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Abstract: Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological
conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory
and thrombogenic activities on the endothelium. NETs are induced by various stimulants such
as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density
lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises
various oxidative modifications in the protein components and oxidized lipids, which could act
as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis
through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL
stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses
in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular
diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have
the potential to mediate oxidative modification of LDL. This review summarizes recent updates on
the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link
between NET formation and oxidative modification of lipoproteins.

Keywords: neutrophil extracellular traps; oxidized low-density lipoprotein; endothelial cells;
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1. Introduction

Although neutrophil extracellular traps (NETs) were initially considered to be one of the first
line responses of the immune system against infected bacteria [1], extensive studies have revealed
that NET formation is associated with the initiation and progression of various noninfectious
diseases [2,3]. In cardiovascular diseases (CVDs), NETs have been found in vascular lesions
such as atherosclerotic plaques and thrombi [4]. Numerous studies have demonstrated that the
products released from neutrophils during NET formation directly injure vascular tissues and induce
inflammation, indicating that NETs contribute to the progression of vascular diseases.

Increased low-density lipoprotein (LDL) levels in plasma are known to be independent risk
factors for atherosclerosis. The molecular structure and characteristics of LDL change dramatically
in oxidatively modified LDL (oxLDL). Accumulating studies have revealed that oxLDL is present in
both atherosclerotic lesions and circulation [5] and plays a pivotal role in the progression of CVDs by
promoting foam cell formation as well as initiating endothelial inflammatory responses [6].

LDL is modified by both enzymatic and non-enzymatic actions. For example, myeloperoxidase (MPO)
produces reactive oxygen species (ROS) that cause oxidative modifications of proteins and lipids in
lipoprotein particles. Neutrophil elastase (NE) has been reported to degrade protein components in LDL [7],
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leading to enhanced uptake of modified LDL by macrophages [8]. Neutrophils, in addition to macrophages,
are frequently found in vascular lesions; thus, NET formation and the subsequent release of enzymes could
presumably potentiate oxLDL production. Furthermore, whether LDL and oxLDL can affect NET formation
during CVD development remains unclear. For several years, the biological and pathological effects of
neutrophils and lipoproteins on CVDs have been addressed and discussed individually. Insight into
the interrelationship between neutrophils and lipoproteins that coexist in the circulation and in vascular
lesions under pathological conditions may shed light on a new possibility to understand their roles in
vascular diseases.

In this review, we summarize recent updates on the analysis of NETs and their implications for
CVDs. A possible link between NET formation and oxidative modification of lipoproteins has also
been discussed.

2. Induction of NETs

Neutrophils or polymorphonuclear leukocytes (PMNs) have a short lifespan and are highly
susceptible to activation. The human promyelocytic leukemia cell line, HL-60, is widely used in the
in vitro analysis of NETs. HL-60 cells can be differentiated into neutrophil-like cells using various
pharmacological stimulants, such as all-trans retinoic acid, dimethyl sulfoxide, and dimethylformamide.
HL-60-derived neutrophil-like cells reveal NET formation characterized by CD11b expression,
DNA release, oxidative burst, and histone citrullination; however, these responses are more
pronounced in PMNs than in HL-60 [9]. Phorbol myristate acetate (PMA), a potent protein
kinase C activator, is a well-defined NET-inducer [10]. In addition to PMA, several cytokines
and chemokines have been reported to induce NET formation, including TNFα, IL-8 [1], IL-18 [11],
CXCL7 [12], complement (C5a) [13], and interferons [14]. Moreover, NET formation is primed by
crystals of monosodium urate [15,16] and cholesterol [17]. High concentrations of glucose induce
NETosis [18], indicating that NET formation is increased in patients with type 2 diabetes [19] and
diabetic retinopathy [20]. Furthermore, nicotine also induces NET formation [21], and PMNs from
smokers are more susceptible to PMA-induced NET formation than those from nonsmokers [22].

NET release can be classified into two types: (1) “suicidal NETs”, which proceed in 3–4 h,
and induce DNA release concomitantly by rupturing neutrophils to cause cell death (NETosis);
and (2) “vital NETs”, which release DNA via vesicles into the extracellular space within 60 min,
without causing cell death [2,23]. Notably, the term “NETosis” is applicable only when experimental
evidence clearly supports cell death upon NETting [24]. While NET formation is elicited via various
signaling pathways involving ROS production [25], the two types of NETs are mediated by different
sources of ROS. The Raf-MEK-ERK pathway stimulates NADPH oxidase-mediated ROS production in
the process of suicidal NETs [26], whereas mitochondrial ROS is mainly required in vital NETs [21,27].
Chromatin decondensation associated with fragmentation of the nucleus is an important step that
releases DNA into the extracellular spaces. MPO and proteases, particularly NE, translocate from
azurophilic granules to the nucleus to promote disintegration of the chromatin [28], leading to histone
degradation [29]. Gasdermin D is a pore-forming protein that was initially identified as a crucial factor
for pyroptotic cell death of macrophages [30,31]. NE-dependent cleavage of gasdermin D activates
itself, which in turn plays a pivotal role in suicidal NETs by expanding granules and nucleus, and
eventually ruptures the plasma membrane [32,33].

3. Detection and Analysis of Protein Citrullination

DNA strands released from neutrophils are decorated by proteins derived from the cytoplasm,
azurophil granules, and nuclei. Intracellular ROS production activates peptidylarginine deiminase
4 (PAD4), which catalyzes the posttranslational modification of positively charged arginine residues
of histones to neutral citrulline residues. Previous studies have demonstrated the necessity of PAD4
activity for NET formation, whereas most recent studies that have compared the process of NET
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formation in mouse and human neutrophils, in addition to HL-60-derived neutrophils, have revealed
that PAD4 enzymatic activity is crucial for efficient DNA decondensation [34,35].

Because citrullinated histones are considered as biologically and pathophysiologically relevant
markers for NET formation, sensitive and accurate detection of citrullinated proteins is crucial
for investigation. Although immunological detection is commonly performed for this purpose,
notably, antibodies against citrullinated histones vary remarkably [36]. Moreover, besides citrullinated
histones, the citrullinated proteins generated during NET development are poorly understood owing
to limited availability of antibodies against different citrullinated proteins [24].

Mass spectrometry (MS) effectively analyzes posttranslational modifications without using
specific antibodies. Recent developments in MS-based analyses have provided few methods to detect
citrullinated proteins. It is difficult to detect specific citrullinated residues in proteins using conventional
MS/MS analyses because the technique should be able to detect minute differences in the molecular
mass between arginine and citrulline, which is only 0.98 Da; however, citrulline residues release
an isocyanidine group via fragmentation reaction during MS/MS analysis. Thus, citrulline residues
in a protein can be efficiently identified by detecting a 43 Da difference in the molecular mass,
which corresponds to the neutral loss of the isocyanidine group (Figure 1a,b) [37].

Figure 1. Structures of the citrulline residue and the methods to identify citrullinated proteins using
tandem mass spectrometry (MS/MS). (a) Deimination of an arginine residue by peptidylarginine
deiminase (PAD) 4 produces a citrulline residue. In MS/MS analysis, fragmentation of citrulline releases
an isocyanic acid group that causes a 43 Da loss, which can be utilized in a neutral loss scan to detect
citrulline residues. (b) MS/MS spectra of citrullinated peptides by neutral loss scan can determine the
amino acid sequences and positions of citrulline residues. In the secondary MS stage, fragmentation of
the peptide occurs at any peptide bond in addition to neutral loss of citrulline residue. The m/z signals
correspond to fragments with different numbers of amino acid residues; the fragment ions containing
citrulline can be identified as paired spectra with a 43 Da difference. (c) Phenylglyoxal probes readily
react with citrulline residues to form stable adducts under acidic conditions. These probes contain the
structural moiety of rhodamine or biotin to assist specific detection or purification.
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An alternative method utilizing a chemical labeling technique has been developed using
phenylglyoxal (PG)-based probes that react with citrulline under acidic conditions (Figure 1c) [38].
Presently, two types of PG-based reagents are available: (1) rhodamine-PG, which is used for 2D-PAGE
to visualize proteins containing citrulline residues [39], and (2) biotinylated-PG, which is used
to enrich citrullinated peptides or proteins. This technique has revealed that numerous proteins
comprising citrullinated residues occur in the synovial fluid and synovial tissue of rheumatoid arthritis,
where the major citrullinated proteins are serine protease inhibitors such as antiplasmin, antithrombin,
tissue plasminogen activator inhibitor, C1 inhibitor, and nicotinamide N-methyltransferase [40].

Most recently, a proteomic approach successfully elucidated a mechanistic link between
PAD4-mediated citrullination of proteins and disease conditions [41]. A disintegrin-like and
metalloproteinase with thrombospondin type 1 motif 13 (ADAMTS13) is a specific protease
for von Willebrand factor (vWF), known to cause thrombotic thrombocytopenic purpura [42].
vWF, a glycoprotein produced by endothelial cells (ECs), forms multimers and binds to collagen and
Factor VIII, thus supporting platelet binding to the wound sites. vWF has been elucidated as one of
the key factors in the development of NET-mediated endothelial damage and formation of thrombosis.
Venous thrombi are characterized by red clots enriched with erythrocytes, because erythrocyte binding
to vWF is promoted upon reduction of shear stress [43]. PAD4 released from NET-forming neutrophils
citrullinates ADAMTS13; the modified ADAMTS13 loses its proteolytic activity against vWF, leading to
the formation of thrombi after vessel injury via accumulation of platelets [41].

4. NET-Related Receptors

Membrane receptor-mediated signaling pathways lead to NET formation via ROS production and
PAD4 activation [25]. In general, toll-like receptors (TLRs) on the plasma membrane of neutrophils
play distinctive roles in NET formation in the presence of bacterial pathogen-derived stimuli,
including lipopolysaccharides [25].

The receptor for advanced glycation end products (RAGE) is expressed on human neutrophils [44].
High-mobility group box 1 (HMGB1), a DNA-binding protein secreted from macrophages and
monocytes, which acts as a damage-associated molecular pattern (DAMP) to mediate thrombosis [45],
is expressed on activated platelets. It has been reported that binding of HMGB1 to RAGE on neutrophils
induces NET formation [44].

Fcγ receptors expressed on PMNs participate in the induction of ROS production as well
as recognition of antibody-opsonized pathogens [46]. The immune complex increases NET
formation in murine neutrophils expressing human FcγRIIa (CD32a), but not FcγRIIIb (CD16b) [47];
however, among the antibody receptors expressed by human neutrophils, only FcγRIIIb (CD16b) is
responsible for NET formation in response to cross-linking antibodies [48]. Experimental differences,
including cell types and stimulants, may be responsible for these differences in findings.
Interestingly, TLR7/8 activation leads to proteolytic cleavage of FcγRIIa, thereby shifting neutrophils
from phagocytosis of immune complexes to NET formation [49]. Clinically relevant evidence has
revealed that neutrophils from patients with systemic lupus erythematosus (SLE) demonstrate similar
cleavage of FcγRIIa related to that of neutrophil activation [49].

5. NETs and Cardiovascular Diseases

Several studies regarding the pathophysiological roles of NETs have elucidated the implication
of NETs [50] with coronary artery [51,52] and venous thrombosis [53]. Immunothrombosis and
NET-induced thrombosis are important and widely studied phenomena [54–56]. Plaque rupture and
plaque erosion are two major causes of atherothrombosis. Plaques prone to rupture are characterized
by a large lipid core, thin fibrous cap, and numerous macrophages, but few smooth muscle cells
(SMCs), which form red fibrin-rich thrombi. Plaque erosion, which causes white platelet-rich thrombi,
is associated with enriched collagen, abundant SMCs, and little accumulation of lipids and foam cells [57]
(Figure 2). Neutrophils infiltrate culprit lesions, including both ruptured and eroded plaques [58],



Int. J. Mol. Sci. 2020, 21, 8312 5 of 18

via NET formation [59]. By activating neutrophils, circulating MPO levels are increased in patients
with acute coronary syndrome [60]. Lipid-lowering pharmacotherapy with statins reduces plasma
cholesterol levels and suppresses lipid accumulation in the lesions, thus exerting stabilizing effects on
rupture-prone atherosclerotic plaques with reduced inflammation in the vascular tissue [57,61–63];
however, a remarkable number of patients have experienced cardiovascular events even after achieving
a marked reduction in their cholesterol levels by statin therapy; accordingly, the underlying mechanism
for superficial erosion has gained immense attention [64]. Presently, NETs are regarded as pivotal
contributors in the formation of thrombi during superficial erosion [65,66]. This is in accordance
with the observations that MPO levels in plasma and the density of MPO-positive cells in thrombi
are elevated in acute coronary disease patients with eroded culprit plaques, but not in patients with
ruptured culprit plaques [67–69].

Figure 2. Two major lesions that lead to thrombus formation: (a) plaque rupture and (b) plaque
erosion—are illustrated. (a) A vulnerable plaque is characterized by a large lipid core covered by a
thin fibrous cap. When the fibrous cap is ruptured, red thrombus is produced. (b) A plaque erosion is
characterized by a thickened intima enriched with smooth muscle cells (SMCs) and collagen fibers.
When endothelial cells are injured, white-platelet-rich thrombus is produced.

NETs have been implicated in metabolic abnormalities such as diabetes. Neutrophils isolated
from type 1 and type 2 diabetes are sensitive to NET formation, and the accelerated NETs impair
wound healing [19]. Hyperglycemia is correlated with elevated white blood cells and reduced
high-density lipoprotein (HDL) cholesterol levels. In diabetic mice, raising the levels of functional HDL,
which accepts cholesterol from peripheral tissues, leads to regression of atherosclerosis, associated with
decreased plaque inflammation and reduced NET formation in the plaque [70].

The mechanistic link between NET formation and atherosclerosis/thrombosis has been widely
investigated. NETs evoke inflammatory responses of immune cells to upregulate inflammatory
cytokines [71]. NETs and their components not only damage ECs directly [72,73], but also trigger activation
of ECs to form a scaffold, leading to thrombosis. In pathophysiological conditions, including vascular
diseases, ECs lose their endothelial phenotype and then acquire a mesenchymal phenotype, which is
characterized by the expression of fibroblastic markers [74]. Endothelial-to-mesenchymal transition
(EndMT) is involved in the progression of atherosclerosis [74–76]. In general, NETs are internalized into
ECs through RAGE via clathrin-dependent endocytosis; however, when excess amounts of NETs remain
on the extracellular surface, it induces EndMT of ECs to loosen cell–cell contact, in which NE acts as a
proteolytic enzyme of VE-cadherin [77].
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6. The Impact of Modified LDL and Its Components on Vascular Cells

Qualitative abnormality of LDL in circulation as well as an imbalance in LDL-cholesterol levels
increase the risk of CVDs [78]. Lipoprotein components are susceptible to various modifications
through enzymatic and non-enzymatic reactions. Among the lipoprotein components, lipids are the
primary targets of oxidation reactions. OxLDL formation proceeds through preferential oxidation of
lipid components containing a polyunsaturated fatty acid moiety. During phospholipid oxidation
(PLs), the following three types of products are generated. First, unsaturated fatty acids at the sn-2
position of PLs are oxidized to form hydroxy, hydroperoxy, or keto groups. Second, long-chain
oxidized fatty acids at the sn-2 position of PLs are cleaved to form short-chain products containing
aldehyde or carboxylic acids. Third, the short-chain acyl group at the sn-2 position of PLs is hydrolyzed
to form lysophospholipids (lysoPLs) [79]. Lipoprotein-associated phospholipase A2 (Lp-PLA2),
also known as platelet-activating factor-acetylhydrolase, plays a crucial role in producing large
amounts of lysoPLs in LDL [80]. Spontaneous deacylation of oxidized PLs under physiological
conditions is also a possible route for the production of lysoPLs [81]. Subsequently, lipid peroxidation
products, including malondialdehyde and 4-hydroxynonenal, act on amino groups in protein
components [82]. Notably, several LDL subfractions exert stronger pathogenic effects, which are
generated by posttranslational modification or changes in the ratio of lipid to protein components.
These newly generated products can act as oxidation-specific epitopes to trigger various inflammatory
responses mediated by various scavenger receptors [6].

To date, several types of in vitro modified LDL, including copper-induced oxLDL, acetylated LDL,
aggregated LDL, and enzymatically modified LDL (E-LDL), have been investigated to assess their
effects on vascular cells [83]. E-LDL, prepared in vitro using trypsin and cholesterol esterase without
oxidation of lipids, presents higher bioactivity than copper-induced oxLDL in foam cell formation of
SMCs [84]. E-LDL was postulated to be produced by the presence of proteases in atherosclerotic lesions,
such as urokinase-type plasminogen activator, matrix metalloproteinase-2 (MMP-2), and MMP-9 [85];
moreover, it has been immunohistochemically detected in human atherosclerotic lesions [85,86].
E-LDL upregulates the expression of IL-8 [87] and adhesion molecules such as intercellular adhesion
molecule-1 (ICAM-1), platelet endothelial cell adhesion molecule-1, P-selectin, and E-selectin in ECs,
which enhance the adhesion and transmigration of monocytes and T-lymphocytes [88]. E-LDL is
incorporated in vascular SMCs by micropinocytosis and upregulates the expression of lectin-like oxLDL
receptor 1 (LOX-1) to increase the uptake of oxLDL [89]. E-LDL also increases ICAM-1 expression
in aortic SMCs [88]. Interestingly, E-LDL reveals potent cytotoxicity on PMNs; the free fatty acids
present in E-LDL play a causative role in this toxicity. The toxicity of oxLDL is mimicked by linoleic
acid, oleic acid, or arachidonic acid, and is abrogated by coincubation with albumin [90]. This study
demonstrated that direct perturbation of the cell membrane of PMNs with fatty acids may cause
cytotoxicity and lead to PMN death, predominantly by necrosis, as the apoptotic markers were not
detected in the study. There is a possibility that NETs are involved in E-LDL-induced cell death of PMNs.

The production of oxidized lipids and subsequent protein adducts contributes to an increase in
the electronegativity of lipoprotein particles. Electronegative LDL [LDL(−)] is a naturally occurring
LDL subfraction that is enriched with negatively charged particles [91]. LDL(−) contains non-LDL
apolipoproteins such as apoA-I and apoJ [92] as well as aggregated LDL with phospholipase
C-like and sphingomyelinase activities [93,94]. LDL(−) has a higher content of diacylglycerol,
ceramide, monoacylglycerol, and phosphorylcoline [93]. Moreover, LDL(−) is preferentially associated
with Lp-PLA2 [95,96] and comprises more lysoPLs and nonesterified fatty acids than native
LDL [97]. LDL(−) exerts highly proatherogenic effects by activating various cells [98] that are
mediated by LOX-1 and PAF receptors. These two receptors mediate LDL(−)-induced endothelial
apoptosis [99,100]. The binding of LDL(−) to ECs via LOX-1 mediates LDL(−)-induced premature
vascular endothelial senescence [101]. Furthermore, LDL(−) also induces aggregation of platelets
through the LOX-1 and PAF receptors, which promote platelet adhesion to ECs and thrombogenic
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state [102]. Interestingly, LDL(−) enhances the formation of triglyceride (TG)-rich lipid droplets in
macrophages and releases more cytokines than copper-induced oxLDL [103].

Most recently, we reported the characterization of in vivo-oxLDL in the LDL(−) fraction released
from atherosclerotic plaques of patients with acute myocardial infarction (AMI) [104]. In vivo oxLDL
was modified with oxidized phosphatidylcholine (oxPC) and oxidized HDL [105]. While oxLDL,
recognized using the anti-oxPC antibody, was detected in several fractions including LDL(−)
fractions, oxLDL in LDL(−) was threefold higher in patients with AMI than in healthy subjects [104].
Our observation is in accordance with previous studies that reported an increase in oxLDL levels in
plasma samples from patients with AMI. Proteins in LDL(−) contain apoB conjugated with oxPC.
Such a modification could cause increased resistance to lysosomal hydrolysis in foam cells [106].
Moreover, LDL(−) is enriched with HDL-like particles containing apoA-I heavily modified with
acrolein adducts. Electron microscopic analysis revealed that LDL(−) contains heterogeneous and
aggregated subpopulations with small-sized particles, similar to HDL [104].

These results imply that small dense LDL (sdLDL) could be related to in vivo oxLDL, which has
been reported as another atherogenic subfraction of LDL with high oxidative susceptibility [107] and a
strong association with a future risk for coronary heart diseases [108,109]. Elevated levels of TG-rich
VLDL in plasma cause increased synthesis of TG-rich LDL and subsequent extensive hydrolysis of
core TG by hepatic lipase, which in turn leads to increased formation of sdLDL particles [110,111].
Indeed, elevated sdLDL levels are associated with increased postprandial large VLDL and remnant-like
particles in patients with AMI [112]. The metabolic rate of sdLDL increases owing to its decreased
affinity for LDL receptor, resulting in delayed hepatic clearance [113]. Furthermore, enhanced binding of
sdLDL to extrahepatic tissues is mediated by increased binding to proteoglycans of the cell surface [114].
Foam cell formation in THP-1 macrophages, induced by stimulation with sdLDL, is associated with a
remarkable increase in mRNA and protein expression of LOX-1 via TLR4 [107], thereby indicating that
sdLDL may upregulate signal transduction through TLR4.

7. Modified LDL and NET Formation

OxLDL acts as a DAMP and triggers sterile inflammatory responses to promote CVDs [6].
Infiltration of neutrophils into arteries during the early stages of atherosclerosis has been observed in
hypercholesterolemic mice [115]. Numerous studies, on mice and humans, have provided evidence for
the contribution of neutrophils to early atherosclerosis [116,117]. We have demonstrated the appearance
of oxLDL in vascular tissues and in circulation even prior to atherosclerotic lesion development in
apoE-KO mice [118]. These findings prompted us to examine whether oxLDL influences NET
formation and subsequent endothelial inflammatory responses. PMA-induced NET formation in
both HL-60-derived neutrophils and human PMNs is remarkably accelerated upon coincubation with
oxLDL, but not with native LDL [119]. Moreover, extracellular components, after induction of NET
formation by PMA with oxLDL, are capable of inducing morphological changes and MMP-1 expression
in human aortic ECs (Figure 3). Presumably, neutrophils may play a pivotal role in the early stages of
atherogenesis through the cooperative actions of oxLDL.

Intriguingly, NET-induced activation of human aortic ECs is enhanced upon coincubation with
native LDL, suggesting that MPO and proteases released from neutrophils upon NET formation
could act on native LDL and induce oxidative modification and/or degradation of LDL to produce
modified proinflammatory LDL [11]. These phenomena, induced by the coexistence of NETs and
native LDL or oxLDL, correspond to enhanced EndMT caused by the excess phagocytic capacity of
ECs [77]. One possibility is that the cooperative action of oxLDL and NETs on ECs induces EndMT
and subsequent neovascularization, which leads to atherosclerotic lesion formation [120].
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Figure 3. Schematic diagram of a feed-forward cascade that drives the neutrophil extracellular trap
(NET)-induced endothelial inflammatory response. OxLDL strongly accelerates NET formation of
activated neutrophils, while the same NET formation-inducing effect of oxLDL on resting neutrophils
has not been observed. MPO and proteases released from neutrophils by NET formation could act
on native low-density lipoprotein (LDL) to facilitate modification of LDL. Coexistence of NETs and
oxLDL or native LDL promotes endothelial inflammation to cause cell elongation and enhanced MMP-1
production in endothelial cells [119]. MPO: myeloperoxidase, MMP-1: matrix metalloproteinase-1.

Recently, a unique regulatory mechanism of lipoprotein-mediated vWF degradation has been
described. LDL, but not HDL, has the ability to bind vWF and accelerate proteolytic cleavage of
vWF by ADAMTS13 in a concentration-dependent manner under shear stress; however, oxLDL
competitively inhibits vWF proteolysis associated with native LDL. Furthermore, native LDL, but not
oxLDL, inhibits adhesion of platelets to vWF on ECs under flow [121]. NET formation also inhibits
the proteolytic activity of ADAMTS13 via PAD4-mediated citrullination, as described earlier [41].
Considering that vWF functions as a scaffold for NETs, thrombosis, and platelets, these data indicate that
oxLDL may enhance NET-mediated thrombosis formation via direct interaction with vWF (Figure 4).

Awasthi et al. reported the accelerating effect of oxLDL on NET formation in human neutrophils
and proposed that components of oxLDL, such as oxPC and lysophosphatidylcholine, are responsible
for NET formation [122]. Moreover, oxPLs derived from ether-linked phosphatidylethanolamine
and phosphatidylcholine induce NET formation [123]. Furthermore, lipid extracts from LDL(−)
of hypercholesterolemic patients induce calcium influx in human neutrophils, which is completely
suppressed upon treatment with recombinant Lp-PLA2 [100], indicating that LDL(−) might contain
bioactive oxPCs that affect NET formation. It has been reported that TLR2/6 acts synergistically on
NET formation upon stimulation with oxLDL [122]. In addition, RAGE has been reported to mediate
oxLDL-induced proinflammatory conditions in LDL receptor knockout mice [124]. RAGE-mediated
neutrophil dysfunction [125] and HMGB1 expressed on platelets induce NET formation via RAGE [44].
These data suggest that oxLDL and oxidized lipids may initiate NET formation, and these products
may act on neutrophils through TLRs and/or RAGE; however, the involvement of other scavenger
receptors remains to be elucidated.
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Figure 4. The synergistic actions of NET formation and oxLDL production presumably cause a
proatherothrombotic status on the vascular endothelium. (a) PAD4 secreted by NET formation
mediates citrullination of ADAMTS13, which inhibits the proteolytic activity of ADAMTS13 against von
Willebrand factor (vWF), leading to increased vWF-platelet string formation on the endothelium [41].
(b) LDL, identified as a novel vWF-binding partner, accelerates the proteolytic cleavage of ultra-large
vWF by ADAMTS13 under shear stress, and inhibits adhesion of platelets to ultra-large vWF. OxLDL,
having lower ability to enhance proteolytic activity of ADAMTS13 than native LDL, competes with
native LDL, which in turn increases platelet adhesion to ultra-large vWF, which could cause thrombus
formation rich in vWF, platelets, and DNA [121].

In terms of sphingolipids, an endogenous increase in ceramide has been implicated in the
process of NET formation [126,127]. Interestingly, anacardic acid, a natural product extracted from
cashew nut shells, stimulates neutrophils via sphingosine-1-phosphate (S1P) receptor 4 to induce NET
formation [128]. Histone citrullination in mouse bone marrow neutrophils increases in a mouse model
of fatty liver disease, in which the mice were fed a methionine-choline-deficient and high-fat diet, and a
DNase injection attenuated the fatty liver of the mice [129]. This mouse fatty liver model suggested
that hepatic S1P induces NET formation via S1P receptor 2, which plays a pivotal role in shifting the
cell death of murine neutrophils from apoptosis to NETosis [129]. Considering that LDL(−) contains
higher amounts of ceramides than normal LDL [93], and that HDL serves as a carrier of S1P [130],
the role of lipoprotein sphingolipids would be of interest for future studies.

8. Significance of OxLDL in Autoimmune Diseases

SLE is an autoimmune disease associated with a high risk of CVDs, and neutrophils contribute to
the pathogenesis of vascular damage via enhanced NET formation [131]. Low-density neutrophils
(LDNs) are a unique subtype of neutrophils separated using gradient ultracentrifugation, which are
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increased in patients with various diseases, including autoimmune disease, cancer, and sepsis [132].
This subset of neutrophils is presumed to be in the activated state and serves as one of the key
players in SLE [133]. LDNs from patients with SLE display distinct gene expression profiles in
normal neutrophils, with higher expression of immunostimulatory and bactericidal proteins [134].
LDNs from patients with SLE exhibit higher susceptibility to NET formation and increased capacity to
kill ECs through NET formation [134]. In fact, circulating oxLDL levels increase in patients with SLE,
where oxLDL, but not native LDL, forms a complex with β2-glycoprotein I (β2-GPI). Such a complex
could induce the production of proatherogenic anti-oxLDL/β2-GPI autoantibodies [135,136]. β2-GPI is
a glycoprotein that specifically binds to oxidized products of phospholipids and cholesteryl esters and
acts as a major target antigen for antiphospholipid antibodies developed in autoimmune diseases,
including antiphospholipid syndrome and SLE [137]. Interestingly, the anti-β2-GPI/β2-GPI immune
complex acts on neutrophils to induce NET formation associated with platelet aggregation, leading to
enhanced thrombus formation [138]. These data indicate that the oxLDL/β2-GPI complex and/or its
immune complex may also contribute to the development of vascular complications in SLE through
upregulation of NET formation. It is noteworthy that LDNs express higher levels of LOX-1 in patients
with SLE compared with the normal subjects [139]. Thus, presumably, LOX-1 may play a pivotal role
in eliciting NET formation by stimulating neutrophils with oxLDL.

9. Conclusions

NET formation is induced by various stimulants, including exogenous DAMPs, in addition to
numerous proinflammatory cytokines. Multiple receptors recognizing DAMPs, such as TLRs and
RAGE, mediate NET formation by activating intracellular signal transduction. OxLDL and oxidized
lipids induce and enhance NET formation. Considering that oxLDL and oxidized lipids are produced
in the circulation, it is likely that oxLDL and oxidized lipids behave like endogenous DAMPs to affect
neutrophil activation. Enzymes released from neutrophils after NET formation could modify LDL and
HDL, which facilitates further neutrophil activation. Vascular damage through endothelial activation
by NET formation leads to the development of atherosclerosis and thrombosis. Although further
analysis is necessary, the concept that the synergistic action of oxLDL and neutrophils is linked to
accelerated NET formation may provide new insight into the molecular and mechanistic basis of CVDs
and aid the development of therapeutic approaches.
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MS mass spectrometry
PG phenylglyoxal
ADAMTS13 a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
vWF von Willebrand factor
ECs endothelial cells
TLRs toll-like receptors
RAGE receptor for advanced glycation end products
HMGB1 high-mobility group box 1
SLE systemic lupus erythematosus
SMCs smooth muscle cells
HDL high-density lipoprotein
EndMT endothelial-to-mesenchymal transition
PLs phospholipids
Lp-PLA2 lipoprotein-associated phospholipase A2
E-LDL enzymatically-modified LDL
LDL(-) electronegative LDL
MMP matrix metalloproteinase
LOX-1 lectin-like oxLDL receptor 1
ICAM-1 intercellular adhesion molecule-1
TGs triglycerides
AMI acute myocardial infarction
oxPC oxidized phosphatidylcholine
sdLDL small dense LDL
S1P sphingosine-1-phosphate
LDN low-density neutrophil
GPI glycoprotein I
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