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Helicobacter pylori-induced premature senescence
of extragastric cells may contribute to chronic skin diseases
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Abstract Helicobacter pylori, one of the most

frequently observed bacterium in the human intestinal

flora, has been widely studied since Marshall and

Warren documented a link between the presence of H.

pylori in the gastrointestinal tract and gastritis and

gastric ulcers. Interestingly, H. pylori has also been

found in several other epithelial tissues, including the

eyes, ears, nose and skin that may have direct or

indirect effects on host physiology and may contribute

to extragastric diseases, e.g. chronic skin diseases.

More recently, it has been shown that H. pylori

cytotoxin CagA expression induces cellular senes-

cence of human gastric nonpolarized epithelial cells

that may lead to gastrointestinal disorders and sys-

temic inflammation. Here, we hypothesize that also

chronic skin diseases may be promoted by stress-

induced premature senescence (SIPS) of skin cells,

namely fibroblasts and keratinocytes, stimulated with

H. pylori cytotoxins. Future studies involving cell

culture models and clinical specimens are needed to

verify the involvement of H. pylori in SIPS-based

chronic skin diseases.
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What are the causes of chronic skin diseases?

Despite the fact that chronic skin diseases, such as

erythema, psoriasis, Henoch-Schönlein purpura,

alopecia areata, Sweet disease, chronic urticaria,

systemic sclerosis, Behcet disease, generalized pruri-

tus (itch), nodular prurigo, lichen planus, aphthous

ulceration, Sjögren syndrome and atopic dermatitis,

are frequently diagnosed and comprehensively stud-

ied, they are still considered as troublesome human

diseases of a complex etiopathogenesis (Hernando-

Harder et al. 2009; Mogaddam et al. 2015; Wedi and

Kapp 2002). It is speculated that approximately ten

percent of worldwide population is affected by atopic

dermatitis (AD) (Weidinger and Novak 2016). The

causes of AD remain elusive. AD is considered a

genetic-based immunological disorder associated with

the hypersensitivity of the immune system and aber-

rant response to antigens (allergens). The questions on

hereditary patterns, haplotypes and allergens involved

in the pathogenesis of AD are left unanswered (Bieber

2010; Brown 2016; Wuthrich et al. 2007). Thus, there

is a need for alternative hypotheses on the mechanisms

underlying the initiation and progression of chronic

skin diseases/conditions. It seems reasonable to cor-

relate inflammatory skin disorders with stress-induced

A. Lewinska (&) � M. Wnuk (&)

Department of Genetics, University of Rzeszow, Werynia

502, 36-100 Kolbuszowa, Poland

e-mail: lewinska@ur.edu.pl

M. Wnuk

e-mail: mwnuk@ur.edu.pl

123

Biogerontology (2017) 18:293–299

DOI 10.1007/s10522-017-9676-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10522-017-9676-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10522-017-9676-x&amp;domain=pdf


premature senescence (SIPS) in human skin cells

(Bellei et al. 2012) that is also accompanied by

senescence-associated secretory phenotype (SASP)

(Demaria et al. 2015; Ovadya and Krizhanovsky 2014;

Tchkonia et al. 2013) that is primarily a DNA damage

response (Rodier et al. 2009). Cellular senescence is a

natural mechanism to prevent oncogenic transforma-

tion of DNA-damaged somatic cells that is based on

permanent inhibition of cell proliferation and cell

cycle arrest (Campisi 2011). However, senescent cells

are metabolically active or even hyperactive and are

able to produce pro-inflammatory factors, namely

interleukins, chemokines and growth factors that may

have adverse effects on surrounding cells and tissues

(Demaria et al. 2015; Kennedy et al. 2014). There are

several stress stimuli that can promote/potentiate

SIPS, like chemicals (e.g. hydrogen peroxide) (Chen

et al. 1998), drugs (e.g. doxorubicin) (Bielak-Zmi-

jewska et al. 2014), nutraceuticals (e.g. curcumin)

(Grabowska et al. 2015), nanoparticles (Mytych et al.

2015) as well as bacterial toxins (e.g. pyocyanin or

lipopolysaccharide) (Kim et al. 2016; Muller 2006)

and viruses (e.g. papillomavirus) (Ren et al. 2013). In

this view, it would be essential to understand the

relationship between bacterial infection-mediated cel-

lular senescence and systemic diseases, especially in

terms of H. pylori-mediated SIPS (Saito et al. 2010),

SASP, gastric diseases and perhaps extragastric

diseases.

H. pylori infection and systematic diseases

H. pylori is a microaerophile, a Gram-negative

bacterium (bacillus of helical or curved shape) of

approximately 0.5–1 lm 9 2.5–5 lm (width 9 -

length). Due to the presence of diametrically located

flagella, H. pylori is able to move and colonize under

mucosa. In general, H. pylori is found in the stomach,

especially in the gastric mucosa and duodenum being

responsible for gastroduodenal diseases such as peptic

ulcer disease or gastric carcinoma (Marshall and

Warren 1984). Undoubtedly, H. pylori is one of the

most widespread pathogen among humans, especially

in the gastrointestinal tract, and human-H. pylori co-

existence is calculated to be approximately for

60,000 years (Linz et al. 2007; Moodley et al. 2012).

According to World Health Organization, it is spec-

ulated that approximately a half of the population of

developed countries and 80% of the population of

developing countries is affected by H. pylori infection

(Linz et al. 2007). Surprisingly, H. pylori is able to

tolerate a broad range of oxygen concentrations,

especially at liquid culture at high cell density, namely

it can grow at microaerophilic conditions (\5%) as

well as at aerobic conditions (21%) (Bury-Mone et al.

2006). H. pylori can also form biofilms as well as

transform from its normal helical bacillary morphol-

ogy to a coccoid morphology as a survival strategy and

expansion (Andersen and Rasmussen 2009; Cam-

marota et al. 2012; Stark et al. 1999). Unique

adaptation features of H. pylori are probably respon-

sible for occasional or persistent colonization of other

human tissues including skin (Testerman and Morris

2014).

Despite numerous studies on the mechanisms of H.

pylori transmission, data on H. pylori routes of

transmission are ambiguous. It is suggested that

human is a main disease carrier (reservoir of H.

pylori) and several transmission routes are considered,

namely gastro–oral, oral–oral and fecal–oral routes

(Brown 2000; Schwarz et al. 2008). Thus, saliva and

faeces may be considered important for H. pylori

transmission. The PCR analysis on 102 human saliva

samples revealed that 66 individuals were affected by

H. pylori (Wnuk et al. 2010). Of course, it should be

further examined if genetic material of H. pylori is

from live or dead bacteria, but the presence of live

bacterial cells in saliva has been also documented by

others (Li et al. 1996). Thus, the presence of H. pylori

in saliva may be important not only for the transmis-

sion of chronic infections of the gastrointestinal tract,

but also for the propagation of chronic skin diseases in

humans. So, one can ask a question if chronic skin

diseases are a result of the exposition to saliva and/or

faeces containing live or dead forms of H. pylori with

damaged/injured skin. During such second transmis-

sion, H. pylori may also colonize host skin tissues.

Moreover, dead cells of H. pylori may also promote

inflammation as a response to bacterial antigens

released from dead cells.H. pylori produces a plethora

of virulence factors, namely enzymes, endotoxins and

hemolysins that allows for survival at low pH in the

stomach, adhesion to host cells, re-programming of

host cell cytophysiology and attenuation of immune

responses (Backert et al. 2016). On the other hand, H.

pylori-based virulence factors are responsible for

chronic infections of the gastrointestinal tract,
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especially for chronic gastritis leading to gastric and

duodenal ulcers and gastric MALT (mucosa associ-

ated lymphoid tissue) lymphoma as a response to

prolonged stimulation of immune system (Testerman

and Morris 2014).

A potential role of H. pylori infection in several

extragastric diseases, namely hematological, cardio-

vascular, neurological, metabolic, autoimmune and

dermatological diseases, has been also proposed

(Hernando-Harder et al. 2009; Kutlubay et al. 2014;

Magen and Delgado 2014; Testerman and Morris

2014; Wedi and Kapp 2002). An association between

H. pylori infection and skin diseases such as chronic

idiopathic urticaria and rosacea has been suggested

(Kutlubay et al. 2014). For example, H. pylori

(cagA ? strains) was present in 81% of rosacea

patients who also had gastric complaints (Argenziano

et al. 2003). Eradication ofH. pylori infection has been

reported to be effective in some patients with chronic

autoimmune urticaria, psoriasis, alopecia areata and

Henoch-Schönlein purpura (Magen and Delgado

2014). H. pylori may be considered as a plausible

infectious agent for triggering autoimmunity (Magen

and Delgado 2014). Cytotoxins produced by H. pylori

may activate cross-reactive T cells and stimulate the

production of autoantibodies (Magen and Delgado

2014). Moreover, H. pylori heat shock proteins (HSP)

with sequence similarity to human HSP may play a

role in the pathogenesis of autoimmune diseases

(Magen and Delgado 2014). However, the role of H.

pylori in the pathogenesis of some dermatological

diseases has been also questioned (Kutlubay et al.

2014; Magen and Delgado 2014). Patients with mild to

severe psoriasis were not found to be more susceptible

to H. pylori infection; however, H. pylori affected the

clinical severity of psoriasis (Campanati et al. 2015).

H. pylori eradication was reported to have no

discernible effect on chronic spontaneous urticaria

(CSU) beyond that of standard CSU therapy (Curth

et al. 2015). Thus, more epidemiological and clinical

studies are needed to investigate the association

between H. pylori and inflammatory skin diseases.

H. pylori proteins may be considered as drivers

of cellular senescence

H. pylori produces many proteins that are highly

immunogenic and are directly and/or indirectly

responsible for multiple pathogen-host interactions

during infection. Some of these proteins like antiox-

idative enzymes, neutrophil-activating protein (HP-

NAP) or other virulence factors, namely proteases,

lipases, cholesteryl glucosides, adhesins, iron trans-

porters, O-lipopolysaccharide may be helpful during

human skin invasion by H. pylori as well as respon-

sible for local inflammation (Bumann et al. 2002;

Testerman and Morris 2014; Zanotti and Cendron

2014). H. pylori secretome can be grouped into

different categories, one of them are products of the

cytotoxic-associated genes of pathogenicity island (8

proteins) and other toxins (5 proteins) (Zanotti and

Cendron 2014). Two secreted cytotoxins (oncopro-

teins), namely VacA and CagA are particularly

important for H. pylori-based pathologies.

Vacuolating cytotoxin A (VacA, 88 kDa protein)

inhibits the proliferation of epithelial cells, modifies

pathways involved in the cytoskeleton reorganization

and induces apoptosis by release of cytochrome c from

mitochondria. VacA is also able to inhibit the prolif-

eration of T lymphocytes and phagocytosis and

antigen presentation to T lymphocytes that in turn

results in the attenuation of immune responses. VacA

can also modify cell junctions between neighbouring

gastric epithelial cells (Gebert et al. 2003; Palframan

et al. 2012).

Cytotoxin associated protein A (CagA,

120–145 kDa protein) is encoded by cagA gene within

the cag pathogenicity island (cag PAI). CagA gene is

presented within 60% of genomes ofH. pylori isolated

from patients (Hatakeyama and Higashi 2005). Cyto-

toxin CagA is transported to epithelial cells by one-

step transport system T4SS from cytosol of bacterial

cell to host cell excluding periplasmic space. CagA

interacts with host cellular proteins involved in

signaling pathways regulating cell proliferation,

motility and polarity that modulates the phenotype

of host cells (Tohidpour 2016). CagA may promote

loss of polarity and activate aberrant ERK signaling in

host cells (Saito et al. 2010). In nonpolarized gastric

epithelial cells, CagA-induced ERK activation

resulted in oncogenic stress, upregulation of the

p21Waf1/Cip1 cyclin-dependent kinase inhibitor and

induction of senescence (Saito et al. 2010). In contrast,

in polarized epithelial cells, CagA-mediated ERK

signaling suppressed p21Waf1/Cip1 expression by acti-

vating a guanine nucleotide exchange factor–H1–

RhoA–RhoA-associated kinase–c-Myc pathway and
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c-Myc-mediated upregulation of miR-17 and miR-20a

that stimulated mitogenesis (Saito et al. 2010). Thus,

CagA may directly induce cellular senescence in host

cells, here gastric cells (Saito et al. 2010), that may be

important for the etiopathogenesis of gastric ulcer and

perhaps during initiation of chronic skin diseases

associated with the induction of secretory phenotype

in senescent skin cells.

Gastric and extragastric diseases associated

with H. pylori may have a common SIPS-based

molecular mechanism

We have already mentioned that H. pylori cytotoxin

CagA has been reported to stimulate cellular senes-

cence in nonpolarized gastric epithelial cells (Saito

et al. 2010).H. pylori L-asparaginase also inhibited the

cell cycle of normal human diploid fibroblasts (Scotti

et al. 2010). Of course, the question if such cell cycle

arrest would be permanent and lead to cellular

senescence needs to be addressed. In our opinion,

gastrointestinal disorders and chronic skin diseases

may have a common molecular basis that may be

mediated by stress-induced premature senescence. We

propose a hypothesis that H. pylori may promote

stress-induced premature senescence in skin cells that

in turn may lead to chronic inflammation and chronic

skin diseases (Fig. 1).

Although, there are no direct evidences that H.

pylorimay induce SIPS in skin cells, one can speculate

that such scenario is possible. First of all,H. pylori has

been found in different human tissues including skin

(Missall et al. 2012; Testerman and Morris 2014), as

well as in saliva and faeces (Brown 2000). Moreover,

H. pylori is able to tolerate a broad range of oxygen

concentrations (Bury-Mone et al. 2006) and H. pylori

possesses a plethora of enzyme activities that enables

for survival at low pH in the stomach that may be also

important during H. pylori-based skin infection, e.g.

urease that converts urea to ammonium and carbon

dioxide leading to local alkalization of acid pH in the

stomach (Bury-Mone et al. 2001; Cornally et al. 2008;

Tuzun et al. 2010). Thus, H. pylori is able to survive

outside the gastrointestinal tract and its presence in

other human tissues may affect host physiology and

potentially provoke extragastric disorders. Moreover,

the presence of H. pylori may promote redox imbal-

ance (increased production of reactive oxygen species

and reactive nitrogen species) (Handa et al. 2010) and

Fig. 1 Molecular details of proposed hypothesis on H. pylori-

mediated stress-induced premature senescence in skin cells and

chronic skin diseases. Future studies are needed to verify the

involvement of H. pylori and molecular players during SIPS-

based chronic skin diseases
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DNA damage (Hanada et al. 2014; Koeppel et al.

2015; Toller et al. 2011), inflammation and epigenetic

changes (Valenzuela et al. 2015) in host cells, all of

which are triggers and/or biomarkers of cellular

senescence.

In conclusion, it is postulated that the presence of

H. pylori in the stomach may also affect other human

tissues including skin and promote indirectly patho-

physiological conditions outside the gastrointestinal

tract (Magen and Delgado 2014; Testerman and

Morris 2014). Therefore, more studies are still needed

to verify our current knowledge on H. pylori as a

systemic infectious factor and human skin cell

responses to the presence of H. pylori as a part of

complex host-pathogen interactions, especially H. py-

lori-induced premature senescence in skin cells,

chronic inflammation and chronic skin diseases.

Future studies might involve skin cell line models as

well as clinical specimens and co-culture approach

using intact H. pylori cells and isolated cytotoxins.

Several biomarkers of cellular senescence could be

then analyzed (Fig. 1). The presence of H. pylori in

clinical skin samples could be also studied in an

association with some biomarkers of cellular senes-

cence in vivo.
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