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Abstract
As the world’s population continues to age, an understanding of the aging brain
becomes increasingly crucial. This review focuses on several recent ideas and
findings in the study of neurocognitive aging, specifically focusing on episodic
memory, and discusses how they can be considered and used to guide us
moving forward. Topics include dysfunction in neural circuits, the roles of
neurogenesis and inhibitory signaling, vulnerability in the entorhinal cortex,
individual differences, and comorbidities. These avenues of study provide a
brief overview of promising themes in the field and together provide a snapshot
of what we believe will be important emerging topics in selective vulnerabilities
in the aging brain.
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Introduction
As of 2015, the global percentage of individuals 65 years of  
age or older was estimated to be 8.5%, which is projected to grow  
to 16.7% by 20501. Increasing age is a primary risk factor of 
many disease states, including dementias such as Alzheimer’s 
disease (AD). Beyond disease risk, however, even ‘healthy’ aging  
significantly alters functional and structural properties of the brain.  
Furthermore, there is considerable individual variability in aged 
individuals in terms of both cognitive and neural measures2,3.  
Thus, it is imperative that we understand age-related changes to 
the brain in both the presence and absence of frank pathology  
such as that of dementing illnesses. Such an understanding will 
provide valuable insight into ‘healthy’ aging as well as potential 
biomarkers for differentiating this trajectory from diseases.

In this review, we will discuss important prevailing themes that  
can serve to guide our thinking about neurocognitive aging. We  
will also highlight some recent findings that may offer promis-
ing directions in the search for biomarkers and potential targets of  
intervention:

1. Aging is a story of dysfunction rather than cell loss
This first point is perhaps the least contentious and has been impor-
tant in guiding our thinking about how aging affects cognition. 
Though the brain undergoes volumetric changes with age, this is 
thought to reflect synaptic degradation rather than frank neuronal  
loss in the absence of disease. Moreover, loss of function in par-
ticular neuronal circuits may be far more striking and informative 
at early stages of the aging process. It is worth noting that this  
understanding forms an important background that frames the other 
findings we discuss below.

2. Neurogenesis is a complex biomarker
Until very recently, it has been fairly well accepted that neurogen-
esis significantly declines in the aged brain, which may account for 
declines in memory ability. However, recent findings in the human 
brain have complicated this view.

3. Letting go of your inhibition
Many areas of the brain—notably, regions involved in memory—
are typically under tight inhibition. This inhibitory control is dys-
regulated in aging, which can have important consequences on  
circuit-level computations.

4. Entorhinal cortex: the gateway to neurodegeneration
A wealth of evidence points to entorhinal cortex (EC) as being 
among the earliest brain regions affected by aging, and recent  
studies suggest that certain subdivisions of the EC may be espe-
cially vulnerable. In addition to the EC, several new candidate 
regions of vulnerability, including thalamic nuclei and the locus 
coeruleus, have emerged in recent years.

5. Individual differences are informative
Individuals vary widely in terms of both cognition and neurobi-
ology as they age. We often collapse across and ignore many  
such differences in any given experiment, but they likely  
provide important clues about a person’s cognitive and clinical  
trajectories.

6. It is time to embrace and understand comorbidities
Brain aging is inexorably linked to other factors that influence the 
brain’s health as well as the rest of the body. However, these comor-
bidities are often viewed as ‘nuisance’ variables that we attempt to 
exclude. These are important factors that should be considered for a 
full and valid understanding of the aging brain.

Aging is a story of dysfunction rather than cell loss
Neuronal loss in the medial temporal lobes (MTLs) is observed in 
histological studies of AD, which correlates with disease onset4,5. 
Although hippocampal volume is often found to decrease in 
‘healthy’ aging6,7, there is little evidence to suggest that ‘healthy’ 
aging features comparable loss of cells8. What could account for 
this discrepancy? It is likely that such volumetric changes are due 
to more subtle losses of cellular complexity, including degen-
eration of synapses9 and axons10. This is consistent with studies  
using unbiased stereology in animal models of aged rodents, all of 
which show that there is little to no evidence of frank cell loss in 
the aging brain8. Additionally, in specific transgenic mouse models 
of AD, impairments in memory-guided tasks correlate more closely 
with synaptic dysfunction than neuronal loss11. Though likely less 
drastic than cell death, these kinds of changes may contribute to 
subtle cognitive perturbations. For instance, the hallmark decline 
of episodic memory ability with aging may arise from highly  
specific synaptic loss observed in the perforant path between the 
EC and the hippocampus8. In humans, white matter loss specific 
to this projection correlates with poorer mnemonic discrimina-
tion (disambiguating overlapping events in memory), thought to 
rely on hippocampal pattern separation12,13. In a typical mnemonic 
discrimination paradigm, participants encode a set of items and  
later are tasked with rejecting similar ‘lure’ items as being distinct 
from the studied set. Importantly, these discrimination paradigms 
have been shown to be highly sensitive to age-related decline in 
episodic memory ability.

Beyond morphological changes that do not correspond to  
neuronal loss per se, changes to the functional properties of brain 
systems have been reported that correlate with cognitive deficits.  
In the hippocampi of aged rats there are several functional  
changes that are associated with poorer memory performance. 
This includes alterations to excitatory synaptic transmission and  
synaptic plasticity across all hippocampal subfields14. Several  
studies have also noted that elevated levels of activity in the CA3 
subfield correlate with impaired mnemonic discrimination15,16, 
a finding mirrored in humans with high-resolution functional  
magnetic resonance imaging (fMRI)17. Behaviorally, mnemonic 
discrimination paradigms are sensitive to subtle age-related  
deficits across multiple domains (for example, objects, space, 
and time)18–20. Other fMRI experiments examining activity during  
task-free rest report decreased correlations in activity among 
‘default mode’ brain regions21, many of which are strongly impli-
cated in memory. Importantly, many of these studies control for 
gray matter volume in their analyses such that global atrophy 
does not explain these disrupted correlational patterns among 
brain regions. Together, these findings suggest that noninvasive 
functional approaches such as behavioral studies and measures of 
brain activity at rest or driven by mechanistically targeted tasks are  
potentially very fruitful avenues of inquiry.
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Neurogenesis is a complex biomarker
Though adult neurogenesis (the birth of new neurons in the  
mature brain) has been known for some time to occur in the den-
tate gyrus of the mammalian hippocampus22, the phenomenon 
has recently become a popular avenue of research23. In rodents, 
nearly 10,000 new cells are generated per day24 and only half of 
these survive25. Among these surviving granule cells, most inte-
grate into existing hippocampal circuits and may replace existing 
granule cells26. Though the precise functions of adult neurogenesis 
are not known, disruption of neurogenesis is detrimental to certain  
mnemonic processes, primarily pattern separation27. It must be 
noted, however, that many memory-guided behaviors are unaf-
fected by this. Adult neurogenesis reportedly decreases with age 
in the rodent brain28, leading some to propose it as a mechanism  
for curbing age-related memory loss and detecting pathological 
states along different aging trajectories29.

A recent study using nuclear bomb test–derived 14C in genomic 
DNA found that although hippocampal neurogenesis does decline 
with age in humans, the effect is nowhere near as drastic as in 
rodents30. Moreover, after age 20, the loss of neurogenesis dropped 
at a low and fairly monotonic rate even into advanced age. Although 
this does not refute a role for neurogenesis in explaining human 
age-related memory decline, the relationship is unclear. It must be 
noted that there are differences between human and rodent adult 
neurogenesis. For instance, compared with rodents30, a greater 
number of newborn neurons in the human dentate gyrus integrate 
into existing circuits31. There is also evidence to suggest that the 
dynamics and behavioral relevance of neurogenesis differ between 
rats and mice32. Nonetheless, targeting neurogenesis as a mecha-
nism for therapeutic intervention has some promise, but further 
research is needed to fully understand its role in the human brain 
across the life span.

Letting go of your inhibition
As previously noted, hyperactivity in hippocampal CA3 in 
aged animals is associated with diminished memory15,16. This 
likely stems at least in part from reduced inhibitory signaling 
from somatostatin-positive GABAergic interneurons to CA333.  
Similarly, somatostatin-positive interneurons are selectively lost  
in the hilar region of the dentate gyrus in older animals with mem-
ory impairments34. As hippocampal networks are typically under  
tight inhibition, such alterations can drastically affect mnemonic 
processes. For instance, elevated firing rates in the dentate gyrus 
may reduce the sparsity of firing in granule cells, thereby reduc-
ing its capacity for creating independent representations. The 
same change in the CA3 region may facilitate runaway excitation 
in recurrent collaterals and further interfere with the network’s 
ability to represent new information. This is likely to lead to  
failures in pattern separation and instead biases the hippocampus 
toward erroneous generalization35,36 or the generation of ‘false’ 
memories.

In a recent series of studies in rats37, humans38, and transgenic 
mice39 with AD pathology, a low dose of the anti-epileptic drug  
levetiracetam was found to reduce hippocampal hyperactivity in 
memory-impaired older individuals as well as rescue cognitive 
deficits to normal levels. Hippocampal hyperactivity is therefore 
a strong candidate biomarker in neurocognitive aging that may  

differentiate ‘healthy’ from pathological aging. Moreover, although 
both the acute and long-term effects of the relevant drugs must 
be studied more extensively, targeting and reducing hyperactivity 
in specific brain networks provide a well-supported mechanistic  
avenue for treating cognitive decline.

It should be noted, however, that loss of inhibition is not universal 
across the aging brain but rather may be regionally specific. Some 
regions in fact exhibit greater inhibition in advanced age. For exam-
ple, evidence in both primates40 and rodents41 associates aging with 
increased inhibitory tone in the prefrontal cortex. Thus, inhibitory 
control is a broad and potentially very important issue to consider.

Entorhinal cortex: the gateway to neurodegeneration
Though the hippocampus is often studied in the context of  
dementia and is often predictive of AD42, histological43 and  
neuroimaging44 studies have shown that the EC is among the  
earliest brain regions affected by AD-related pathology, such as 
cortical thinning and the accumulation of hyperphosphorylated 
tau protein. Recent evidence suggests that there may be detect-
able changes in the functional properties of EC. An elegant study 
by Khan and colleagues45 demonstrated that, across mice and  
humans, metabolism in the lateral portion of the EC (LEC) was 
affected in preclinical AD, consistent with other studies in rodent 
models of aging46. Moreover, positron emission tomography  
(PET) imaging of hyperphosphorylated tau deposition in the EC is 
a promising biomarker47.

Critically, although it has been known for some time that LEC  
and medial EC (MEC) are functionally dissociable in rodents48,49, 
evidence in humans has only recently been demonstrated50–52 
(though in humans the division may be more anterolateral versus  
posteromedial50,51). Generally, cells in MEC are thought to  
represent spatial configurations via grid-like firing patterns48, 
whereas those in LEC are thought to represent objects or items 
within those configurations49. Task-driven dissociations between 
LEC and MEC52 provide a valuable opportunity to test key changes 
to the aging human brain. In particular, one might hypothesize 
that LEC shows selective functional impairments in aged adults, 
and the extent of this impairment might inform us as to one’s neu-
rocognitive trajectory. A recent study by Olsen and colleagues  
provides evidence for such a view via structural changes to EC  
subdivisions53. Future studies can further address this question and 
can resolve ambiguities in behavioral outcomes such as whether 
functions of the LEC are broadly impacted by ‘healthy’ aging54  
or only in the case of a clinical trajectory55.

In addition to the EC, several other regions have recently surfaced 
as candidate locales for neurodegenerative changes in AD. The  
first is the locus coeruleus, which is a major brainstem hub for 
producing norepinephrine and which recently was identified as a 
region that accumulates tau pathology early in AD56 and may even 
transfer this pathology to the EC via a prion-like mechanism57. 
Second, there is evidence that the thalamus58, striatum58, and basal 
forebrain cholinergic system59 are also compromised as regions 
expressing early pathology and neurodegenerative changes in AD. 
A recent study reported evidence that basal forebrain degenera-
tion may actually precede and dictate AD-related pathology in the  
EC60. Moving forward, it will be important to elucidate which 
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regions exhibit neurodegenerative or volumetric change related to 
AD versus volumetric change related to synaptic and dendritic loss, 
which may be a part of ‘healthy’ aging.

Individual differences are informative
Our use of quotations around ‘healthy’ aging here is quite inten-
tional. It is well noted that brain aging is not a uniform process 
but rather consists of many different cognitive and neurobiologi-
cal phenotypes61. This raises an important question: what exactly 
constitutes a normal aging trajectory? Absent a disease state, 
cognitive abilities vary widely across older individuals2,62, and 
there is evidence suggesting that early life education63 and genetic  
factors64 influence outcomes. Moreover, individuals with a common 
diagnosis may share a wide array of distinct symptoms or patho-
logical phenotypes. In many experimental studies, it is common 
to attempt to reduce or even eliminate as many variables as pos-
sible for a ‘cleaner’ examination of a variable of interest. This is  
often a matter of cost or practicality in a given study, as more  
variables may necessitate larger sample sizes. Nonetheless, we  
suggest that attempting to understand these differences and  
relate them to experimental outcomes is a necessary step in under-
standing neurocognitive aging more broadly.

Several studies across rodents65, primates66,67, and humans18–20  
have embraced individual differences in behavior, which some-
times can cleanly dissociate subgroups of aged individuals. In 
one novel and exciting approach, recent studies by Madan and  
Kensinger68,69 found that the structural complexity of certain brain 
regions (including MTL and striatum) is a more sensitive measure  
of age-related differences than volume and cortical thickness. This 
approach leverages individual variability rather than controlling  
for its effects as a set of confounding variables. If combined with 
extensive demographic information and sensitive behavioral data,  
a technique such as this might provide a powerful means of  
understanding  factors that impact and arise from aging.

It is time to embrace and understand comorbidities
Related to individual variability, comorbidities provide a con-
siderable challenge to characterizing a normal neurocognitive 
aging process. As many as one third of individuals in the US 65 
years or older are diagnosed with at least two chronic diseases70.  
Prominently, aging itself is the primary risk factor for AD and 
shares pathological features such as amyloid deposition71. One 
major factor is cerebrovascular infarction (stroke), which is 
fairly common to some extent in a large proportion of older  
individuals72. In addition to major stroke events, more chronic 
forms of cerebrovascular disease such as microbleeds, or ‘silent  
infarcts’, have been found to affect cognition absent any AD-
related pathology73. Relatedly, recent evidence has pointed to a 
strong role of inflammation in many age-related diseases, including 
arthritis, diabetes, dementia, and metabolic dysregulation74. Aging 
upregulates a number of pro-inflammatory signaling molecules, 
which may dysregulate immune responses in the nervous system 
with damaging effects75. Diabetes and metabolic syndrome—an 
increasingly widespread issue encompassing obesity, hypertension,  
insulin resistance, and related symptoms—have also been linked 
to age-related cognitive decline and AD76. Finally, differences in 
neuropsychiatric health exist among aged adults. For example, 
many individuals go on to develop late-life depression77, which  

can affect not only cognition but core neurobiological processes  
as well.

As with individual differences, comorbidities are frequently  
treated as nuisance variables in a given study. Although there have 
been some efforts, a systematic understanding of comorbidities 
and how they can be leveraged to improve our grasp on the aging  
process has not been provided. One promising example comes 
from studies of the oldest old where the best indicator of the like-
lihood and severity of dementia was the number of concurrent  
pathologies78. This is not a trivial undertaking, as the presence of 
any given condition—be it vascular disease or depression—likely 
influences the presentation of another condition such as dementia. 
Nonetheless, this is a major remaining issue that the field must 
soon tackle. One crucial thing to bear in mind is that nearly all 
aged human brains have some amount of vascular or parenchymal 
brain pathologies, some of which are often considered biomarkers 
for diseases such as AD. Thus, it is critical to come to understand  
which of these, where in the brain, and in what combinations  
constitute a serious threat to aging brain health.

Summary
With the world’s aging population on the rise, it is imperative  
that we have a better understanding of the ‘healthy’ aging brain 
and how it differs from various pathological states. This is no easy 
feat. We suggest that in order to make inroads here, we must first  
focus on brain networks and systems that are selectively more  
vulnerable than others. We focused on episodic memory systems  
as memory complaints are quite common in the elderly and  
memory loss is one of the earliest hallmarks of AD. We first remind 
the reader that, absent neurodegenerative disease, aging is associ-
ated with synaptic dysfunction and not cell loss per se. With this in 
mind, we discuss the putative roles of inhibition and neurogenesis. 
We discuss regional vulnerability to neurodegenerative change, 
focusing on the EC but also extending to other recently identi-
fied subcortical targets. Finally, we discuss an important role for 
research considering individual differences and disease comorbidi-
ties in understanding neurocognitive changes in the  aging brain. 
While by no means exhaustive, these are some of the important 
themes we think should guide research in the area over the coming 
few years.
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