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Towards computational improvement of DNA database indexing and short DNA query
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In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning,
employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the
database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting
locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences
have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure
with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and
searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data
structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed
indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption
that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we
observed that hits at starting positions p � k¡ j q j are not reported, if the database is searched against a query shorter
than k nucleotides, such that k is the length of the DNA database words being mapped and j q j is the length of the query.
A solution of this drawback is also presented.
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Introduction

Increased knowledge about the complex human genome is

revealing its importance and impact on people’s lives. The

advances in computer science have contributed to the stor-

age, dissemination, search and analysis of human genome

data with increased efficiency and accuracy. That is why

genetic databases are gaining more and more popularity

in the research community today. Genetic databases often

include entire genomes and could be used for searching

particular sequences in genetic disease analysis, DNA fin-

gerprinting, genetic genealogy or analysis of short sequen-

ces, such as non-standard codon structure [1] and codon

context frequency.[2]

As soon as the first genetic database became available

on the Internet, the necessity of fast DNA database-proc-

essing algorithms became a challenge that is still a chal-

lenge to researchers today. Being database inapplicable,

dynamic programming-based solutions for global/local

sequence alignment, such as Needleman�Wunsch [3] and

Smith�Waterman,[4] have been substituted with faster,

heuristic seed-based algorithms such as FASTA (Fast

Alignment) [5] and BLAST (Basic Local Alignment

Search Tool),[6] performed in two phases. In the first, so-

called preprocessing phase, the matching positions of

highly similar regions are identified as seeds, and in the

second phase, the seeds are extended to local alignment.

Usually, not every initial seed is extended to full align-

ment; instead, many of them are discarded by filtering,

which results in lower run-time.

One common task � searching a genetic database to

find exact matches for a non-degenerate or partially

degenerate query � is usually done by using web applica-

tions hosted and run on remote web servers.[7] For

smaller databases, computer desktop programs can be

also used, with all the data kept in the main memory. The

main feature of all these algorithms and tools is the phase

of database indexing, which precedes and speeds up the

actual searching phase. There are also algorithms for

searching large genetic databases rapidly on desktop com-

puters with limited RAM, like MICA (K-Mer Indexing

with Compact Arrays),[8] which stores indexed data on a

disk and retrieves relevant data selectively during the

searching phase. Indexing a DNA sequence with MICA is

achieved by dividing the sequence in chunks of (216�1)

bases, scanning each chunk with a window of width K and

storing the positions of all overlapping K-mers in array.

One group of algorithms uses suffix trees (OASIS [9]

and the three versions of MUMmer [10�12]), and
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enhanced suffix arrays (ESAs) (Vmatch [13]) for building

database indexes. ESAs consist of four arrays (suffix, lon-

gest common prefix, child and suffix link arrays) that

together reach the full expressiveness of suffix trees. Suf-

fix trees and ESAs are time efficient with complexity of

O(n) and space complexity of O(n log(n)). The Kurtz [14]

implementation of suffix tree requires 17.25 bytes per

base, which is translated to 50 GB for the human genome,

while ESAs require 4�8 bytes per base. There are also

sparse suffix arrays (SSA), which index every K-th

(sparseness factor) suffix of the sequence.[15] Their spar-

seMEM tool is able to find maximal exact matches faster

than the previous methods, while using less memory. The

tool essaMEM [16] optimizes the previous method by

supplementing SSAs with a sparse child array for large

sparseness factors, and this is known as enhanced sparse

suffix array (ESSA).

Other new strategies deploy compressed indexing

techniques that reduce the space complexity to O(n) bits.

Techniques include Ferragina�Manzini index (FM-

index),[17] compressed suffix arrays (CSA) index [18]

and Burrows�Wheeler transform (BWT) index.[19] For

DNA sequences, BWT indexing was found to be the most

efficient, and the memory requirement is less than 0.3

bytes per base. For the human genome, this requires only

1 GB memory and the whole index can reside in the main

memory of a personal computer (PC). CSA index imple-

mented with the BWT is used in [20,21] while BWT index

is used in BWT-SW.[22] Another tool, backwardMEM,

[23] uses enhanced CSA by indexing each Kth suffix array

value.

Benson [24] has proposed an algorithm for identifi-

cation of all tandem repeats, without having to specify

the pattern. Neglecting patterns that occur within a few

database sequences, TEIRESIAS [25] is able to generate

all maximal patterns that appear within at least a (a is

user-defined) sequences. RAPID [26] is a probabilistic

word-searching approach. A different significance is

assigned to each match of length k, depending of the num-

ber of occurrences of the match. By partitioning the query

and the subject sequence in fragments of fixed size,

referred as windows, sequence search tree (SST) [27] can

identify approximate matches, in time proportional to the

logarithm of the database size.

Hash-based indexing strategies (SSAHA (Sequence

Search and Alignment by Hashing Algorithm) [28,29] and

BLAT (BLAST-like alignment tool) [30]), which are cur-

rently in more widespread use for DNA databases, require

1 byte or less per base, and they can be orders of magni-

tude faster than FASTA or BLAST, which index the query

sequence rather than the database. SSAHA [28] partitions

subject database sequence into non-overlapping words of

length k (k-mers), being mapped into numbers according

to the SSAHA conversion function. BLAT [30] builds up

an index of non-overlapping k-mers and their positions in

the database, excluding k-mers that occur too often from

the index as well as k-mers containing ambiguity codes.

During the search stage, three different strategies are used

in BLAT, in order to find homologous regions: searching

for perfect hits, allowing at least one mismatch between

two hits and searching for multiple perfect matches which

are in close proximity to each other. One problem with

SSAHA and BLAT is their limitation, which rises from

sacrificing the completeness for speed. They cannot detect

matches with less than k bases.

Some conceptual and computational drawbacks of

SSAHA have been solved by Reneker and Shyu.[29]

According to Reneker and Shyu,[29] overlapping matches

can be identified, if instead of indexing non-overlapping

words of k bases, overlapping words of the same size are

tracked in the indexed data structure. Reneker and Shyu

[29] also pointed out that matches which are shorter than

k bases can be identified as suffixes within some of the

indexed words of k bases.

However, the previous concept is incomplete if some

of the matches are located at the beginnings of the genetic

sequences. In order to detect all matches, even the ones

which are not reported in [29], we propose an improved

searching methodology by integrating suffix search and

prefix search that provide more exact matching.

From a computational viewpoint, we propose a

computational upgrade of the indexing formula used by

SSAHA and Reneker and Shyu,[29] which results in a k-

fold speed-up of the indexing phase. The storage aspects

were also improved due to the exclusion of redundant

records from the indexed data structure. Instead of a hash

table, a sorted dictionary indexed data structure is

employed, which allows identification of all matches

without having to scan all records, and hence, the better

search time performance.

Materials and methods

Database indexing

Hash-based solutions, such as SSAHA and Reneker’s

improvements of SSAHA, are performed in two phases.

In the first phase, DNA database words of k consecutive

nucleotides w : b1b2 . . . bk¡ 1bk ; bj 2S ¼ fA;C; T ;Gg;
1 � j � k, are mapped into numbers, applying a concrete

base-mapping function. SSAHA and Reneker employ dif-

ferent base-mapping functions due to the fact that none of

the nucleotides can be zero-mapped. According to

SSAHA, adenine is zero-mapped, f ðAÞ ¼ 0. Since data-

base words w : b1b2 . . . bk¡ 1bk are mapped in integers as

f ðw : b1b2 . . . bk¡ 1bkÞ ¼ S
k
j¼1f ðbjÞ£4j¡ 1, words ending

with different number of A’s could not be distinguished if

SSAHA’s base-mapping function is used. For instance,

since the mapped value of the words CAA and CAAAA

is equal, f ðCAAÞ ¼ f ðCAAAAÞ ¼ f ðCÞ£40 ¼ f ðCÞ, and

Biotechnology & Biotechnological Equipment 959



they are assumed to be equal, which is incorrect. In order

to overcome SSAHA’s mapping inconsistency, Reneker

and Shyu [29] proposed a modified base-mapping

function:f ðAÞ ¼ 1; f ðTÞ ¼ 2; f ðGÞ ¼ 3; f ðCÞ ¼ 4 for

distinction of words ending with different number of A’s.

The modified base-mapping function guarantees that a

different number f ðwÞ will be assigned for a different

word, but neither SSAHA nor Reneker and Shyu’s algo-

rithm has been improved in terms of the time complexity

of the indexing phase. Indexing complete genomes or

recomputing the indexed data structure, if the DNA data

has been modified, is a time-demanding process that could

last even a few days, if it is executed on a PC. In these

cases, there is a computational necessity to reduce the

time span of the indexing phase. Therefore, we propose a

computational upgrade of the indexing formula used in

SSAHA and Reneker and Shyu’s algorithm that speeds up

the indexing k-fold, such that k is the length of the DNA

words being mapped, in comparison to SSAHA and

Reneker and Shyu’s algorithm.

The proposed computational upgrade is based on the

following. Once the first word from the ith DNA database

sequence wi;1 : bi;1bi;2 . . . bi;k¡ 1bi;k has been mapped, the

mapped value of each successive word

wi;jC 1 : bi;jC 1bi;jC 2 . . . bi;jC k can be calculated from the

previous one wi;j : bi;jbi;jC 1 . . . bi;jC k¡ 1, according to

Equation (1). The equation is based on the fact that two

successive words wi;j and wi;jC 1 have exactly k¡ 1 com-

mon nucleotides. Thus, each word wi;jC 1 can be derived

from the previous one wi;j, by excluding the leftmost

nucleotide bi;j(f ðwi;jÞ¡ f ðbi;jÞ in Equation (1)), and by

shifting the common nucleotides for one position to the

left (division by 4) and addition of a new base

bi;jC kðC f ðbi;jC kÞ£4k¡ 1 in Equation (1)):

f ðwi;jþ1Þ ¼ ðf ðwi;jÞ¡ f ðbi;jÞÞ=4þ f ðbi;jþkÞ£4k¡ 1 (1)

For instance, if AACTT. . . is a DNA sequence and k

D 4, once the first word of four nucleotides AACT has

been mapped, f ðwi;1 : AACTÞ ¼ f ðAÞ£40 C f ðAÞ£
41 C f ðCÞ£42 C f ðTÞ£43 ¼ 197, the mapped value of the

following word ACTT can be calculated from the previous

by applying Equation (1), f ðwi;2 : ACTTÞ ¼ ðf ðwi;1Þ¡
f ðAÞÞ=4C f ðTÞ£43 ¼ 49C 2£64 ¼ 177 and so on.

Applying the mapping formula used in SSAHA and

Reneker and Shyu’s algorithm, f ðw : b1b2 . . . bk¡ 1bkÞ ¼Pk
j¼1 f ðbjÞ£4j¡ 1, 4k operations are performed in order to

map a single word. To map a DNA sequence Si of n

nucleotides, n ¡ k C 1 words have to be mapped, i.e.

4kðn¡ kC 1Þ operations are performed. Since the length

of the DNA sequence n is greater than k (n � k), approxi-

mately 4nk operations are performed in order to map all

overlapping words of k nucleotides in Si.

Applying the proposed solution based on Equation (1),

4k operations are performed to map the first word only.

Since the execution of Equation (1) requires four

operations: subtraction (f ðwi;jÞ¡ f ðbi;jÞ), division

(ðf ðwi;jÞ¡ f ðbi;jÞÞ=4), multiplication (f ðbi;jC kÞ£4k¡ 1)

and an addition (ðf ðwi;jÞ¡ f ðbi;jÞÞ=4C f ðbi;jC kÞ£4k¡ 1)

per mapped successive word, and there are n¡ k succes-

sive and overlapping words of k nucleotides in Si, a total

of 4kC 4ðn¡ kÞ ¼ 4n operations would have to be per-

formed, which results in a k-fold increase in the speed of

the indexing phase in comparison to SSAHA and Reneker

and Shyu’s approach.

SSAHA and the technique of Reneker and Shyu store

indexed data differently. SSAHA precomputes a hash

table of 4k keys, such that k is the length of the DNA

words being mapped. By generating 4k keys, SSAHA

guarantees a different key for each different DNA word.

Since the hash table is stored in the main memory, which

has limited capacity, the application of SSAHA when run-

ning on a PC is suitable for indexing small databases.

However, due to the fast processor�RAM communica-

tion, the time aspects of the indexing and search phase are

relatively satisfactory.

Opposite to SSAHA, the indexed data can be stored in

a file, which is kept on the disk or server, with much more

storage capacity than the main memory. This idea, which

is suitable for indexing long DNA sequences such as the

human genome, has been employed by Reneker and Shyu.

[29] However, the additional transfer of data between the

RAM and the disk, during the indexing and searching

phase, will slow down the time performance.

The idea of precomputing a hash table with 4k keys

before tracking tuples ði; pÞ, such that i is the index of the

DNA sequence where the word comes from and p is its

starting position, can be improved in terms of memory com-

plexity. If a greater value is taken for k, the number of pre-

computed keys in the hash table is increased. Since some of

the precomputed keys may point zero ði; pÞ tuples, part of
the main memory may be unnecessarily reserved.

In order to avoid situations in which memory is wasted

for keys pointing zero ði; pÞ tuples, we propose the

indexed data structure to be constructed dynamically. By

reading and mapping overlapping words of k nucleotides

found in the database, one can be sure that each key in the

indexed data structure will point at least one tuple ði; pÞ.
For instance, if k ¼ 8 and the DNA word

TTTTCATT is not contained in the database, then the

key f ðTTTTCATTÞ would be unnecessarily generated and

kept in the memory. On the contrary, if the indexed data

structure is constructed dynamically, by reading and map-

ping only words which are found in the database, a corre-

sponding record key f ðTTTTCATTÞ would not exist. This

would contribute towards an optimization of the memory

requirements.

If a short DNA database is indexed, by taking a large

value for k, a significant part of the main memory would

be wasted for keeping redundant keys corresponding to
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words which were not found in the database. This concep-

tual drawback of SSAHA not only implies unnecessary

storage cost, but also slows down the search of a DNA

pattern, since redundant keys are also examined in the

searching phase. By reducing the size of the indexed data

structure, better search time performance is expected,

which may be of particular importance if an indexed data

structure that tracks genomic data has to be searched.

DNA pattern search

A database of DNA sequences is primarily searched as

part of molecular biology studies, with the main purpose

of finding genes, identification of regulatory sequences,

predicting intron�exon structures of genes, analysis of

short tandem repeats, pseudogenes recognition, finding

restriction sites, etc. In some of the cases, such as predic-

tion of a promoter sequence based on a known consensus

element, biological information can be attached to the

sequences and the database can be searched against rela-

tively short DNA patterns.

In order to speed up the search of the indexed DNA

database stored in the main memory, instead of a hash

table, we use a sorted dictionary SD data structure. Due to

the fact that records are sorted in ascending order of the

keys, all hits can be identified without having to scan the

entire indexed data structure, which is going to improve

the search time complexity.

Given the set of short DNA patterns Q ¼ fq1;
q2; . . . ; qn¡ 1; qng searched against the database, database

words of k ¼ j qmax j C 1 nucleotides, such that j qmax j is
the length of the longest query in Q, are mapped in keys

pointing tuples ði; pÞ, such that i is the index of the data-

base sequence from where the word has been read and p is

the starting position of the word in the sequence. In such

constellations, all query hits can be found either as suf-

fixes or as prefixes within key-mapped words of k nucleo-

tides. Also, note that the sorted dictionary is constructed

by applying the proposed computational upgrade of the

indexing formula used in SSAHA and the method of

Reneker and Shyu.

Pattern q hit at starting position p> k¡ j q j in the ith

DNA sequence, such that j q j is the length of the pattern,

is found as a suffix of a key-mapped word from the same

sequence. For illustration, the query q : AA is found as a

suffix in TTAA, being the second key-mapped word from

the DNA sequence S2:CTTAAC. . ., if k D 4. The exact

starting position of the hit can be derived from the tuple

ði; pÞ ¼ ð2; 2Þ, pointed by the sorted dictionary key

f ðTTAAÞ ¼ 90, by increasing p for k¡ j q j ¼ 4¡ 2 ¼ 2,

i.e. the tuple ði; pC k¡ j q j Þ ¼ ð2; 2C 2Þ ¼ ð2; 4Þ is

reported.

An extension of the DNA pattern q up to length k

with a minimum value of conversion qsuffix;min ¼
A . . .A
k¡ j q j

q1 . . . q j q j is obtained by adding k¡ j q j A’s to

the left side. By adding k¡ j q j C’s also to the left side

of the pattern, an extension of the same length, but with

maximum value of conversion qsuffix;max ¼
C . . .C|fflfflffl{zfflfflffl}
k¡ j q j

q1 . . . q j q j is obtained.

Each sorted dictionary key, such that Equation (2) is

satisfied, points tuple (tuples)ði; pÞ tracking words that con-

tain the searched DNA pattern as a suffix. Hits are reported

as ði; pC k¡ j q j Þ tuples, such that ði; pÞ is a tuple pointed
by a key that satisfies the following equation:

f ðqsuffix;minÞ � key � f ðqsuffix;maxÞ (2)

Each sorted dictionary key, such that

key> f ðqsuffix;maxÞ, does not map a word that ends up with

the searched DNA pattern. Based on this, all hits at start-

ing positions p> k¡ j q j can be found, until the first key,

such that key> f ðqsuffix;maxÞ is read. None of the sorted

dictionary records, such that key> f ðqsuffix;maxÞ, have to

be considered. Thus, better search time performance is

expected compared to SSAHA.

The main computational drawback of the improve-

ments of SSAHA proposed by Reneker and Shyu [29] is

the inability to find DNA patterns that are located at the

very beginnings of the DNA sequences which were

indexed. Namely, DNA pattern hits at starting positions

p � k¡ j q j , such that k is the length of the words being

mapped and j q j is the length of the searched DNA pat-

tern, are not reported by the algorithm of Reneker and

Shyu. This drawback might result in an incomplete identi-

fication of repetitive nucleotide sequences within telo-

meres if chromosomes are searched in a reverse direction,

and in an inability to detect a key DNA pattern, such as

promoter consensus, within short DNA reads.

Therefore, we propose a solution of the previous

drawback, based on checking whether the sorted dictio-

nary key satisfies Equations (3) and (4). If the value of the

key is in the range between f ðqprefix;minÞ and f ðqprefix;maxÞ,
such that qprefix;min and qprefix;max are obtained by addition

of k¡ j q j A’s and C’s to the right side of the searched

DNA pattern (qprefix;min ¼ q1 . . . q j q jA . . .A|fflfflffl{zfflfflffl}
k¡ j q j

,

qprefix;max ¼ q1 . . . q j q jC . . .C|fflfflffl{zfflfflffl}
k¡ j q j

) and the remainder when

dividing key¡ f ðqÞ by 4 j q j equals zero, then tuple

(tuples) ði; pÞ pointed by the key, track mapped words that

contain the searched DNA pattern as a prefix. Reported

tuples ði; pÞ identify DNA pattern hits unreported by the

algorithm of Reneker and Shyu:

f ðqprefix;minÞ � key � f ðqprefix;maxÞ (3)

modðkey¡ f ðqÞ; 4jqjÞ ¼ 0 (4)
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The flowcharts of the indexing and searching phase

are shown in Figures 1 and 2.

System characteristics

The proposed computational and conceptual upgrades

were implemented in C# and tested on a Fujitsu Siemens

computer with Core(TM) 2 Duo CPU at 2.67 GHz and

2 GB RAM.

Database used

To evaluate the computational, storage and matching per-

formances of the proposed approach, different Escheri-

chia coli DNA fragments of a total size of 0.1 Gb (giga

bases) retrieved from the European Nucleotide Archive,

[31] were indexed and the result was compared to that

obtained by SSAHA and Reneker and Shyu’s algorithm,

using the same computational resources.

Figure 1. DNA data-indexing phase.
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Figure 2. DNA pattern searching phase.
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Results and discussion

Let us consider the short-read form E. coli 55989 chromo-

some in the base range 191�300 (Figure 3). If k ¼ 8, a

search of the short read for E. coli thrL gene promoter

consensus TACACA, which is located at the¡10 position

relatively to the TSS (transcription start site), by the algo-

rithm of Reneker and Shyu would not report the hit at the

beginning of the short read. This is because when this

algorithm is applied for a DNA pattern search shorter than

k nucleotides, only hits that are found as suffixes of

mapped words are reported. The consensus sequence

TACACA is located at the start of the short read (Figure 3)

and none of the mapped overlapping words of

k ¼ 8 nucleotides: TACACAAC, ACACAACA,

CACAACAT. . ., contain the searched DNA pattern

TACACA as a suffix. Therefore, the TACACA hit at

position 0 in the short read is not reported by Reneker and

Shyu’s approach.

The improvement proposed by us incorporates not

only a suffix search strategy, but also a prefix search

strategy based on Equations (3) and (4) and, thus, the

hit at the beginning of the short read is reported. Before

performing any check, f ðqÞ ¼ f ðTACACAÞ ¼ 2182,

f ðq prefix; minÞ ¼ f ðTACACAAAÞ ¼ 22662 and

f ðqprefix;maxÞ ¼ f ðTACACACCÞ ¼ 84102 are computed.

When the search comes to the sorted dictionary key D
71814, which corresponds to the mapped value of the word

TACACAAC, and which contains the searched DNA pat-

tern as a prefix, Equations (3) and (4) are satisfied:

22662 ¼ f ðqprefix;minÞ � key ¼ 71814 � f ðqprefix;maxÞ ¼
84102 and modðkey¡ f ðqÞ; 4 j q j Þ ¼ modð71814¡ 2182

; 46Þ ¼ modð69632; 4096Þ ¼ 0. The consensus hit at the

beginning of the short chromosome read is reported, repre-

sented with the tuple ði; 0Þ, given that the short read is the

ith DNA sequence being indexed.

By applying the proposed computational upgrade of

the indexing formula used in SSAHA and Reneker and

Shyu’s algorithm, the complete E. coli 55989 chromo-

some, which contains 5 Mb (mega bases), retrieved from

the European Nucleotide Archive was indexed for one

minute. Excluding the computational upgrade, eight

minutes were spent for the same purpose, given that all E.

coli 55989 overlapping words of k D 8 nucleotides were

mapped. Since the time complexity of the proposed

computational upgrade is linear and the entire E. coli

DNA data-set of 0.1 Gb was indexed in 20 minutes, the

whole human genome, containing approximately 3 Gb,

could be indexed in 600 minutes (10 hours). Using the

same computational resources, the straightforward appli-

cation of the indexing formula proposed by Reneker and

Shyu would require 3.3 days. When compared to Simpson

and Durbin,[32] who estimated that 4.5 days and 700 GB

RAM would be required in order to index the human

genome, the proposed computational upgrade results in an

11-fold speed-up.

The storage improvement was also experimentally

analysed. For instance, given that the length of the

mapped words equals 8, SSAHA pre-computes a hash

table with 48 ¼ 65; 536 keys. If the indexed data structure

is constructed dynamically as proposed, the number of

records in the data structure increases with the size of the

indexed DNA data (Table 1). Using the same computa-

tional resources, the number of records in the indexed

data structure was determined for indexing of 1, 2, 3, 4

and 5 Mb, extracted from E. coli 55989 chromosome

(Table 1). According to the results obtained, 64,422

records were tracked in the indexed data structure for 1

Mb DNA. The number of records in the indexed data

structure increased to 65,471 records, which were tracked

when the entire E. coli 55989 chromosome was mapped.

Even in that case, SSAHA unnecessarily keeps 65,536 ¡
65,471 D 65 keys, which map words of eight nucleotides

that were not found in E. coli 55989 chromosome. These

65 records are excluded from the indexed data structure,

if the indexed data structure is constructed dynamically as

we propose.

The use of a sorted dictionary instead of a hash table

enables faster identification of all DNA pattern hits. In

three out of the five cases, when searching for different

promoter consensus sequences recognized by s28; s54 and

s70 transcription factors (Table 2 and Figure 4), our

Figure 3. Short-read form E. coli 55989 chromosome, base
range: 191�300.

Table 1. Comparison of the number of records in the indexed
data structures.

Base range
(Mb) SSAHA

Dynamic construction
of the indexed
data structure

Number of
redundant
records

1 65,536 64,422 1114

2 65,536 65,147 389

3 65,536 65,346 190

4 65,536 65,424 112

5 65,536 65,471 65
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algorithm ran faster than the one of Reneker and Shyu.

The improvement is due to the computational concept of

the proposed searching approach, which is able to identify

the same DNA pattern hits as the one of Reneker and

Shyu, but without having to examine all records in the

indexed data structure. It is also noteworthy that the

higher the conversion value of the searched DNA pattern

is, the less records are examined, resulting in better search

time performance.

In addition to the computational improvements, the

main conceptual improvement of the proposed methodol-

ogy, in comparison to the method of Reneker and Shyu, is

the ability for detection of all DNA pattern hits, regardless

of their starting positions in the sequences. There are no

reports until now that SSAHA and the algorithm of

Reneker and Shyu are not able to detect DNA pattern hits

shorter than k nucleotides, which are located at the

beginnings of the sequences. This drawback can be solved

by employing a prefix search that provides more exact

matching in comparison to Reneker and Shyu’s algorithm

(Table 3).

According to the data in Table 3, the number of

unidentified hits, when searching the indexed data struc-

ture for consensus elements CCGATAT, TATAAT,

TTGACA, CTGGTA and CTAAA, ranges between 6

and 26. By applying the proposed methodology, a total of

65 unreported consensus hits located at the beginning of

the indexed E. coli DNA fragments were additionally

identified (Table 3).

Taken together, the results demonstrate that the

improvements proposed by us give better computational,

storage and matching performances in comparison to

SSAHA and Reneker and Shyu’s algorithm, using the

same computational resources. To summarize the

Table 2. Comparison of the running times for searching different promoter consensus sequences

Sigma factor Consensus query Conversion value Reneker and Shyu (ms) Our algorithm (ms)

s28 CCGATAT f(CCGATAT) D 9860 9 6

s70 TATAAT f(TATAAT) D 2406 8 8

s70 TTGACA f(TTGACA) D 2170 10 8

s54 CTGGTA f(CTGGTA) D 1788 13 13

s28 CTAAA f(CTAAA) D 348 17 15

Figure 4. Comparison of the results in Table 2.
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obtained results, Table 4 lists the advantages of the meth-

odology proposed by us in comparison to the other two

algorithms.

The biological impact of the proposed methodology

lies in the ability to detect all DNA pattern hits, regardless

of their starting positions in the sequences. Unlike

SSAHA and the approach of Renker and Shyu, our algo-

rithm can identify DNA pattern hits which are located at

the beginnings of the indexed DNA sequences, by inte-

grating suffix search and prefix search. As a consequence,

the algorithm proposed by us is expected to provide more

precise matching in DNA pattern analyses by being able

to identify key DNA pattern hits that might indicate func-

tional DNA data unreported by SSAHA and Reneker and

Shyu’s method.

Conclusions

This work presents suggestions for computational and

conceptual improvements of the most commonly used

hash-based implementations for DNA database indexing

and searching, such as SSAHA and Reneker and Shyu’s

improvements of the SSAHA software tool. We propose a

computational upgrade of the indexing formula used in

SSAHA and the algorithm of Reneker and Shyu, by which

the database can be indexed k-times faster. This is of par-

ticular importance if large eukaryotic DNA sequences

have to be tracked. Another improvement of our algorithm

as compared to SSAHA is more efficient memory use

when a relatively short DNA database is indexed: by

dynamic construction of the indexed data structure, all

redundant keys are excluded (i.e. those to which corre-

spond hash values of words not found in the database),

which improves the storage aspects. In addition, we use a

sorted dictionary instead of a hash table as an indexed

data structure, in order to be able to identify the same hits

as Renker and Shyu’s algorithm but without having to

scan the entire data structure. As a result, the proposed

methodology was demonstrated to run faster than Reneker

and Shyu’s algorithm. These better computational, stor-

age and matching results as compared to SSAHA and

Reneker and Shyu’s approach, when using the same

computational resources, indicate that our algorithm can

be considered a promising improvement.
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