0.1, 17]∗ [8] [ 0.14, 3] [ 0.00000014, 0.00051]

The functional effect is the product of feedbacks for each parameter, e.g. fα = f1f7. The compound value is the experimental value, denoted by a bar above the parameter,
multiplied by the functional effect, e.g. ᾱfα
*No measurements available. Closest related measurements were taken. For α, the upper bound for β was used. For r, the upper bound for d1 was used. In both cases, it is
taken that 0.000001 is the lower bound

where J is the flux and Aagg is the cross-sectional area
of the aggregate (see equations in the Appendix). Note
that JO2 and JCO2 are also dependent on the volume of
media used and external concentrations of O2 and CO2,
respectively, which are constant for any given experimen-
tal setup. The flux terms forO andW are multiplied by f10
and f11 (see Table 1), respectively, to include the effect of
scaffold density on diffusion.

Fixed point existence and stability
Analyzing the dynamics of the model gives useful infor-
mation that can be applied to experimental work. First, we
will show that the model predicts convergence to a steady
state (fixed point), the final resting state of the growth
process.
A fixed point of the model corresponds to a special state

in the cell culture that once reached would be maintained,
an aggregate with constant size and constant populations
of the three cell types. A main goal is to obtain an aggre-
gate with as large a population as possible of a particular
cell state. Thus, we wish to maximize the fixed points with
respect to a certain cell state. Although ultimately the goal
is to produce as large a population, D, of differentiated
cells as possible, one approach might be to optimize S or
P first, and then introduce a chemical factor to trigger dif-
ferentiation. In order to achieve an optimal population of
one of the cell states, we can alterO,W, C, and differentia-
tion rates, which are accessible by changes to experimental
procedures. O and W can be controlled by altering the
O2 and CO2 levels in the culture chamber. The value of
C can be altered by changing the porosity of the scaffold
on which the cells are seeded. The differentiation rates
can be modified by the addition of chemical factors in the
medium, either at the start of the experiment, or during
the culture period. In the following sections we consider
separately optimization of each population and total cell
numbers.

Possible changes to experimental procedure
In addition to scaffold porosity (contact parameter) and
seeding protocol (initial populations of each cell type),
oxygen serves as a critical factor for experiments affect-
ing stem cell culture. The current experimental procedure
uses an oxygen controlled chamber that holds the con-
centration near ambient levels (∼ 21%). Changing the
oxygen concentration experienced by the cells affects both
differentiation and proliferation [8, 27]. In the case of neu-
ral stem cells, the oxygen concentrations in the brain are
lower than in the rest of the body, reaching as low as
0.55% in some regions of the brain. Other areas of the
body maintain up to 9% oxygen [20]. Changing the cell
culture medium influences cell behavior. Flow chambers
can continuously refresh the medium with oxygen and
nutrients and remove excess waste products. We deter-
mined whether a static culture or a culture with a medium
replacement regimen would be optimal by running the
model under the conditions where oxygen and waste are
taken as variables or held constant.

Relation of model dimension to experimental conditions
The main goal of this work is to construct and analyze a
5-dimensional model, but analysis of lower dimensional
versions of the model allows for a comparison of differ-
ent experimental procedures. In our experimental work,
we attempted to seed with an aggregate consisting only
of progenitor cells (so that initially S(0) = D(0) = 0).
If reversion of progenitors to the stem cell state is negli-
gible (r = 0), then the stem cell population remains at
zero, and can be excluded from the model. However, we
are interested in the effects of reversion and the possibil-
ity that some of the initial cells are stem cells. Oxygen and
waste can be kept at a constant level experimentally by
continuous medium replacement. We therefore analyzed
our system under four conditions, each with a different set
(and number) of variables:
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• The PD system refers to the system without stem
cells and with O and W kept constant by medium
replacement;

• The PDOW system refers to the system without
stem cells and with variable O and W (no medium
replacement);

• The SPD system refers to the system with stem cells
and with O and W kept constant by medium
replacement;

• The SPDOW system refers to the system with stem
cells and with variable O and W (no medium
replacement).

For the sake of brevity, the systems without stem cells are
discussed in the Appendix.

Results
Experimental results
Neural aggregates derived from hiPSCs were seeded on
two different scaffolds for 12 days. The average results of
3 experiments 12 days after seeding are summarized in
Table 3.
Figure 5 and Table 4 show that both scaffold topogra-

phies support cell adhesion and cell migration.
As shown in Tables 3 and 4, cell body cluster area of

neural aggregates cultured on more porous scaffolds was
consistently larger than that of neural progenitors seeded
on less porous scaffolds.

Model analysis results
The SPD system is comprised of the first three equations
of System 1, without the differential equations for O and
W. The corresponding schematic is given in Fig. 3.
Our strategy is as follows. First, we find the fixed points

of the system in terms of the parameters, which we do
by means of an approximation, and then determine their
stability to establish conditions under which a positive
fixed point is reached. Since the fixed points depend on
the parameters, we can determine how each population is
affected by each of the parameters individually, and find
the parameter values for which the population is maxi-
mized. However, the parameters are not independent in
experiments, but depend onO,W, and C, so we next opti-
mize the parameters as functions of O, W, and C, guided
by the independently optimized parameter sets. Using the
optimal O and W, we determine the corresponding Oair

Table 3 Comparison of data from three experiments for two
scaffold porosities 12 days after seeding

Scaffold type Loop mesh 200 Loop mesh 500

Porosity (%) 40 23

Tuj1 fluorescence (%) 71.5 ± 1 58.4 ± 3

Cell body cluster area (mm2) 2.04 ± 0.1 0.87 ± 0.27

andWair in the SPDOW model, indicating optimal culture
conditions.

Existence of fixed points
The fixed points of the 3D system are determined by
finding the intersections of the nullclines, given by

0 = − αS + rP + 2p1S
1 + S + P + D

− d1S

0 = − βP − rP + 2p2P
1 + P + D

+ d1S − d2P

0 = − γD + d2P .

(S,P,D) = (0, 0, 0) is one solution to this system. To
find a non-zero solution, the three nullclines are solved
simultaneously. From the D nullcline we have

D =d2P
γ

,

which can be substituted into the equations for the S and P
nullclines. As D is only dependent on P, finding the inter-
section of the nullclines for S and P will be sufficient to
find the fixed point. The P nullcline, denotedN1, becomes

P2
(

β + r + d2
d1

)
− SP − S

(
γ

γ + d2

)

+ P
(

γ (β + r + d2 − 2p2)
d1(γ + d2)

)
= 0 ,

or, equivalently,

S = P
(
a − b

c + P

)
,

where a = β+r+d2
d1 , c = γ

γ+d2 and b = 2p2c
d1 .

Similarly, the S nullcline, denoted N2, becomes

S2(α + d1) + SP
(

(α + d1)(γ + d2)
γ

− r
)

−P2
(
r(γ + d2)

γ

)
+ S(α + d1 − 2p1) − rP = 0 .

Therefore, the fixed points of the system are given by the
intersections of two hyperbolas, and there can be between
zero and four in principle. As (S,P,D) = (0, 0, 0) is a
known solution, there is at least one intersection, and at
most three positive intersections. It can be shown that
the nullclines here have a unique positive intersection, the
other two being negative in either S or P (and therefore not
meaningful). The S value of this positive intersection is an
increasing function of the P values. Solving the nullclines
for a positive fixed point directly becomes too compli-
cated to be useful analytically, so we approximate using
the asymptotes of the nullclines for large values of P.
The asymptotes of N1 and N2, denoted S1A and S2A

respectively, are determined by ensuring that limP→∞ S−
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Fig. 5 Experimental results. Top: Fluorescence images of neuronal marker Tuj1 expressed in neural aggregates 12 days after seeding on loop mesh
200 (a) and loop mesh 500 (b) scaffolds. Scale bar is 400 μm.Middle: Bright field images of neural aggregates on loop mesh 200 scaffolds 0 (c), 6 (d)
and 12 (e) days after seeding . Bottom: Bright field images of neural aggregates on loop mesh 500 scaffolds 0 (f), 6 (g) and 12 (h) days after seeding

S1A = 0, where S is the value of S on N1, and similarly,
limP→∞ S − S2A = 0, where S is the value of S on N2. The
resulting asymptotes are

S1A =P
(

β + r + d2
d1

)
− 2p2γ

d1(d2 + γ )
,

S2A = Pr
α + d1

+ 2p1rγ
(α + d1)[ (α + d1)(γ + d2) + rγ ]

.

Table 4 Cell body cluster area for two neural aggregates seeded
on loop mesh 200 and loop mesh 500

Loop mesh 200 Loop mesh 500

Cell body Number Cell body Number
Day cluster area (mm2) of cells cluster area (mm2) of cells

0 0.85 5066 0.75 4199

2 0.92 5706 0.78 4454

4 1.11 7561 0.80 4626

6 1.44 11,172 0.88 5337

8 1.67 13,953 0.91 5612

10 1.82 15,874 1.00 6456

12 2.24 21,675 1.1 7459

Number of cells was calculated from cell body cluster area assuming an initial
population of 4500 cells (see Appendix)

Figure 6 shows an example of the fixed point given
by nullcline intersection and the approximate fixed point
determined by the asymptote intersection.
The S, P, D, and T values at the positive asymptote

intersection are

S∗ =
2γ r

[
p1(β + d2 + r) + p2

(
α + d1 + rγ

γ+d2

)]

[ (α + d1)(β + d2) + rα] [ (α + d1)(γ + d2) + rγ ]
,

(2)

P∗ =
2γ

[
p1rd1 + p2(α + d1)2 + p2rγ (α+d1)

γ+d2

]

[ (α + d1)(β + d2) + rα] [ (α + d1)(γ + d2) + rγ ]
,

(3)

D∗ =
2d2

[
p1rd1 + p2(α + d1)2 + p2rγ (α+d1)

γ+d2

]

[ (α + d1)(β + d2) + rα] [ (α + d1)(γ + d2) + rγ ]
,

(4)

T∗ = 2p1
[
rγ (β + d2) + rd1(γ + d2) + r2γ

]

[ (α + d1)(β + d2) + rα] [ (α + d1)(γ + d2) + rγ ]

+
2p2

[
(α + d1)((α + d1)(γ + d2) + 2rγ ) + r2γ 2

γ+d2

]

[ (α + d1)(β + d2) + rα] [ (α + d1)(γ + d2) + rγ ]
.

(5)
Our fixed points should occur at relatively large val-

ues of P and S, making these approximate values accu-
rate. Since the approximate fixed point values have been
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Fig. 6 Example of hyperbola and asymptote intersection for N1 and N2. Note that the intersection of the asymptotes is near the intersection of the
hyperbolas at large P

expressed explicitly in terms of the parameters, the effects
of parameters on the fixed points can be determined, and
each population can be optimized with respect to each
of the parameters, as was done for the PD system. Again,
optimization of the individual populations as well as the
total population may be of interest, depending upon the
goal of the experimentalist.

Stability of fixed points
The Jacobian of the SPD system is given by

J(S,P,D) =
⎡
⎢⎣

2p1(1+P+D)

(1+S+P+D)2
− (α + d1) r − 2p1S

(1+S+P+D)2
−2p1S

(1+S+P+D)2

d1 2p2(1+D)

(1+P+D)2
− (β + d2 + r) −2p2P

(1+P+D)2

0 d2 −γ

⎤
⎥⎦ .

By the Routh-Hurwitz condition, the zero fixed point is
stable when

1. 2p1 + 2p2 < α + β + d1 + d2 + r and
2. (2p1 − α − d1)(2p2 − β − d2) > (2p1 − α)r.

and unstable when either of the inequalities is reversed.
This implies that the zero fixed point is stable when either

1. 2p1 < α and 2p2 < β + d2, or
2. 2p1 < α and 2p2 > β + d2 and

r > (2p2 − β − d2)
(

d1
α−2p1 + 1

)
, or

3. α < 2p1 < α + d1 and 2p2 < β + d2 and
r < (β + d2 − 2p2)

(
d1

2p1−α
− 1

)
,

and not otherwise (neglecting equalities). Thus, the zero
fixed point can only be stable if the two proliferation rates
are low. It is always stable if the proliferation rate of stem
cells is small in relation to their death rate and the pro-
liferation rate of progenitor cells is small in relation to
the combined rate of loss of progenitors to death and dif-

ferentiation. It can still be stable when one of the two
proliferation rates is higher, but only under other restric-
tions. If the proliferation rate of progenitors is higher, then
the reversion rate of progenitors to stem cells must also
be sufficiently large. On the other hand, if the prolifera-
tion rate of stem cells is higher than half their death rate
but not as high as half the combined rate of loss of stem
cells to death and differentiation, then the zero fixed point
is stable only if the reversion rate is sufficiently small. All
cases are possible within the parameter ranges given in
Table 2. Thus, a stable zero fixed point is possible within
our parameter space, though it is unstable at optimal
parameter values found below. The stability of the positive
equilibrium was determined numerically at the optimal
parameter values found below. In all cases it proves to be
stable.

Optimizing the positive SPD fixed point
The effects of parameters on the values of the positive
fixed point are analyzed. We identified parameter values
for maximizing each subpopulation.

Maximizing S∗
Equation (2) shows immediately that S∗ is maximized at
maximum allowed values of p1 and p2. Differentiating S∗
with respect to each of the other parameters shows that
the maximal S∗ is achieved when α, β , d1, and d2 are
minimized, and when γ and r are maximized.

Maximizing P∗ and D∗
Equation (3) shows immediately that P∗ is maximized
when p1 and p2 are maximized, and when β and d2 are
minimized. Differentiating P∗ with respect to each of the
other parameters shows that the maximal P∗ is achieved
when α and r are minimized (but see below for r), when γ

is maximized, and when d1 = d∗
1, an intermediate value in

the allowed range for d1. When the other parameters are
at their optimal values, d∗

1 = 0.0000008675.
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The only parameters that differ inD∗ from P∗ are d2 and
γ , so the rest of the optimal parameters remain the same
for D∗ as for P∗. Differentiation with respect to d2 and
γ shows that P∗ is maximized when γ is minimized, and
when d2 = d∗

2, an intermediate value in the allowed range
for d2. When the other parameters are at their optimal
values, d∗

2 = 0.000009495.
Taking the minimum allowed r maximizes P∗ and D∗.

This conclusion depends on the range for r, [ rmin, rmax].
Considering P∗ (and thus D∗) as a function of r, there
is a maximum at a positive r value. If we use the previ-
ously determined optimal parameter values and consider
our ranges for d1 and d2, then r∗ < rmin where rmin is
taken from Table 1. If we had rmin < r∗, then r∗ would be
the optimal value rather than rmin. This is an important
consideration given that the parameter ranges were deter-
mined using limited data andmay not fully reflect the true
values.

Maximizing T∗
From Eq. (5), the optimal p1 and p2 for maximizing T∗
are their maximum values. The sign of the derivative of
T∗ with respect to each other parameter determines that,
within the given parameter ranges, T∗ is maximized when
α, β , d1, and d2 are minimized, and when γ and r are
maximized. The conclusions for d1 and r are valid at least
when β > α and γ > α, which is the case when all other
parameters are at their optimal values.
It is notable that the optimal parameter values to maxi-

mize the total cell population at equilibrium are the same
as those that maximize the stem cell population. However,
there is an important difference in the conditions for this
result. This parameter set is the optimal set for all positive
parameter values when maximizing S∗, while the optimal
values of r and d1 are dependent on the relative values of
α, β and γ when maximizing T∗. If the death rate of stem
cells, α, exceeds the death rates of progenitor and differ-
entiated cells, β and γ respectively, the optimal values of
r and d1 are not the same as for maximizing S∗. There-
fore, the total cell population and the stem cell population
are optimized together, unless the death rate of stem cells
surpasses the death rates of the other compartments.

Summary of optimization results
For each subpopulation, the optimal parameters are
shown in Table 5. The entries with max and min indi-
cate that, for that population, the optimal value for that
parameter is the maximum or minimum.

Optimization with respect to oxygen, waste and contact
The above fixed points are optimized assuming that
the parameters can be adjusted independently of each
other. This cannot be achieved in experiment because the
parameters actually depend on O, W and C. In order to

Table 5 Summary of optimization results for the SPDmodel

Parameter Max S∗ Max P∗ Max D∗ Max T∗

α Min Min Min Min

β Min Min Min Min

γ Max Max Min Max

p1 Max Max Max Max

p2 Max Max Max Max

d1 Min d∗a
1 d∗a

1 Mina

d2 Min Min d∗a
2 Min

r Max Mina Min Maxa

Note that the parameter sets for max S∗ and max T∗ are the same
aIndicates a condition on the optimal value

provide useful feedback for experimental protocols, this
dependence must be taken into account. Thus, the func-
tional effects of O,W and C on the parameters were opti-
mized by determining the values of O,W and C that most
closely result in the optimal parameter set. For example,
the value of p2 should be maximized in all cases, so the
optimal value of each functional effect on p2, i.e., f5, f6,
and f10, should be maximized. To maximize γ , one has to
maximize f3 and f7, but there is a trade-off in attempting to
maximize f6 and f7 with respect toW simultaneously. Val-
ues of W and C were estimated from the function graphs
to optimally resolve these trade-offs where they occur. For
the optimization of each of P∗,D∗, and T∗, the values used
were W = 5 and C = 3.75. In principle, W = 0 is opti-
mal, but W = 5 was taken because this level of CO2 also
acts as a buffer in the medium [35] and does not greatly
affect the functional values compared toW = 0. Note that
C = 3.75 agrees in a general sense with the experimental
results on porosity of the scaffold.
Optimal O values cannot easily be read from the func-

tion graphs, and had to be determined by numerically
finding the value of O for which each of the equilib-
rium values, S∗, P∗, D∗ and T∗, takes its maximal value,
using the already-determined optimal values of C and W.
The resulting O is the optimal oxygen level that should
be used in the experimental protocol for maximizing the
appropriate equilibrium population.
The relevant functions for optimizing β and p2, namely

f2 and f5, as well as the relevant function for minimiz-
ing γ , in order to maximize D∗, namely f3, have optimal
values of O grouped near a common oxygen value. The
relevant function for optimizing d2, namely f4, and the rel-
evant function for maximizing γ , in order to maximize P∗,
have zero as the optimal value ofO. As d2 takes its optimal
value at a different oxygen level than other parameters,
it is of interest to consider d2 separately when determin-
ing the optimal O as discussed above. Thus, d2 was taken
as a free parameter in the model, with the other parame-
ters remaining functions of O. Treating d2 independently
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not only increases the equilibrium population of interest,
it indicates how critical the value of d2 is to the dynam-
ics of the system. In terms of experimental procedure, this
separation of d2 from O is feasible. The differentiation
process represented by d2 can be modified chemically.
Thus, the results from this decoupling of d2 from O could
be transferred to the experimental procedure.
For similar reasons, we also considered the effect of

allowing d1 and r to be independent, to reflect experimen-
tal control of the differentiation rate of stem cells and the
reversion rate of progenitors to stem cells.
The fixed point values for the optimized populations are

given in Tables 6. The parameters used in calculating these
values are the experimental and compound values as given
in Table 2. For the dependent parameters, the appropriate
optimalO,W, and C for each situation were applied to the
experimental parameter values to give the final compound
parameter values.

Including variable oxygen andwaste in themodel with stem
cells
The SPDOW model is given in System (1). The addition
of the O and W variables makes a full analysis impos-
sible without using numerical simulations. However, we
can use the results obtained in the SPD system to draw
conclusions about the SPDOW system.
In the SPD system, we determined the optimal popula-

tions and the associated parameters. Since those param-
eters are functions of oxygen and waste, optimal oxygen
and waste concentrations can be calculated from the opti-
mal parameter values. Using the approximate SPD fixed

point values for S, P, and D, as well as the optimal O and
W values, the SPDOW fixed point equations for O andW
can be numerically solved for Oair and Wair . It can easily
be shown thatO andW must then converge to these fixed
point values. Then, with the resulting set of parameter
values, the true fixed points, rather than the approxi-
mate fixed points determined by the nullcline asymptote
intersection, of the SPDOW system can be determined
numerically. The resulting SPDOW fixed points are given
in Table 6. The Oair and Wair values required to achieve
the optimal O andW at the equilibrium values of S, P and
D are also given in Table 6. The differences between pop-
ulation sizes when various sets of parameters are made
independent is further illustrated by the simulations in
Fig. 7.

Effect of porosity on growth and differentiation
Scaffold porosity affects not only differentiation, but also
the growth of neural aggregates seeded on the scaffold.
As shown in Tables 3 and 4, there is a significant increase
in the neural aggregate size when the scaffold porosity is
increased from 23 to 40%. To compare the experimen-
tal results to the model results, we ran simulations of the
model withC = 7.7 (23% porosity) andC = 6 (40% poros-
ity). Results are shown in Fig. 8. The dependent parameter
set and the experimental parameter set for optimal D∗
were used.
Oxygen levels
It has also been observed experimentally that culturing
neural stem cells in physiologic oxygen conditions (∼ 5%)
rather than ambient oxygen conditions (∼ 21%) increases

Table 6 Summary of SPDOW optimized populations

Optimized population S∗ P∗ D∗ T∗ O∗ W∗ Oair Wair

S∗ , indep 96869.0 165.2 0.6 97034.8 NA NA NA NA

S̄∗ , dep 3383.3 179.2 94.3 3656.8 0.5994 5 1.9622 3.3338

Ŝ∗ , dep 3385.2 179.2 94.3 3658.7 0.5993 5.0002 1.9622 3.3338

S̄∗ , d1, d2 indep 81249.0 252.3 4.7 81506.0 4.1506 5 6.1227 2.5887

Ŝ∗ , d1, d2 indep 81110.0 251.6 4.7 81366.3 4.1499 5.0008 6.1227 2.5887

S̄∗ , d1, d2, r indep 83213.0 142.3 2.7 83358.0 4.2405 5 6.1682 2.5990

Ŝ∗ , d1, d2, r indep 82908.0 141.6 2.6 83052.2 4.2029 5.0020 6.1682 2.5990

P∗ , indep 1896.3 3428.2 12.0 5336.5 NA NA NA NA

P̄∗ , dep 12.8 147.3 120.4 280.5 0.8544 5 1.2588 4.5059

P̂∗ , dep 19.2 153.3 123.0 295.5 0.8419 5.0152 1.2588 4.5059

P̄∗ , d2 indep 37.4 2880.5 53.7 2971.6 4.2776 5 4.9933 4.1258

P̂∗ , d2 indep 37.5 2881.2 53.7 2972.4 4.2776 5.0001 4.9933 4.1258

D∗ , indep 848.4 883.9 1028.5 2760.8 NA NA NA NA

D̄∗ , dep 1.0 54.1 334.7 389.8 3.9716 5 4.4258 4.4450

D̂∗ , dep 1.3 54.4 336.7 392.4 3.9704 5.0014 4.4258 4.4450

Numerically calculated values of true equilibria are denoted Ŝ∗ , P̂∗ , and D̂∗ , while approximate values based on asymptotes are denoted S̄∗ , P̄∗ , and D̄∗
Note that the independent P∗ and D∗ equilibria are unstable; all other equilibria are stable
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Fig. 7 Example of effects of dependence versus independence of parameters on populations. All parameters independent (dot); d1, d2, r independent
(solid); d1, d2 independent (dash); all parameters dependent (dash-dot). Parameter set used is for maximizing S∗ , with C = 3.75 and O∗ ,W∗ , Oair , and
Wair values from Table 6. Experimental parameters (×10−5): ᾱ = 0.1, β̄ = 1.6, γ̄ = 2.6, p̄1 = 119, p̄2 = 160, d̄1 = 10, d̄2 = 7.29, r̄ = 17. Independent
parameters (×10−5): d1 = 0.05, d2 = 0.03645, r = 51

both cell proliferation and level of differentiation [8].
Because these experiments often used solid substrates for
seeding, simulations were run with C = 10 (0% porosity)
with dependent parameters and the experimental param-
eter set for maximalD∗ to determine if the model captures
these experimental results (Fig. 8). The simulations show
that both differentiation and growth increase when oxy-
gen is at the physiologic level of 5% versus the ambient
oxygen level of 21%.

Timing of growth and differentiation
The timing of differentiation and growth was also of inter-
est. To determine whether it would be better to grow a
large stem cell population, then instigate differentiation,
rather than pushing differentiation at seeding, we ran a
simulation starting at the S∗-optimized equilibrium with
parameters set to optimize D∗. The results are shown in
Fig. 8. D rises to a much higher level than in the straight-
forward D-optimizing strategy, but then falls again to
settle at an equilibrium value less than this peak level.

Discussion
In this work, we have developed a mathematical model of
human iPSC proliferation and differentiation on scaffolds.
In an effort to derive a realistic model, the model devel-
opment included both qualitative and quantitative data
from both laboratory research and previous literature.
We included variables and parameters that would not
only make interpretation of mathematical and numerical
results for experimental procedure possible, but also in
order to make optimization of desired outcomes math-
ematically feasible. By analyzing the model, we are able
to explore the effects of changes in parameters that
depend on experimental protocol, and thus guide future
experiments. In some cases the effects are not intuitively

obvious, as there are trade-offs between positive and neg-
ative effects of change in even a single parameter.
Computer-aided analysis showed that the model has

a unique positive steady state, (S∗,P∗,D∗), to which the
system converges over time from any initial set of pop-
ulation values (apart from the inevitable steady state at
zero — no cells present). The stem, progenitor, and dif-
ferentiated cell populations at steady state were optimized
with respect to each individual parameter with results
given in Table 5. Many of the optimization results agree
with intuitive expectations: it makes sense to maximize
proliferation and minimize the death rate of stem or pro-
genitor cells in order to maximize their respective equi-
librium population sizes. The model analysis also revealed
that certain parameters, such as differentiation rates, do
not always have such intuitively obvious optimal values.
The dependence of the model parameters on oxygen,
waste and contact rate imposes additional practical con-
straints on the accessibility of optimal parameter values in
actual experiments. Including these constraints and ways
of loosening some constraints by experimental procedure
(such as introduction of differentiation factors into the
culture medium) allows the mathematical model to give a
realistic optimal procedure.

Maximizing S∗
One possible objective of an experiment is to maximize
the stem cell population, possibly with the idea of later
introducing a differentiation factor to drive differentia-
tion. In this case, the model confirms our expectation that
the equilibrium stem cell population is maximized at the
minimum value of the stem cell death rate (α), and at max-
imum values of the stem cell proliferation rate (p1) and
the reversion rate (r). Increasing the reversion not only
directly increases stem cells, but also decreases the level of
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Fig. 8 Numerical simulations of population dynamics. Top: Population dynamics with initial population of 5000 progenitor cells for C = 7.7 (solid)
and C = 6 (dash) with O = 21 andW = 5. Experimental parameters (×10−5): ᾱ = 0.01, β̄ = 0.16, γ̄ = 0.16, p̄1 = 119, p̄2 = 160, d̄1 = 13.5, d̄2 = 7.745,
r̄ = 0.1.Middle: Population dynamics with initial population of 5000 stem cells and C = 10 for O = 21 (solid) and O = 5 (dash). Same experimental
parameters used as for top simulation. Bottom: Population dynamics after switching to parameters for maximizing D∗ from the initial point of S∗ ,
with independent d1, d2, and r. See Fig. 7 for parameters used in maximizing S∗ , and simulation at top for D∗ maximizing parameters

negative feedback to p1 by decreasing the P andD popula-
tions, and thus also indirectly contributes to increasing S∗.
Similarly, minimizing d1 and d2, the differentiation rates
of stem and progenitor cells, decreases the rate of transfer
from S to P and D, which decreases the level of inhibitory
feedback to p1 from P and D, indirectly increasing S∗.
The progenitor cell population plays a dual role in

relation to the stem cells. It serves as a source of new
stem cells via reversion, but inhibits proliferation of stem
cells. Thus, it is not clear a priori whether it is better to

choose parameters that lead to a higher or lower equilib-
rium progenitor cell population. Above, we chose r and
d1 in a way that detracts from the progenitor cell pop-
ulation but supports the stem cell population directly.
However, the model suggests that p2, the proliferation
rate of progenitor cells, and β , the death rate of progen-
itor cells, should be chosen to increase the progenitor
cell population. In our model, the reversion overcomes
the feedback. However, if the feedback configuration
were modified so that the feedback was stronger, then
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maximizing p2 andminimizing β might not be optimal for
maximizing S∗. The feedback incorporated into this
model is only a possible mechanism, not confirmed in
biological reality, so it may be of interest to determine
experimentally whether increasing the proliferation rate
and decreasing the death rate of P increases S∗ in reality,
which would be consistent with the feedback configu-
ration used in this model, or whether it decreases S∗,
implying that another feedback mechanism is involved. If
the objective is only to maximize the stem cell population,
then it would be optimal to maximize γ , the death rate
of differentiated cells, which only feed back negatively on
proliferation of stem and progenitor cells.
In experiments, if we only have control of oxygen level,

waste level and contact rate (O,W and C) to alter param-
eters, then we cannot achieve all the above goals at once.
In particular, γ , like α and β is minimized for oxy-
gen levels near 4 or 5%, so if we choose O, W and C
to minimize α and β , then we get a low value of γ

as well (see Table 2 and Fig. 4). Also, d1 and d2 are
maximized at oxygen levels near 5% but these are not
much lower at 21% oxygen, whereas other parameters
vary more with oxygen level, especially the proliferation
rates. So, in the numerical optimization with respect to
O in particular, the disadvantage of having a lower death
rate for differentiated cells and slightly higher differen-
tiation rates is outweighed by the advantage of having
other parameters at optimal values when oxygen is kept
near 5%.

Maximizing P∗ and D∗
If our objective is to maximize the progenitor cell popu-
lation or the differentiated cell population, it still makes
sense to keep a strong pool of stem cells, which are a
source of progenitors and thus, indirectly, a source of dif-
ferentiated cells, and the model confirms that it is best to
maximize the proliferation rates p1 and p2 and minimize
the death rates α and β . If we were only concerned about
maximizing P∗, then γ should be maximized again, if we
could do so in practice, and the reversion rate r should be
minimized.
An initial intuition suggests that maximizing the rate

of differentiation from stem cells to progenitor cells (d1)
would maximize P∗ because d1 directly transfers cells
from S to P. However, because stem cells have a longer life
span than progenitor and differentiated cells, as reflected
in the values for α, β , and γ , keeping some cells in the stem
cell compartment allows for a pool of cells that replenishes
the progenitor cell populations. Thus, the optimal value of
d1 is not necessarily its maximum. Here, the optimal d1
for maximizing P∗ and D∗ is an intermediate value within
the range for d1 (see Table 1).
As for d1, the differentiation rate of progenitor cells

(d2) is similarly affected by the range in life spans and

we once again get an optimal value of d2 is not necessar-
ily it’s maximum. The ability of stem cells to proliferate
is also a factor in this result. The lack of proliferation
in the differentiated cell population means that it is a
terminal state, so driving the system to this compart-
ment would drive the populations to extinction eventually.
Maintaining S∗ and P∗ populations allows for more D
to be formed without forcing the system to the terminal
state. Thus, the optimal value of d2 is not necessarily
its minimum. Here, the optimal d2 for maximizing
D∗ is an intermediate value within the range for d2
(see Table 1).

Maximizing T∗
The total cell population was optimized along with the
stem cell population because optimizing the stem cell
population decreases the negative feedback on prolifera-
tion and, when α is smaller than both β and γ , minimizes
the death rate in the system.

Controlling differentiation experimentally
If differentiation can be controlled chemically in exper-
iment, it is no longer dependent on oxygen, waste and
contact rate like the other parameters. In this case, it is
possible to obtain considerably higher steady state popu-
lations, whichever subpopulation we wish to optimize (see
independent results in Table 6).

Variable oxygen and waste
The optimal oxygen concentration in the air above the
medium is close to or even lower than physiological levels,
depending on which population one intends to maximize,
while for waste it is around 2.5 − 5%.
When the model parameters are set to match the condi-

tions of the experiments, the population sizes and effects
of the change in porosity from 23 to 40% are not quan-
titatively captured, as shown by comparing Table 4 and
Fig. 8. The simulated population size is smaller than the
sizes seen experimentally. Also, the large difference in
population size noted in experiments is not replicated
by these simulations. However, the simulations do cap-
ture the qualitative effect of increasing population size by
decreasing porosity from 23 to 40%. It is likely that the
lack of quantitative correlation between the experimental
data and themodel simulations is a result of the parameter
estimations used in the model. This discrepancy in quan-
titative results may not be surprising because the data
used to determine both the experimental parameter rates
and the functional effects were very limited. Quantita-
tive observations could be captured more effectively with
further data collection.

Conclusions
The simulated dynamics of our model successfully repro-
duce many experimental observations made about how
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pluripotent stem cells behave when seeded on biomaterial
scaffolds. This model allows investigation of alterations in
experimental parameters that would be difficult and costly
to explore in the lab. Analysis of the model confirms the
existence of a unique and stable positive steady state for
plausible parameter ranges. A physiological oxygen level is
shown to be optimal whichever subpopulation one wishes
to maximize. Discrepancies between quantitative aspects
of the model results and experiment could likely be reme-
died by improved data on rates of cell behavior and their
functional dependence on oxygen, waste and contact.

Appendix
Flux terms
The explicit flux terms are given by

Oflux =JO2 · Area of aggregate

=
[

(3.0 × 10−5) 760100 (Oair − O)(5.1737 × 10−8)(60)
d

]
πR2 ,

(6)
Wflux =JCO2 · Area of aggregate

=
[

(2.5 × 10−5) 760100 (Wair − W )(5.1737 × 10−8)(60)
d

]
πR2

(7)

where d = H − R is the distance from the top of the
medium to the center of the aggregate,

H = Vmedium + 4
3πR

3

9.6
is the height of the medium,

R =
(

S + P + D
8 · 4500 · 1000

)1/3

is the radius of the aggregate, and where the base of the
culture plate has an area of 9.6cm2. Note that 3.0 × 10−5

and 2.5 × 10−5 are the diffusion coefficients for O andW,
respectively. The remaining constants in the numerators
of the flux terms are unit conversion terms.

Cell body cluster area to cell number calculation
The number of cells was calculated from cell body clus-
ter area assuming an initial population of 4500 cells.
The aggrewell platform used produces aggregates with
between 4000 and 5000 cells. With this assumption in
place, the calculation of cell numbers from cell body
cluster area was determined as follows.
For any time t, we have that the approximate number of

cells in the aggregate, N(t), is given by

N(t) = CDo · V (t) =
(
6(4500)

π

cells
mm3

) (
4
3
π

√
A(t)
π

)

where A(t) is the experimentally determined cell body
cluster area, V (t) is the volume of the aggregate (derived
from A(t)), and CDo is the cell density of the aggregate,
which is assumed to be constant. We first determine the
initial volume of cells using an averaged cell body cluster
area of 0.8mm2:

0.8mm2 = A(0) = πr(0)2 =⇒ r(0) = 0.5mm

=⇒ V (0) = 4
3
π(0.5mm)3 ,

where r(0) is the radius of the aggregate at t = 0. Thus,
the cell density is given by

CDo =4500 cells
V (0)

= 6(4500) cells
πmm3 .

Finally, to convert cell body cluster area to number of
cells, we have N(t) = CDo · V (t) .

Themodel without stem cells
This version of the model corresponds to the larger model
in the case where the initial stem cell population is zero
and the reversion rate, r, is zero. This reduces it to a two-
variablemodel, for whichmore analytic tools are available.
The simplified PDmodel is

dP
dt

= − βP + 2p2P
1 + P + D

− d2P

dD
dt

= − γD + d2P .
(8)

It is more analytically tractable than the SPD system, but
our analysis strategy is the same.
First, it can be shown that

P ∈
[
0,

2p2
β + d2

]
and D ∈

[
0,

2p2d2
γ (β + d2)

]
(9)

is invariant for the PD system and that solutions start-
ing outside this region in the non-negative quadrant fall
into it. Also, there are no periodic solutions by Dulac’s
Criterion [36].

Existence and stability of fixed points
The nullclines of P and D, the intersection of which deter-
mine the fixed points, are given by setting the right hand
sides of Eq. (8) to zero. Solving this system gives two fixed
points: (0, 0), and a unique positive fixed point (P∗,D∗),
which exists if and only if 2p2 > β + d2, where

P∗ = γ (2p2 − β − d2)
(β + d2)(γ + d2)

, (10)

D∗ =d2(2p2 − β − d2)
(β + d2)(γ + d2)

, (11)

T∗ =P∗ + D∗ = 2p2
β + d2

− 1 . (12)

The existence condition for the positive fixed point is
feasible within the parameter space defined in Table 2.
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Also, in our parameter space min p2 = 0, which means
that the situation where the positive fixed point does not
exist is also possible.
The Jacobian matrix of the PD system is

J(P,D) =
[

−β − d2 + 2p2(1+D)

(1+P+D)2
− 2p2P

(1+P+D)2

d2 −γ

]

and it is easy to check that the zero equilibrium is a sta-
ble node for 2p2 < β + d2 and is a saddle point, and
therefore unstable, for 2p2 > β + d2. It is also easy to
show that Trace(J) < 0 and Det(J) > 0 for the pos-
itive equilibrium (P∗,D∗) whenever it exists, i.e., when
2p2 > β + d2. In fact, the positive fixed point is globally
stable with respect to the invariant region (9) apart from
the D-axis. This follows from the lack of periodic solu-
tions and the Poincaré-Bendixson Theorem applied to the
interior of the invariant region. Thus, when the positive
fixed point exists, all solutions converge to it. Otherwise,
all solutions go to zero.
It should be noted that although our model precludes

solutions reaching the D-axis from elsewhere when the
positive fixed point exists (i.e., precludes an initially posi-
tive P from reaching 0), the model is not really appropriate
for very small populations, so if P = 1 or a very small
number, then in reality we might expect stochastic effects
to allow P to jump to 0. This is not a real problem, how-
ever, for the ranges of cell numbers we deal with in our
experimental setup.

Optimizing the positive PD fixed point
As for the SPD model, we consider each subpopulation,
or the total population, at the fixed point as a function
of each parameter, and explore the effects of individual
parameters on the steady state (sub)populations.
From Eq. (12), the total cell population at equilibrium,

T∗, is maximized when p2 is maximized, and when β and
d2 are minimized. The parameter γ has no effect on T∗.
The progenitor cell population at equilibrium, P∗, given

by Eq. (10) is increasing in p2 and γ , and decreasing in β

and d2, as can be determined by considering the sign of the
derivative with respect to each parameter. Thus, the pro-
genitor cell population at equilibrium, P∗, is maximized
when p2 and γ are maximized, and when β and d2 are
minimized.
Equation (11) shows that the differentiated cell popula-

tion at equilibrium, D∗, is increasing in p2 and decreasing
in β and γ , but is neither a strictly increasing or decreas-
ing function of d2. Solving dD∗

dd2 = 0 for positive values of
d2 gives

d2 = −βγ + √
β2γ 2 + βγ (2p2 + γ )(2p2 − β)

2p2 + γ

at which D∗ has a maximum. We denote this value as d∗
2,

which, for most values of p2, γ , and β , lies in the allowable
range for d2.
The optimal values of the parameters for the PD model

are given in Table 7. The optimized fixed points, that is,
the values calculated by including the optimal parameters
within our given parameter ranges in Eqs. (10) and (11),
are given in Table 8. The populations under optimization
of T∗ are given both for the minimum and maximum val-
ues of γ , since T∗ does not depend on γ , though P∗ and
D∗ do.
The above fixed points are not experimentally realizable

since the parameters are not independent, so we applied
the same optimization process as for the SPD system tak-
ing into account the dependence of the parameters on O,
W, and C (Table 9).

Including variable oxygen and waste in the model
without stem cells The PDOW system is given by

dP
dT

= − βP + 2p2P
1 + P + D

− d2P

dD
dt

= − γD + d2P

dO
dt

= − u2P − u3D + Oflux(P,D,O)

dW
dt

=w2P + w3D + Wflux(P,D,W ) .

(13)

In the PD system, we determined the optimal popula-
tions and the associated parameters, as well as optimal
oxygen and waste concentrations. Using the PD fixed
points and including the optimal O and W values as the
O andW components of the PDOW fixed point, the fixed
point equations for O and W can be solved for Oair and
Wair .
The fixed points for P and D in the PDOW system

are still those given in Eqs. (10) and (11), and the cor-
responding value of T∗ is still the γ -independent value
given in Eq. (12). Numerical values of all the variables
at fixed points corresponding to the various optimization
schemes, are given in Table 9. It can also be shown (from
eigenvalues of the Jacobian matrix) that these fixed points
are all locally asymptotically stable. The Oair and Wair

Table 7 Summary of optimal parameter values for maximizing
cell populations

Parameter Max P∗ Max D∗ Max T∗

β Min Min Min

γ Max Min No effect

p2 Max Max Max

d2 Min d∗
2 Min
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Table 8 Optimized fixed points with O-independent parameters

Optimized value P∗ D∗ T∗ D∗/T∗

P∗ 3325.2 11.7 3336.9 0.0035

D∗ 857.5 993.3 1850.8 0.5367

T∗ , min γ 3194.2 142.7 3336.9 0.0428

T∗ , max γ 3325.2 11.7 3336.9 0.0035

values required to achieve the optimal O and W at the
equilibrium values of P and D are also given in Table 9.

Discussion of the model without stem cells
Fixed point existence and stability The model without
stem cells always has a fixed point at zero, as expected in
a population model. When 2p2 < β + d2, the zero fixed
point is stable and there are no other equilibria in the fea-
sible region, so the system will eventually decay to 0 from
any initial point. Biologically, 2p2 ≤ β +d2 corresponds to
the situation where the production of progenitor cells by
proliferation is overcome by the loss of progenitor cells by
death and differentiation. Differentiated cells are a termi-
nal state and inhibit the proliferation of progenitor cells,
so the system is driven to extinction.
At 2p2 = β + d2, there is a bifurcation above which

the zero fixed point becomes unstable and a stable pos-
itive fixed point, (P∗,D∗), is formed. Thus, for 2p2 >

β + d2, both progenitor and differentiated cells persist.
In this case, the proliferation rate overcomes the loss of
progenitor cells by death and differentiation, allowing for
the maintenance of a pool of progenitor cells. This pool
of progenitor cells also maintains a population of dif-
ferentiated cells as the progenitor cells transition to the
differentiated state.

Fixed point dependence on parameters The progenitor
cell population at equilibrium, P∗, is maximized when β

and d2, the death rate and differentiation rate of progeni-
tors, are minimized, and when p2 and γ , the proliferation

rate of progenitors and the death rate of differentiated
cells, are maximized. The total cell population, T∗, is max-
imized under the same conditions except that in this case
the death rate of differentiated cells has no effect. The
differentiated cell population at equilibrium, D∗, is maxi-
mized when β and γ , the two death rates, are minimized,
when p2, proliferation of progenitors, is maximized, and
when the differentiation rate is at an optimal intermediate
value, d2 = d∗

2. The proportion of D∗ is maximized when
γ is minimized and d2 is maximized, while p2 and β do
not affect the proportion.
Progenitor cells are the source of new cells in the 2-

dimensional system, so the optimal value of p2 and β

for optimization of all populations are the maximum and
minimum values, respectively. The optimal values of p2
and β have less complicated implications than the other
parameters as progenitor cells only feed back on their
own proliferation. To maximize any cell population, max-
imizing the production and minimizing the removal of
the proliferative progenitor cell population must be opti-
mal as it supplies both progenitor and differentiated cells.
Decreasing the differentiation rate of progenitor cells will
increase both progenitor and total cell populations. This
effect is a result of two factors. First, the differentiated
cell state is terminal. Therefore, prolonging the length of
time the cells stay in the proliferative progenitor state (by
decreasing d2) increases the rate of production of new
cells. Secondly, the differentiated cell population nega-
tively feeds back onto the proliferation of the progeni-
tor cells. Thus, as d2 increases and progenitor cells are
driven to the differentiated cell population, the inhibi-
tion of progenitor cell proliferation increases and will lead
to a smaller population of progenitor cells and total cell
population.
A different d2 value maximizes the differentiated cell

population: d2 = 0.0000094522. This numerical value
depends on the values of the other parameters. Thus, if the
experimental ranges for parameters were altered so that

Table 9 Optimized fixed points for the PD system with dependent parameters

Optimized value P∗ D∗ T∗ D∗/T∗ O∗ Oair Wair

P∗ , coupled 141.6 123.0 264.6 0.4648 0.8976 1.2813 4.5312

P∗ , d2 uncoupled 2856.1 53.2 2909.3 0.0183 4.2896 4.9931 4.1407

D∗ , coupled 53.3 330.7 384.1 0.8611 4.0059 4.4573 4.4485

D∗ , d2 uncoupled 908.2 713.2 1621.4 0.4399 4.3585 4.9996 4.2168

T∗ , coupled, γmin 60.4 345.0 405.3 0.8511 3.7393 4.1973 4.4404

T∗ , coupled, γmax 89.7 315.6 405.3 0.7786 3.7393 4.1932 4.4454

T∗ , d2 uncoupled, γmin 2823.8 85.5 2909.4 0.0294 4.2891 4.9973 4.1394

T∗ , d2 uncoupled, γmax 2856.1 53.2 2909.4 0.0183 3.7393 4.9926 4.1407

Note thatW∗ = 5 in all cases. “Coupled” indicates dependence of the parameters on O,W and C. “Uncoupled” indicates that the independent optimal parameter value was
used. For the optimal T∗ populations, the populations are given for the minimum and maximum values of γ , γmin and γmax, because T∗ does not depend on γ , though P∗
and D∗ do
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the optimal values of the parameters were also changed,
this optimal d2 value would be different. For our set of
experimental parameters, the optimal d2 values is low
within the range for the compound d2 parameter. This
result may not be immediately obvious because an an ini-
tial intuition might be to maximize the rate of creation of
differentiated cells in order to maximize D∗. However, the
differentiated cell state is a terminal state, so the optimal
d2 occurs where there is a balance between creation of
differentiated cells and the maintenance of the progenitor
cell pool that leads to differentiated cells. The differen-
tiated cell population is maximized by keeping a sizable
progenitor pool to produce more differentiated cells. This
progenitor cell population ismaintained by not driving the
population too quickly to the differentiated state as well
as keeping the progenitor cell population large enough to
overcome the proliferative inhibition from the differenti-
ated cell population. Thus, the size of D∗ is maximized at
this intermediate value of d2.
The parameter γ is also somewhat counterintuitive.

Increasing the death rate of differentiated cells increases
the progenitor cell population because fewer differen-
tiated cells mean less inhibition of proliferation of the
progenitor cells. Minimizing γ also maximizes D∗. This
is not as obvious as it seems because of the feedback.
Although a lower death rate increases the differentiated
cell population, it also increases the negative feedback
on the proliferation of progenitor cells, which are the
source of differentiated cells. Thus, minimizing γ is not
a priori the correct method for maximizing D∗. How-
ever, with the current feedback mechanism, the decreased
loss of differentiated cells outweighs the decrease in input
from the progenitor cell population. Therefore, at least
with the current feedback mechanism, minimizing γ

maximizes D∗.
The results of optimization for p2 and β are obvious

biologically and are not complicated by other factors: to
increase a population, increase proliferation and decrease
death. The model is consistent with this observation. The
more counterintuitive results for d2 and γ provide more
insight into the dynamics of the system.

Fixed point optimization The optimization of the
parameters was first carried out assuming each parame-
ter could be altered independently, in order to understand
how the populations were affected by each parameter.
However, the parameters are actually determined by oxy-
gen, waste and scaffold porosity, and as such cannot be
considered independent. Thus, to provide useful informa-
tion to experimentalists, the populations were optimized
with respect to O,W and C by determining which val-
ues resulted in the closest parameter set to the optimal
set. The resulting O values indicated that a physiolog-
ical O2 level, or lower, is the best for maximizing the

populations because most parameters were optimized at
these O values, while d2 was the only clear exception. As
d2 was an outlier, the above optimization was also carried
out when d2 was optimized as an independent parame-
ter (corresponding to altering the differentiation rate of
progenitors by appropriate chemical factors in experi-
ments). The resulting optimal oxygen level was higher
when d2 was uncoupled, although still within the physio-
logical range. It is also of note that the population levels
with d2 decoupled are significantly higher than the fully
coupled counterparts. The optimal W was determined to
be lower than the typical CO2 levels used experimentally.
The contact rate C determined to be optimal for all popu-
lations was 3.75, which agrees in a general sense with the
fit to the experimental data.
The population sizes of the fixed points are much

smaller than the populations in the experimental data.
This may be a consequence of the limited data used for
both rate determination and fitting, and consequent inac-
curacy in those values. Another possible reason for this
discrepancy is that stem cells were actually present in the
experiments, despite the intention of seeding only progen-
itors. The presence of stem cells in the seeded population
tends to increase the total cell numbers over time.
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