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CD4+ T-cells have been shown to play a central role in immune control of infection with
Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+

T-cells and CD4+ T-cell help for the B-cell response are required for control and elimina-
tion of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium
pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However,
excessive inflammatory responses triggered by the infection have been shown to drive
pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response
against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+

T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do
play a role in controlling acute infections, and they contribute to acute erythrocytic-stage
pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical
feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective
CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to con-
trol chronic parasitemia. IL-10, important to counterbalance inflammation and associated
with protection from inflammatory-mediated severe malaria in both humans and experi-
mental models, was originally considered be produced by CD4+ Th2 cells during infection.
We review the interpretations of CD4+ T-cell responses during Plasmodium infection, pro-
posed under the originalTh1/Th2 paradigm, in light of more recent advances, including the
identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the
identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for
B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells.
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INTRODUCTION
Malaria, caused by infection with Plasmodium transmitted via
mosquito bites, represents a major global cause of morbidity
and mortality (1). Plasmodium spp. are eukaryotic apicomplexan
intracellular parasites with different life-cycle stages within the
vertebrate host: an early clinically silent liver stage that can last
approximately 7–10 days in humans and 2 days in rodents, fol-
lowed by an erythrocytic stage, responsible for the pathology of
malaria (Figure 1A). Species of Plasmodium that infect humans
include P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi.
A number of Plasmodium species that infect rodents, but not
humans, are available for laboratory research, including P. berghei,
P. vinckei, P. chabaudi, and P. yoelii (2), which allow the dissection
of immune mechanism of protection and pathology (3).

In most cases, the host’s immune system can eventually con-
trol a Plasmodium infection; however, exacerbated host immune
responses and inflammation induced by the parasite, contribute
to the pathology accompanying infection (4, 5). CD4+ T-cell
responses have been associated with control of erythrocytic stage
parasites, but a small number of studies indicate a helper role also
in pre-erythrocytic immunity (6–11). Parasite biology, host cell
and tissue tropism, and kinetics of parasite growth differ between
pre-erythrocytic and erythrocytic stages within the vertebrate host
and, accordingly, the particular CD4+ T-cell responses elicited
also differ. Herein, we discuss activation of different CD4+ T-cell

subsets during malaria, their role in the control of the infection and
the interplay between different subsets, with a particular emphasis
on the concept of CD4+ T-cell plasticity.

CD4+ T-CELL SUBSETS ACTIVATED BY PRE-ERYTHROCYTIC
STAGES
Very little is known about the CD4+ T-cell response to Plasmod-
ium pre-erythrocytic stages, or its regulation in natural infec-
tion either in humans or in experimental models. Clearly, since
IgG antibodies and memory B-cells are generated to a wide
range of pre-erythrocytic antigens, including those with expres-
sion restricted primarily to these stages, such as circumsporo-
zoite protein (CSP), liver-stage antigen 1 (LSA1), and sporozoite
threonine–asparagine-rich protein (STARP) (12–14), CD4+ T-
cells must be induced by these stages of the infection. Indeed,
CD4+ T-cells specific for pre-erythrocytic antigens have been doc-
umented, and in some cases, have been shown to correlate with
protection in humans following natural infection (15) and immu-
nization (11). However, we have few details of their functional
heterogeneity.

CD4+ T-cells of undefined Th1/Th2 phenotype have been
shown to confer protection against the pre-erythrocytic stages
of P. yoelii even in the absence of CD8+ T-cells (9), and CD4+

T-cell clones recognizing peptides of CSP protected against a P.
yoelii sporozoite challenge in mice, irrespective of their Th1 or
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FIGURE 1 | Schematic representation of the Plasmodium life cycle, and
different models of CD4+ T-cell activation during Plasmodium infection.
(A) Plasmodium life cycle in the mammalian host. (B) The cartoon shows the
different subsets known, or proposed to be, activated by the pre-erythrocytic
stage of Plasmodium, together with their known or proposed functions.
(C) Classical view of the biphasic activation of Th1 and Th2 CD4+ T-cells
toward the erythrocytic stage of Plasmodium. (D) Current understanding of

the CD4+ T-cell responses to the erythrocytic stage of Plasmodium, together
with their known or proposed roles during infection. This model highlights the
plastic ability of activated CD4+ T-cells to interconvert into different Th
subsets. The master regulator transcription factors known to drive each Th
program as well as the cytokines associated to each Th subset are depicted
(53). DC, myeloid dendritic cell; iRBC, infected red blood cell; CTL, cytotoxic
CD8+ T-cell; Tr1, Foxp3− regulatory T-cell.

Th2 phenotype (6, 7). The location of priming of CD4+ T-cell
specific for pre-erythrocytic stages is still a matter of debate, and
there is little evidence as yet on priming of CD4+ T-cell in the

liver. As protective CD8+ T-cells specific for a peptide of CSP
from P. yoelii can be primed by dendritic cells (DCs) in lymph
nodes after infection with sporozoites (16), it is likely that DCs
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in lymph nodes might also be critical for priming CD4+ T-cell
responses to Plasmodium pre-erythrocytic stages.

As well as possible direct killing of infected hepatocytes, subsets
of CD4+ T-cells provide crucial help for both B-cell and CD8+ T-
cell responses (Figure 1B). In a very few studies, CD4+ T-cells were
shown to be necessary to ensure survival of protective effector and
memory CD8+ T-cells induced by irradiation-attenuated sporo-
zoites (8, 10). This mechanism is dependent on STAT-6 and IL-4,
suggesting that Th2 CD4+ T-cells may be in charge of providing
help to CD8+ T-cells. More recently, CSP-specific CD4+ T-cells
expressing CD107a (LAMP-1), a marker for cytotoxic degranu-
lation, were shown to be induced and associated with protection
against the pre-erythrocytic stages after immunizations of healthy
volunteers by bites from P. falciparum-infected mosquitoes during
chloroquine chemoprophylaxis (11). Nothing is yet known about
induction of Tfh cells, the subset that provides help for T-cell
dependent B-cell responses (17), which are presumably activated
by, and would be important for, generation of high affinity IgG
antibodies.

Altogether, these data suggest a role of CD4+ T-cells in pro-
tective immunity to pre-erythrocytic-stage infection, the mech-
anisms of which are not yet completely understood. With the
current emphasis on pre-erythrocytic vaccines, it is important that
we understand more about the potential contribution of diverse
CD4+ T-cell populations on direct killing of infected cells, in the
B-cell and CD8+ T-cell responses, as well as their regulatory roles
in immunity to the pre-erythrocytic stages of Plasmodium.

CD4+ T-CELL SUBSETS ACTIVATED BY ERYTHROCYTIC
STAGES
The Th1/Th2 paradigm proposed by Mosmann and Coffman pos-
tulated stable lineages of activated CD4+ T-cells with distinctive
cytokine production patterns and functional capacity; IFN-γ-
producing Th1 cells being crucial mediators of host immunity
against intracellular pathogens, while IL-4-producing Th2 cells
mediating immunity toward extracellular pathogens and collabo-
ration with B-cells for antibody production (18). As Plasmodium
invades red blood cells (Figure 1A), which do not express MHC
class I or II, it was difficult to envisage parasites at this stage as
direct targets of Th1 or Th2 cells. Nonetheless, it was possible to
draw parallels with the original Mosmann and Coffman model;
malaria researchers observed that the erythrocytic stages triggered
a strong IFN-γ response during acute infections in P. berghei, P.
yoelii, and P. chabaudi infections in mice, as well as in P. falciparum
infection in humans (19–24).

Since that time, the Th1/Th2 paradigm has gained in complex-
ity with the identification of novel CD4+ T-cell subsets with dis-
tinctive characteristics and transcriptional programs in charge of
driving the different cell fates (25). These differentiation programs
are governed predominantly by signals derived from antigen-
presenting cells (APC) and the microenvironment at the time
of CD4+ T-cell activation. DCs are necessary for effective prim-
ing of the T-cell response in erythrocytic-stage malaria (26), and
two subsets of splenic DCs, CD8− and CD4+ classical DCs, have
been shown to present antigen for the activation of CD4+ T-cells
during an erythrocytic-stage infection with P. chabaudi and P.
berghei, respectively (26–29). Although it is known that IL-12 is

an important cytokine in the induction of a protective response in
experimental malaria infections (30), understanding of the regula-
tion of this cytokine or other factors in DCs necessary for effective
Plasmodium-antigen presentation to different subsets of CD4+

T-cells is still lacking.
IFN-γ, a defining cytokine of Th1 cells expressing the tran-

scription factor T-bet, has proven to be important for controlling
the acute erythrocytic stage of Plasmodium infection in rodent
models (31–34). IFN-γ-producing CD4+ effector (E) and effector
memory (EM) CD4+ T-cells both confer partial protection from
P. chabaudi infection (35). In general agreement with this, IFN-γ
from CD4+ T-cells has been shown to be important in main-
taining strain-transcending blood-stage immunity (36). However,
IFN-γ is not only produced by T-bet+ Th1 cells but also by NK
cells, NKT cells, and γδ T-cells (37, 38) as well as CD8+ T-cells,
and it is not always clear whether Th1 cells, IFN-γ, or IFN-γ
from Th1 cells per se are the main players in early protection
or pathology in experimental malaria. Studies so far to address
these questions have given conflicting results. One study using P.
berghei ANKA has shown that the enhanced IFNγ+ T-bet+ CD4+

T-cell responses observed in mice lacking Type I IFN signaling
are associated with better control of P. berghei ANKA infections,
resulting in lower morbidity and mortality (39, 40). In contrast,
others have shown that in the absence of T-bet, essential for Th1
commitment, cerebral pathology of P. berghei ANKA infections is
ameliorated, and the number of IFNγ+ CD4+ T-cells is reduced.
However, control of parasite replication is lost and mice succumb
to hyper-parasitemia and anemia (41). In a different rodent model
of erythrocytic-stage malaria, P. yoelii 17X(NL), although activa-
tion of T-bet was detected on CD4+ T-cells early in infection (42),
the infection can still be controlled in T-bet-deficient mice (43).

The erythrocytic stages of Plasmodium are also able to acti-
vate CD4+ T-cells that are very effective helpers for Plasmod-
ium-specific antibody production, but produce little or no IFN-γ
(21). This response was shown to coincide with the appearance
of IL-4-producing CD4+ T-cells (21). The association between
IL-4-producing CD4+ T-cells and antibody responses toward the
parasite was also observed in P. falciparum immune subjects (44).
An erythrocytic-stage P. chabaudi infection, the only mouse model
that generates a chronic phase of infection (3), presents a bipha-
sic CD4+ T-cell activation, with a large IFN-γ-producing CD4+

T-cell response during the acute phase, followed by an antibody-
helper/IL-4-producing CD4+ T-cell response during the chronic
phase (Figure 1C) (21, 24, 45, 46). These data were interpreted as
an early activation of Th1 cells able to control parasitemia through
the activation of effector mechanisms such as macrophages, fol-
lowed by a Th2 response in charge of activating B-cell responses
to complete the clearance of the parasite (47, 48). However, the
frequency of CD4+ T-cells able to help B-cells to produce Plas-
modium-specific antibodies was much higher than the frequency
of IL-4-producing CD4+ T-cells (21). Furthermore, control of a
P. chabaudi infection and specific IgG responses, including IgG1
antibodies, was possible even in the complete absence of IL-4 (45).
Therefore, it was clear, despite its attractiveness as a model, that
the simple Th1/Th2 paradigm was not sufficient to explain the full
complexity of CD4+ T-cell activation in the erythrocytic stages of
Plasmodium. More recently, a subset of CD4+ T-cells, Tfh cells,

www.frontiersin.org January 2015 | Volume 5 | Article 671 | 3

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perez-Mazliah and Langhorne CD4 T-cell subsets in malaria

has been described that produce IL-21, as well as other cytokines
originally associated with other Th subsets, such as IFN-γ and IL-4
(17). We believe that the Tfh program, and not a Th2 response, is
the critical one for B-cell help and activation of protective B-cell
responses against the erythrocytic stages of Plasmodium infec-
tion (Figure 1D). However, there are very few data on Tfh or its
crucial signature cytokine, IL-21, in malaria. Lymphocytes closely
resembling Tfh have been observed in peripheral blood of humans
(49), although not yet in people exposed to malaria. However, IL-
21-producing CD4+ T-cells have been demonstrated in blood of
immune adults living in endemic areas of P. falciparum trans-
mission (50–52). Given the importance of the humoral response
in protective immunity to the erythrocytic stages of Plasmodium,
understanding the activation and maintenance of Tfh cells during
malaria is of outstanding interest for vaccine design.

Recently, the Th17 subset of CD4+ T-cells, defined by the
expression of the transcription factor RORγt, has gained atten-
tion among malaria researchers because of its role in autoimmune
diseases and chronic inflammation and in responses to extracel-
lular pathogens such as bacteria and fungi (53). CD4+ IL-17A+

RORγt+ Th17 cells are activated during acute P. berghei ANKA
and P. yoelii infection, but the function of these cells during infec-
tion was not explored (54). Ishida and colleagues demonstrated no
association of Th17 cells and cerebral malaria in P. berghei ANKA-
infected IL-17-deficient mice (55). We have also observed the
presence of IL-17A and IL-17F-producing CD4+ T-cells mainly
in the liver during acute erythrocytic-stage P. chabaudi infection;
however, IL-17A-deficient mice showed no significant alterations
in the course of P. chabaudi infection (56). Therefore, despite acti-
vation, Th17 cells have so far not been shown to have a defined
role during Plasmodium infections (Figure 1D).

Additional CD4+ T-cell subsets, such as that producing IL-22
(Th22), continue to be identified (57, 58). IL-22 has been impli-
cated in both host defense against bacterial infections and tissue
repair (59). Interestingly, IL-22 single-nucleotide polymorphisms
associated with resistance and susceptibility to severe malaria
have been identified (60). We have observed that IL-22-producing
CD4+ T-cells are activated, albeit in low frequency, in both spleen
and liver during acute erythrocytic-stage P. chabaudi infections,
and that IL-22-deficient mice infected with P. chabaudi show
exacerbated pathology (56) (Figure 1D). Research is ongoing to
explore in greater detail the origins of these cells, their location,
and the mechanisms underlying the observed pathology.

With the discovery of this wide array of possible CD4+ T-cell
subsets and their different activation requirements and functional
capacities, it is becoming clear that CD4+ T-cells may not be sim-
ply defined as individual subsets of Th cells producing a single
cytokine, but rather they represent components of a dynamic and
interactive response, in which these cells can be multifunctional,
flexible, and plastic depending on the disease/infection and acti-
vation environment (61). The multifunctional capacity of T-cells,
or the ability to perform more than one function (e.g., production
of different cytokines) at the single-cell level, and its association
with the capacity to control infections was first recognized in HIV-
infected subjects (62) and in a mouse model of vaccination against
Leishmania major (63). This association between multifunctional
capacity of T-cells and control of infections is not limited to HIV

and Leishmania, and was soon observed in several other chronic
infections, including viral, parasitic, and mycobacterial infections
(64). Immunization of subjects with P. falciparum apical mem-
brane antigen 1 (AMA1) (65), and immunizations of mice with
full-length P. falciparum CSP protein (66) also activates multifunc-
tional CD4+ T-cells responses. Moreover, multi-parameter flow
cytometric analyses of human PBMC from children and adults
exposed to malaria infection reveal the existence of CD4+ T-cells
co-expressing several cytokines characteristic of many CD4+ T-
cell subsets (52, 67), demonstrating the complexity of the CD4+

T-cell response activated by the erythrocytic stages of Plasmodium.
There is an important body of evidence suggesting that, far from

being terminally differentiated stable lineages, the different Th
subsets have an extensive capacity to interconvert further between
different phenotypes, a concept known as plasticity (68). The most
recent studies suggest that CD4+ T-cell activation with overlap-
ping characteristics of different Th subsets is the norm rather than
the exception (61), and this is likely to be reflected in complex
diseases such as malaria. Although this has not been explored in
any detail in the context of malaria, the concept of Th plasticity
opens new possibilities for studying the function and regulation of
CD4+ T-cells in the control of Plasmodium infection and related
immunopathology. One subset known for its remarkable plasticity
is the Tfh subset. It has been shown that Th1, Th2, and Th17 cells
can migrate into the B-cell areas of secondary lymphoid organs
and acquire the functional capacity and biomarkers of Tfh cells
and, conversely, the Tfh subset can become Th1, Th2, and Th17
(69). In the context of Plasmodium infection, this would imply
that not only could Plasmodium parasites activate Tfh responses
directly but also the Tfh subset could potentially arise from any
of the CD4+ T-cell subsets already activated by the erythrocytic
stages.

In light of the multifunctional and plastic capacities of the
CD4+ T-cells, a scenario can be envisaged in which Th subsets
required for the control of parasite burden, such as Th1 cells, have
the capacity to acquire a regulatory phenotype depending on the
context, contributing to control of the inflammation and thus to
protection of tissues and organs and preventing any potentially
harmful effects of the response. This would allow a fine-tuning of
the CD4+ T-cell response to guarantee the control of Plasmodium
infection without causing deleterious side effects. One mechanism
of self-regulation by CD4+ Th1 cells in malaria is the induction
of IL-10. IFN-γ+IL-10+T-bet+ Th1 CD4+ T-cells can prevent
pathology during P. chabaudi infection (70) (Figure 1D). In addi-
tion, IL-10 from CD4+ T-cells distinct from regulatory T (Treg)
cells is able to control pathology in a P. yoelii infection in mice,
but in this case, these cells do not co-express IFN-γ (71). IL-10 is
produced in these cells in response to IL-27 (70), although the sig-
nals responsible for the induction of IL-27 remain unknown. The
occurrence of IFN-γ+IL-10+T-bet+ CD4+ T-cells during Plas-
modium infections is not restricted to mouse models; they have
been reported to be present in PBMC of children living in highly
malaria-endemic regions (72–74) and their proportion is higher in
children with uncomplicated malaria compared to children with
severe malaria (72). IL-10 can also be induced in IL-17-producing
CD4+ T-cells, as yet by unknown pathways (75–77), and thus, IL-
10 may be a more general mechanism for regulating any subset
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of CD4+ T-cells in malaria. CD4+ T-cells, particularly Th1 cells,
can also be controlled by Type I IFNs. In the P. berghei ANKA
model, Type I IFN signaling suppresses Th1 responses by directly
acting on classical DCs (40). Given that type I IFN signaling can
also promote the expression of IL-10 on CD4+ T-cells (78–81),
we hypothesize that these two regulatory mechanisms might share
some common activation signals during Plasmodium infection.

CD4+ T-cell responses may also be controlled by the expres-
sion of surface molecules associated with exhaustion. Elevated
frequencies of PD-1+ LAG-3+ CD4+ T-cells have been reported
in P. falciparum-infected subjects (82, 83), and combined block-
ade of PD-1 and LAG-3 accelerated clearance of erythrocytic-stage
Plasmodium infection in a mouse model (83). In agreement with
these observations, PD-1-deficient mice show better control of an
erythrocytic-stage P. chabaudi infection with higher frequencies of
IFN-γ+ and T-bet+ CD4+ T-cells during the chronic phase (84).
The kinetics of PD-1+ CD4+ T-cells during the acute erythrocytic-
stage P. yoelii 17X(NL) infection are similar to those observed
during P. chabaudi infection (42, 84). However, some caution
should be exercised in assuming that expression of PD-1 auto-
matically means exhaustion, as in some subsets of activated CD4+

T-cells, in particular Tfh cells, PD1 is expressed without affecting
their functional capacity. It may be that the triggering of PD-1 by
its ligand PDL-1 (85) is the key to whether the cell is programed
for cell death.

Many of the CD4+ T-cells activated in a Plasmodium infec-
tion may undergo interconversion between defined cell sub-
sets depending on antigen dose, APC, location, and cytokine/
chemokine environment, such as that described for Treg and Th17
subsets (86, 87). Thus, it is possible that the Th17 cells found in
the spleen of malaria-infected mice gain a regulatory phenotype
in other organs or tissues such as brain and liver. The capacity
to identify and manipulate these possible mechanisms of CD4+

T-cell plasticity during Plasmodium infections would be of great
value for the design of novel therapeutic strategies.

CONCLUDING REMARKS
The identification of two CD4+ T-cell subsets with different well-
defined functions represented an attractive organizational system
with which to rationalize CD4+ T-cell responses to Plasmodium
infections. However, such a model has not been sufficient to reflect
fully the complexity of CD4+ T-cell biology observed in human or
experimental malaria. In particular, control of Plasmodium infec-
tion requires strictly regulated immune responses that are able
to prevent parasite replication without causing detrimental side
effects of uncontrolled inflammation. Plasmodium species have
different stages with different tissue tropisms and this complex life
cycle challenges the idea that a single static group of terminally
differentiated CD4+ T-cells would be able to perform all the tasks
required to control this infection. In order to cope with these tasks,
the CD4+ T-cell response has to adapt to the changing scenarios
presented as the infection evolves. The newer concept of CD4+

T-cell plasticity would add substantially to our understanding of
induction and regulation of CD4+ T-cell responses in malaria, and
it is highly probable that some of the CD4+ Th programs not yet
explored in depth, such as the Tfh response, might play critical
roles in the outcome of the infection. The combination of potent

tools such as multi-parameter flow cytometry, in vivo imaging,
systems analyses of transcriptome, proteome, and metabolome,
together with T-cell receptor transgenic mice and peptide-MHC
II tetramers will give us the chance to explore the complexity of the
CD4+ T-cell responses to malaria in in vivo models (74, 88–97). In
addition, confocal microscopy and intravital imaging techniques
make now possible to follow sporozoites injected via the mos-
quito bite into the skin, or by injection of attenuated sporozoites
through to their arrival in the lymphoid organs and liver (98),
and to study the consequent activation of CD4+ T-cells and their
subsequent effector functions. Field studies of natural human Plas-
modium infections and mouse models should complement each
other to get a deeper understanding of the complex CD4+ T-cell
response activated by these infections. A detailed delineation on
how CD4+ T-cells modulate the activation of effector cells such as
CD8+ T-cells, macrophages, and B-cells in response to Plasmod-
ium infection is critical to achieve the goal of generating protective
treatments to control malaria.
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