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Abstract: The development of wearable systems stimulate the exploration of flexible broadband
photodetectors with high responsivity and stability. In this paper, we propose a facile liquid-
exfoliating method to prepare SnS2 nanosheets with high-quality crystalline structure and opto-
electronic properties. A flexible photodetector is fabricated using the SnS2 nanosheets with graphene-
poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine (PTAA) hybrid structure. The liquid-exfoliated
SnS2 nanosheets enable the photodetection from ultraviolet to near infrared with high responsiv-
ity and detectivity. The flexible broadband photodetector demonstrates a maximum responsivity
of 1 × 105 A/W, 3.9 × 104 A/W, 8.6 × 102 A/W and 18.4 A/W under 360 nm, 405 nm, 532 nm,
and 785 nm illuminations, with specific detectivity up to ~1012 Jones, ~1011 Jones, ~109 Jones, and
~108 Jones, respectively. Furthermore, the flexible photodetector exhibits nearly invariable perfor-
mance over 3000 bending cycles, rendering great potentials for wearable applications.

Keywords: flexible photodetector; SnS2 nanosheets; high responsivity

1. Introduction

Flexible optoelectronic devices have attracted considerable attentions due to their
potential applications in wearable systems [1–4], imaging sensing [5], and communica-
tions [6], where especially flexible broadband photodetectors with high responsivity and
stability are highly desired. However, the complexity and high cost of traditional rigid
materials limit their extensive applications in flexible devices [7]. In the past decades,
two-dimensional (2D) materials, such as phosphorenes, transition-metal dichalcogenides
(TMDCs), and IV-VI group semiconductors, have been widely investigated in solar cells [8],
photodetectors [9–11], etc. Moreover, 2D semiconductors are particularly suitable as ac-
tive channel materials in wearable optoelectronic devices owing to their atomically thin
structure, mechanical flexibility, strong in-plane covalent bonding, and excellent electrical
and optoelectronic properties [12,13]. In addition, their compatibility with other mate-
rials, including organic semiconductors [14,15], quantum dots [16,17], nanosheets [18],
perovskites [19], etc., is conducive to form heterojunctions with splendid properties. These
hybrid heterostructures can significantly improve the device performance compared with
that of individual materials. Zhou et al. have demonstrated a broadband photodetector
based on self-encapsulated graphene-black phosphorus (BP) nanosheets and obtained a
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high responsivity of 7.7 × 103 A/W [20], while the photodetector based on few-layers BP
exhibited a relatively low responsivity of 4.8 mA/W [21]. Li et al. realized monolayer
graphene-SnSe2 QDs-based ultraviolet-detector with a responsivity of ~7.5× 103 A/W [22].

As a typical 2D TMDC, tin disulfide (SnS2) has a wide bandgap within the range of
2.08–2.44 eV [23,24] and displays a competent experimental mobility of 230 cm2 V−1 s−1 [25]. It
is promising for sustainable optoelectronics and catalysis applications because of the extraordi-
nary electronic and optical properties, earth-abundance, and environment-friendliness [26–31].
SnS2 nanosheets have been intensively investigated in photodetectors because the efficient
light absorption properties can generate an adequate number of carries under illumination
compared to the corresponding bulk counterparts. Su et al. exhibited a photodetector based on
SnS2 thin crystal arrays by chemical vapor deposition (CVD), and the device showed a respon-
sivity of 8.8 mA/W at 457 nm [27]. In practice, most of reported SnS2-based photodetectors
suffer from a low responsivity and a narrow photoresponsive range which, hence, limits their
practical applications [32]. Zhou et al. successfully synthesized single-crystal SnS2 nanosheets
via CVD using a low-melting-point precursor and fabricated flexible phototransistors with a
high responsivity up to 34.6 A/W [33]. Besides improving the crystalline structure, oxygen-
plasma treatment was proposed to improve the carrier activity by introducing more traps to the
mechanical-exfoliated SnS2 nanosheets [34]. Enhanced performance has been achieved with a
high responsivity from 385 to 860 A/W in a broadband range. Constructing heterostructures is
proved to effectively optimize the responsivity of SnS2-based photodetectors [11,35]. Li et al.
stacked the hexagonal SnS2 with orthorhombic SnS flake through a one-step CVD method
for a vertical SnS2/SnS heterostructure, and the obtained photodetectors demonstrated a high
optoelectronic performance with a responsivity of 27.7 A/W [36]. Zhao et al. mechanically
exfoliated the graphene and SnS2 to form a graphene/SnS2 van der Waals heterostructure in
photodetectors, and they achieved a broadband photoresponse with a highest responsivity up
to 7.7× 103 A/W at 365 nm [37]. However, the complexity, high cost and limited controllability
for the fabrication of both 2D material layers in heterostructures with either CVD or mechanical-
exfoliation hinder the applications of SnS2 in broadband photodetectors. On the other hand,
a facile ethanol thermal method was applied to synthesize SnS2 nanosheet microspheres for
flexible photodetectors [38]. Nevertheless, their photoresponsive performance still needs a long
way for practical applications. High-performance photodetectors based on SnS2 nanosheets
by a facile low-cost and large-scale fabrication are still rarely reported at present. It is highly
desired to explore liquid-phase synthesis of SnS2 for photodetector applications not only for
simplifying their fabrication to push one step torwards industrial applications but also offering
a fundamental database platform for mechanism exploration and optimization of liquid-phase
2D-material-based optoelectronics.

In this paper, we have successfully synthesized high-quality SnS2 nanosheets in a mixed
solution of water and ethanol via the liquid-phase exfoliation method [39,40]. The outstanding
optoelectronic properties of the SnS2 nanosheets are applicable in flexible photodetectors. The
photodetector based on the graphene-poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine (PTAA)-
SnS2 hybrid with 100 um channel length is designed and shows an excellent performance with
good flexibility and a broadband response from ultraviolet to near infrared wavelength. The
maximum responsivity of the photodetector is 1 × 105 A/W, 3.9 × 104 A/W, 8.6 × 102 A/W,
and 18.4 A/W, and the specific detectivity can reach ~1012 Jones, ~1011 Jones, ~109 Jones, and
~108 Jones under 360 nm, 405 nm, 532 nm, and 785 nm illuminations, respectively. This hybrid
photodetector shows a high responsivity and detectivity at low light intensity, coupled with a
broadband photoresponse from 360 nm to 785 nm, and the highest responsivity is higher than
the currently reported SnS2 nanosheet devices, especially for the solution-processed flexible SnS2
photodetectors. The excellent performance of the flexible devices remains relatively constant
after bending over 3000 times, rendering a high bending endurance. These results indicate that
the flexible photodetectors based on the hybrid structure can be featured as excellent candidates
for flexible and wearable optoelectronic devices.
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2. Materials and Methods
2.1. Synthesis of SnS2 Nanosheets

SnS2 crystals were purchased from 6 Carbon Technology (Shenzhen, China). The
fabrication process of SnS2 nanosheet solution is displayed in Figure 1. As for liquid
exfoliation process, 50 mg SnS2 crystals were added into 50 mL mixed solution of water
and ethanol (volume ratio = 7:3) inside a 60 mL glass vial. The mixed solution underwent
an ultrasonication treatment at the power of 600 W with an ice-water bath to keep the
temperature lower than 20 ◦C. The ultrasonication was conducted for 2 h with a pulse of
on for 6 s and off for 4 s to protect the probe. Subsequently, the obtained solution was
sonicated in water bath for 8 h at a frequency of 50 kHz and a power of 30 W. At last, the
stock solution was centrifuged at 4000 rpm for 10 min, and then the top three-fourths of the
supernatant were collected for further investigation.
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Figure 1. Schematic diagram of the fabrication process for SnS2 nanosheets.

2.2. Device Fabrication

Polyethylene terephthalate (PET) substrate was rinsed with acetone, ethanol, and
deionized water for 5 min, respectively. Single-layer graphene film, purchased from
6 Carbon Technology (Shenzhen, China), was transferred onto the plasma-treated substrate
via a wet transfer method [39]. Au (100 nm) electrodes were deposited by thermal evap-
oration with a shadow mask (W/L = 2 mm/0.1 mm), and the PTAA solution (3 mg/mL
in chlorobenzene) was spin-coated on the top of graphene at a speed of 3500 rpm for 30 s
and then heated at 100 ◦C for 20 min. The PTAA layer was treated with optimized plasma
irradiation (argon and oxygen hybrid gas for 30 s) to increase the surface hydrophilicity.
After that, the SnS2 nanosheet solution was spin-coated onto the PTAA layer at 1000 rpm
for 10 s. Meanwhile, the PET-graphene-PTAA device regarded as the control sample was
fabricated through a similar method as described above.

2.3. Characterization

The SnS2 nanosheet solution was drop-casted on Cu grid, and transmission electron
microscopy (TEM) images were obtained by an FEI Titan Cubed Themis G2 300 instrument
(FEI, Eindhoven, The Netherlands) equipped with an X-ray energy dispersive spectrometer
(EDS). X-ray photoelectron spectroscopy (XPS) data of SnS2 nanosheets were characterized
by a K-Alpha system (Thermo Fisher Scientific, Waltham, MA, USA). Raman experiments
were conducted by Horiba Raman microscope (Labram HR Evolution, Horiba, Japan) with
an excitation wavelength of 514.5 nm. X-ray diffraction (XRD) patterns were obtained by a
Bruker D8 ADVANCE diffractometer (Bruker, Karlsruhe, Germany) with an X-ray gener-
ator (Cu target). The atomic force microscopy (AFM) images were collected by a Bruker
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Dimension Icon (Bruker, Karlsruhe, Germany). The absorption spectra for the samples
of solution and on substrates were recorded by spectrofluorometer (FS5, Edinburgh, UK).
Electrical characteristics of the devices were carried out with a Keithley 4200 semiconductor
analyzer in a glovebox filled with nitrogen. The photoelectric properties of devices were
measured under illumination for 30 s (illumination period: 30 s from the onset) by CHI
successive lasers (360, 405, 532, and 785 nm) with a diameter of 9.5 mm and a distance
of 8.4 cm. The mechanical stress was characterized with Fatigue Stretcher (Instron E1000,
Boston, MA, USA).

3. Results

The TEM image in Figure 2a reveals the distributed lateral sizes and wrinkles of SnS2
nanosheets because of their atomically thin layer and two-dimensional planar structure.
In addition, the high-resolution TEM (HRTEM) image in Figure 2b further exhibits a
lattice spacing of 0.32 nm with a crystal plane angle of 60◦ in the nanosheet structure.
This lattice distance is well identified as the (100) plane of SnS2, corresponding to the
reported value of 0.317 nm of SnS2 crystal [27]. The selected area electron diffraction
(SAED) pattern (Figure 2c) demonstrates a hexagonal structure of the single-crystal SnS2
nanosheet. Moreover, the lattice spacings of R1 and R2 rings are calculated to be 0.32 nm
and 0.18 nm, which agree well with the (100) and (110) characteristic planes in SnS2
crystal [26]. The EDS mapping characterizes the elemental distribution of the as-prepared
SnS2 nanosheets shown in Figure 2d–f. These images indicate that S and Sn elements are
uniformly distributed in the nanosheet, and the EDS spectrum in Figure 2g shows clear
peaks of S and Sn elements with an atomic ratio of ≈ 2.35:1, where the Cu and Si elements
are from the TEM grid [33].
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Figure 2. Morphology characterization of SnS2 nanosheets. (a) TEM image; (b) HRTEM image;
(c) Selected area electron diffraction (SAED) pattern image; (d–f) TEM-EDS mapping of SnS2, Sn, and
S in the nanosheets; (g) EDS energy dispersive spectrum of SnS2 nanosheets.

The XPS spectra of the SnS2 nanosheets are demonstrated in Figure 3a,b, and the two
binding energy peaks of Sn 3d at 486.5 and 494.9 eV correspond to the Sn 3d5/2 and Sn 3d3/2
(Figure 3a), respectively. An energy discrepancy of around 8.4 eV is observed between the
two Sn 3d peaks that is characteristic for tetravalent Sn 3d states. Additionally, the peaks at
161.9 and 163.1 eV corresponding to S 2p3/2 and S 2p1/2 are illustrated in Figure 3b, which is
in agreement with S at a state of−2. The fitting peaks separated by a typical value of 1.2 eV
match well with previous reported values [26]. These results indicate that the SnS2 nanosheets
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possess a good purity and a high crystal quality. Raman spectroscopy is an authoritative and
nondestructive method to characterize the structure and vibrational modes of 2D materials.
The Raman spectra of SnS2 in bulk and nanosheets are exhibited in Figure 3c, where the
strong characteristic peak at 313.4 cm−1 is recognized as A1g mode [27]. Compared to the
bulk SnS2, the A1g peak of the SnS2 nanosheets displays a redshift of around 1 cm−1 relating
to the significant reduction of scattering centers for the in-plane scattering, and the peak
intensity declines as the thickness decreases. The crystal structure is further characterized by
XRD in Figure 3d, and the primary diffraction peaks of bulk SnS2 at 15.02◦, 30.35◦, 46.12◦,
50.00◦, 52.49◦, and 62.99◦ are well indexed to the (001), (002), (003), (110), (111), and (004)
planes of a hexagonal SnS2 (space group = p3m1, PDF no. 23-0677). Compared with that
of bulk SnS2, the characteristic (001) peak of SnS2 nanosheets becomes broader, and some
other peaks disappear (shown in the inset of Figure 3d), because of the lattice expansion and
nanocrystalline structure [20].
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Figure 3. Spectral characterization of SnS2 nanosheets. (a,b) XPS spectra of SnS2 nanosheets.
(c) Raman spectra of SnS2 nanosheets (black line) and bulk SnS2 (red line) excited by a laser of
514 nm. (d) XRD pattern of SnS2 nanosheets (black line) and bulk SnS2 (red line), and inset is the
magnified XRD spectra in the large angle region.

The schematic of the flexible graphene-PTAA-SnS2 hybrid photodetector is illustrated
in Figure 4a. The AFM image (Figure 4b) reveals the representative morphology of the
comparatively uniformly dispersed SnS2 nanosheets in the 100 µm channel, and the height
profiles from the three selected lines are applied to measure the thickness quantitatively.
As shown in Figure 4c, the corresponding thickness from the lines (Figure 4b) is ranging
from 9 to 30 nm, indicating that the 2D SnS2 nanosheet flakes embrace various sizes
and thicknesses from the low centrifugation speed. In addition, the morphology of SnS2
nanosheets in the channel is also displayed in the SEM images (Figure S1a). It is worth
noting that the graphene-PTAA hybrid layers are not entirely covered by SnS2 nanosheets,
and the stacking of nanosheets is observed at some places in the channel. This may
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lead to a nonuniform photocurrent distribution in the channel, however, the general
performance of the hybrid photodetector shows little obvious spatial dependence for
different device units and batch-to-batch fluctuation since the SnS2 nanosheets can be
regarded as relatively uniformly distributed on the PTAA film compared to the long length
of the channel (100 µm). The absorption spectra of the graphene-PTAA-SnS2 nanosheets
and the graphene-PTAA are illustrated in Figure 4d. Note that obvious light absorption
increases in the short-wavelength range by comparing the absorption intensity of the
graphene-PTAA-SnS2 nanosheets with that of the control sample (graphene-PTAA), while
very weak absorption is observed in the long-wavelength range. The enhanced absorbance
of the graphene-PTAA-SnS2 hybrid in the UV-visible range is mainly ascribed to the strong
absorption of the SnS2 nanosheets as compared with the spectrum of bare SnS2 nanosheet
solution in Figure S1b. The absorption edge of the SnS2 nanosheet solution is about 590 nm
(Figure S1b). The relationship of (αhν)1/2 VS hν is displayed in the inset of Figure S1b,
wherein h, ν, and α values represent the Planck constant, photon frequency, and optical
absorption coefficient, respectively. The energy band gap (Eg) is the intercept to extrapolate
the fitting line on the horizontal ordinate in the absorption spectrum, and the obtained
band gap of ~2.1 eV is consistent with the absorption edge of 590 nm [41].
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Figure 4. Characterization of graphene-PTAA-SnS2 nanosheet hybrids. (a) Schematic diagram of the
photodetector based on graphene-PTAA hybrid decorated with SnS2 nanosheets. (b) AFM image of
the SnS2 nanosheets with three marked lines. (c) Thickness profiles corresponding to three lines in
(b). (d) Absorption spectra of graphene-PTAA and graphene-PTAA-SnS2 nanosheets.

To elucidate the structure design and working mechanism of the device, carrier transfer
diagram under illumination is demonstrated in Figure 5a. In this structure, graphene works
as the carrier transfer layer, while the SnS2 nanosheets function as the light harvesting
materials. A p-type organic semiconducting PTAA layer with a bandgap of 3.4 eV is
introduced, and it can not only act as a medium to improve the hydrophilicity of the device
for spin-coating of SnS2 nanosheets without damaging graphene, but more importantly,
enhance the separation of photo-generated carriers as a hole transport layer [42,43]. Photo-
induced holes in SnS2 nanosheets can be transferred to graphene via the PTAA layer on
account of the lower energy level. However, the transfer of electrons is suppressed owing
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to the higher unoccupied molecular orbital (LUMO) energy level of PTAA. In addition to
the favorable energy band alignment of the heterojunction, abundant trap states from the
stacking boundaries and defects of liquid-exfoliated SnS2 nanosheets can capture electrons
easily, resulting in a strong photogating effect in the channel of graphene-PTAA-SnS2
heterostructure [44]. As shown in Figure 5b, the linear relationship between photocurrent
and VDS shows an excellent ohmic contact under varied radiation intensities at 360 nm,
and the value ∆I (∆I = Ilight − Idark, where Ilight and Idark are the drain currents under
illumination and dark conditions) gradually increases with increasing the radiant intensity.
Meanwhile, the ∆I as a function of VDS under 405 nm, 532 nm, and 785 nm are displayed in
Figure S2a–c. Responsivity (R), the ratio of photocurrent to incident light power, is one of
the indispensable figure-of-merits to evaluate the photodetector characteristics and can be
calculated from the photocurrent and the incident light by the following formula:

R (A/W) =
∆I
P

=
∆I

WLEe
(1)

where ∆I is the photocurrent in the channel, Ee is the power density of the incident light, W
and L are the width and length of the active area, as illustrated in Figure S3. The obtained
responsivity at 360 nm gradually increases with the increasing of VDS and the decreasing
of light intensity in Figure 5c. Furthermore, the responsivity of the device with 405 nm, 532
nm, and 785 nm illumination are shown in Figure S2d–f. The maximum responsivity can
be up to ~105 A/W due to the excellent properties of the PTAA-graphene-SnS2 hybrid.
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Figure 5. Performance of the graphene-PTAA-SnS2 hybrid photodetector. (a) Charge transfer dia-
gram in graphene-PTAA-SnS2 hybrid device. (b) Photocurrent and (c) responsivity as a function of
VDS (0–0.5 V) under different irradiance at 360 nm. (d) Normalized time-dependent photocurrent
of the device at 360 nm laser with the maximum intensity (0.49 mW/cm2). (e) Time-dependent
photoresponse under on/off illumination at different wavelengths of 360, 405, 532, 785 nm (volt-
age: 0.1 V) with the corresponding highest light intensity (0.49, 0.038, 1.19, and 2.01 mW/cm2).
(f) Responsivity and specific detectivity as a function of light intensities with varied light sources
(360, 405, 532, and 785 nm).
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One-cycle normalized photocurrent response is displayed in Figure 5d. The sharp raise
of photocurrent at the initial stage is attributed to the quick generation and separation of
photo-induced carriers in the hybrid structure. Subsequently, the increase of current slows
down until, finally, the photocurrent reaches saturation. A response speed of 10.35 s is
observed, corresponding to the current rising from 10% to 90%. The relatively long rise and
decay time for this hybrid photodetector is associated with the trapped charge carriers and
prolonged excess carrier lifetime, which is the characteristic of photogating effect [45,46].
The widely existing trap states in the defects or interfaces of the heterostructure can
capture the photogenerated electrons resulting in a negative gating to modulate the channel
conductance. The process of releasing of the trapped carriers is very slow, and this will
give rise to a long response time in the photogating effect [45]. In Figure 5e, the flexible
device shows good reproducibility and repeatability of ON-OFF switching behaviors under
different wavelengths, demonstrating a broadband photoresponse to various wavelengths.
It is noted that the photocurrent at short wavelength is higher than that of long wavelength,
consistent with their absorption property.

The specific detectivity (D*) is also a central parameter to estimate the performance of
photodetectors, and it is given by [47–49],

D∗ =

√
A∆ f

NEP
(2)

where A is the effective area of the device in cm2, ∆f is the electrical bandwidth in Hz, and NEP
is the noise equivalent power, which is defined as the minimum impinging light power that a
photodetector can discern from the noise. Three sources of noise current, consisting of 1/f
noise (If, Figure S4), shot noise (Is), and thermal noise (It), mainly contribute to the total noise

current, and the NEP value can be calculated from NEP =
√

SI
R (the noise spectral density SI = SIf

+ SIs + SIt, where the detailed noise spectral density (SIf, SIs, SIt) is estimated in the supporting
information, and R is the responsivity) [50–52]. At room temperature and a modulation
frequency of 1 Hz, NEP value of the hybrid photodetector is as low as 10−11~10−15 W Hz−1/2.
The responsivity and specific detectivity (D*) as a function of varied radiant intensities at 360,
405, 532, and 785 nm are shown in Figure 5f. It is noted that both of the R and D* values
decrease nonlinearly with the increase of the incident light intensity, implying the photogating
effect. The dependence of R on the intensity of light (P) follows a relationship of R~Pβ−1 as
rendered from the fitted lines in the logarithmic coordinates at various wavelengths. The scope
of 0 < β < 1 is usually observed in low dimensional photodetectors [53], and the β is fitted to
be 0.21 for 360 nm laser. The performance of photodetector in short wavelength range is better
than that of the long wavelength owing to their better absorption. The device with 100 µm
channel length shows the largest responsivity and the highest detectivity of up to 105 A/W
and ~1012 Jones under 360 nm laser with the lowest light intensity (VDS = 0.5 V). Meanwhile,
the poor performance of the control sample (graphene-PTAA film without SnS2 nanosheets) in
Figure S5 also indicates that SnS2 nanosheets play an important role in the high responsivity of
the photodetector. As a result, the excellent performance of the hybrid device is contributed to
the combination of outstanding absorption of SnS2 nanosheets and efficient carrier transport
of PTAA and graphene. The performance of the hybrid photodetector is compared with other
reported photodetectors based on various 2D materials shown in Table 1, where we define the
liquid-exfoliated method because of the solution-process for the photoactive SnS2 nanosheet
fabrication. The high responsivity and detectivity of this hybrid device demonstrate that the
liquid-exfoliated SnS2 nanosheets are promising candidates for photodetection applications.
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Table 1. Performance comparison of the graphene-PTAA-SnS2 hybrid photodetectors with previous
reports based on 2D materials.

Material Flexible (yes/no) Fabrication R (A/W) D* (Jones) References

SnS2 NSs-CVD graphene yes liquid-phase
exfoliation ~105 ~1012 This work

Vertical SnS2 nanosheets no CVD 1.85 4.91 × 109 [54]
single-crystal SnS2 nanosheet no CVD 261 1010 [33]

Bi2S3 nanosheet no liquid-phase
exfoliation ~10−3 ~107 [55]

WS2-CVD graphene no CVD 950 - [56]

SnSe2 QDS-CVD graphene no liquid-phase
exfoliation 7.5 × 103 - [22]

BP-CVD graphene no mechanical
exfoliation 3.3 × 103 - [57]

PbS QDS-CVD graphene yes - 106 - [53]

BP NSs-CVD graphene no liquid-phase
exfoliation 7.7 × 103 - [20]

CVD MoS2-CVD graphene no CVD 107 - [58]

Notes: The “Fabrication” means the preparation methods for light-sensitive materials except for the CVD-
graphene.

In order to apply the photodetectors to the flexible and wearable systems, bending
endurance of the flexible device must be considered. The bending test of the device was
conducted via a Vernier caliper as shown in Figure 6a [59]. Photocurrent after bending
100 times at different angles (10◦ to 70◦) was measured at VDS of 0.1 V under 532 nm,
shown in Figure 6b. Higher bending angles lead to a more severe current degradation
with a nearly linear trend. The relationship between the mechanical stress level of the
films and the bending angles in Figure S6 demonstrates that the stress gradually increases
along with the increase of bending angles. The results imply that the stress concentration
plays an important role in the degradation of the device performance. In addition, the
cyclic durability at a fixed bending angle of 30◦ is displayed in Figure 6c. Note that the
photocurrent value remains approximately invariant even after 3000 cycles, indicating a
good cycling stability and flexibility of the photodetectors.
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(voltage: 0.1 V; light: 532 nm–1.19 mW/cm2). (c) Variation of photocurrent after different bending
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4. Conclusions

In summary, SnS2 nanosheets have been prepared via a facial low-cost liquid-phase
exfoliation method. The liquid-exfoliated SnS2 nanosheets reveal a high-quality crystalline
structure and intriguing photoelectronic properties. The outstanding absorbance of SnS2
nanosheets is integrated with graphene-PTAA hybrids to realize a flexible broadband
photodetector. The graphene-PTAA-SnS2 hybrid photodetector exhibits a high responsivity
of ~1 × 105 A/W and a specific detectivity of up to ~1012 Jones at a light intensity of
0.71 µW/cm2 with 360 nm laser. The flexible photodetector can endure 3000 bending cycles
at a bending angle of 30◦ without obvious performance degradation. Benefiting from
the low cost and eco-friendly fabrication, the liquid-exfoliated 2D SnS2 nanosheets have
potentially extensive applications for optoelectronic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12030475/s1, Figure S1: Characterization of SnS2 nanosheets. (a) SEM images of SnS2
nanosheets distributed in the channel of the device. (b) Absorption spectra of SnS2 nanosheet
solution. Inset: The photon energy dependence of (αhυ)1/2 to estimate the band gap; Figure S2:
Detailed performance of graphene-PTAA-SnS2 photodetector at 405, 532 and 785 nm. (a), (b) and
(c) Photocurrent of graphene-PTAA-SnS2 photodetector as a function of applied voltage at 405, 532
and 785 nm along with various radiant fluxes. (d), (e) and (f) Responsivity of graphene-PTAA-SnS2
photodetector as a function of applied voltage at incident wavelength of 405, 532 and 785 nm with
varied light irradiance; Figure S3: Rectangular active area (the channel area) in different device units;
Figure S4: Noise spectral density of 1/f noise vs frequency at VDS = 0.5 V; Figure S5: Performance of
the control sample of graphene-PTAA photodetector. (a) and (b) I–V curve of graphene-PTAA device
as a function of VDS (0.0–0.5 V) at 360 nm. (c) Time-dependent photoresponse of graphene-PTAA
device on PET under periodic on/off illumination at wavelength of 360 nm; Figure S6: Mechanical
stress of graphene-PTAA-SnS2 hybrid flexible device as a function of bending angles.
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