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Abstract. Ethiopia has a diverse ecology and geography resulting in spatial and temporal variation in malaria
transmission. Evidence-based strategies are thus needed to monitor transmission intensity and target interventions. A
purposive selection of dried blood spots collected during cross-sectional school-based surveys in Oromia Regional State,
Ethiopia, were tested for presence of antibodies against Plasmodium falciparum and P. vivax antigens. Spatially explicit
binomial models of seroprevalence were created for each species using a Bayesian framework, and used to predict
seroprevalence at 5 km resolution across Oromia. School seroprevalence showed a wider prevalence range than microscopy
for both P. falciparum (0–50% versus 0–12.7%) and P. vivax (0–53.7% versus 0–4.5%), respectively. The P. falciparum
model incorporated environmental predictors and spatial random effects, while P. vivax seroprevalence first-order trends
were not adequately explained by environmental variables, and a spatial smoothing model was developed. This is the first
demonstration of serological indicators being used to detect large-scale heterogeneity in malaria transmission using
samples from cross-sectional school-based surveys. The findings support the incorporation of serological indicators into
periodic large-scale surveillance such as Malaria Indicator Surveys, and with particular utility for low transmission and
elimination settings.

INTRODUCTION

With the rekindling of malaria elimination goals,1,2 there is
an increased need to quantify patterns of and changes in malaria
risk to support evidence-based targeting of interventions, imple-
ment surveillance strategies to monitor changes in transmission
intensity, and assess feasibility of local elimination.3,4

Low-transmission settings present specific challenges to
implementation of cross-sectional surveys: 1) highly seasonal
transmission can result in underestimates of population para-
site rates if sampling does not occur during the peak transmis-
sion period; 2) low-density infections are frequent and either
will be underestimated by microscopy or rapid diagnostic tests
(RDTs),5,6 or require significantly increased resources to screen
samples by polymerase chain reaction (PCR); and 3) where
diagnostic data are used to develop spatial prediction models,
there is a risk that the true extent of transmission will be
underestimated since recently cleared and low-density infec-
tions will not be included. While new strategies such as reactive
case detection7–9 and “rolling” cross-sectional surveys10 have
been trialed, there remains a need to develop strategies to
track changes in low and unstable transmission settings.
Detection of anti-Plasmodium antibodies eluted from dried

blood spots has been demonstrated to be robust,11,12 yielding
estimates of seroprevalence and seroconversion rates that are
representative of malaria transmission intensity within a com-
munity.13,14 Because antibodies persist after infection clearance,
they offer the opportunity to examine exposure to malaria
over a wider period than is typically possible through detec-
tion of parasitemia during a cross-sectional survey by means
of microscopy, RDTs, or PCR-based methods.
Serological indicators are increasingly being used in

community-based malaria epidemiological studies to assess

small- and large-scale spatial heterogeneities of and changes
in transmission.13,15–19 Schools provide a useful alternative
platform for collection and monitoring of malariometric indi-
cators, offering logistical advantages (e.g., simplified selection
of participants, high compliance, and reduced survey costs)
over standard community-based cross-sectional surveys.20–22

Although schools consistently yield higher estimates, school-
survey seroprevalence estimates have repeatedly been shown
to strongly correlate with community-survey seroprevalence.23

This study explored the use of serological indicators col-
lected from a large-scale school-based survey to describe
differences in P. falciparum and P. vivax endemicity in a
low-transmission setting. Spatially explicit Bayesian modeling
techniques were used to explore relationships between sero-
logical indicators at population level and explanatory envi-
ronmental variables, to predict estimated endemicity levels
at subnational scale.

METHODS

Study setting. Ethiopia has a diverse ecology, and malaria
transmission is known to be spatially heterogeneous, related
to variables such as altitude, temperature, rainfall, and pres-
ence of local water bodies or dams.24–28 Malaria transmission
is temporally variable because of seasonal rainfall, with a
major transmission season from September to December and
a minor transmission season from April to May. Cases are due
to both P. falciparum and P. vivax. The Malaria Indicator
Survey in 2011 demonstrated a low parasite prevalence within
the population living in malaria-risk areas, estimated at 1.3%
by microscopy and 4.5% by RDT in areas < 2,000 m.29

Survey data. Data presented in this paper are drawn from a
large cross-sectional survey conducted in 197 government pri-
mary schools in Oromia Regional State, Ethiopia, in 2009.30

Full detail of school and child selection as well as sample
collection has been presented elsewhere.30 In brief, at
each school 55 girls and 55 boys were randomly selected.
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They provided finger-prick blood samples for preparation of
thick- and thin-blood smears, hemoglobin measurement
(HemoCue Ltd., Angelhölm, Sweden), and collection of
blood spots on filter paper (Whatman 3MM; Whatman,
Maidstone, United Kingdom). School location was measured
using a global positioning satellite receiver (eTREX; Garmin
International, Olathe, KS).
For serological analysis samples were selected purposively

from 1) 20 schools with highest prevalence of Plasmodium

infection detected by microscopy (range 0.9–14.5%);
2) 20 schools with highest proportion of anemic (classified
according to WHO,31 including adjustment by altitude) chil-
dren (range 34.2–51.4%); and 3) a random selection of
remaining schools surveyed (Table 1). Purposive selection
was conducted to capture a range of transmission settings,
and since resources were not available to complete enzyme-
linked immunosorbent assay (ELISA) on all blood spots
collected during surveys.
Enzyme-linked immunosorbent assay. Blood spots from

50 schools were analyzed in London, United Kingdom,
against P. falciparum merozoite surface protein-119 (PfMSP-
1), P. falciparum glutamate-rich protein-R2 (PfGLURP),
P. vivax MSP 119 (PvMSP-1), and P. vivax apical membrane
antigen-1 (PvAMA). In Addis Ababa, Ethiopia, blood spots
from a further 12 schools were analyzed against PfMSP-1 and
21 schools against PvMSP-1.
Antibodies were eluted from dried blood spots, and sam-

ples were tested for IgG against P. falciparum and P. vivax
antigens according to methods described elsewhere.12 Dupli-
cate optical density (OD) values with > 20% variation were
excluded. Raw ODs were corrected by blank OD and normal-
ized between plates by fitting to the midpoint of a standard
curve produced by serial dilution of hyperimmune serum (i.e.,
pooled hyperimmune serum from Tanzania for P. falciparum,
and reconstituted P. vivax and P. malariae hyperimmune serum
(NIBSC code 72/096, Hertforshire, UK) for P. vivax). Nor-
malized ODs and identification numbers were exported into
Stata 12.0 (STATA Corporation, College Station, TX). Indi-
vidual samples were classified as seropositive or seronegative
against each antigen using a mixture model, whereby the mean
of the seronegative distribution plus three standard deviations
was defined as the seropositive cutoff.12,13 Binary variables were
generated to describe, in summary, seropositivity by species: for
example, P. falciparum seropositive samples were defined as
seropositive against either PfMSP-1 and/or PfGLURP. In the
absence of a gold standard for anti-Plasmodium antibody detec-

tion, it is not possible to determine the sensitivity or specificity
of the ELISA, but the mixture model approach is commonly
used in low-transmission settings,15,32–34 where the population is
expected to include true seronegative and true seropositive
individuals. Various nonlinear regression functions were fitted
to scatter plots of microscopy prevalence and seroprevalence
for each species separately using least squares regression, to
describe the relationship between microscopy and serology.
Remote sensing environmental data. Elevation data were

extracted from the Shuttle Radar Topography Mission
(SRTM) digital elevation model at 90 m resolution,35

resampled to 250 m, and further processed to estimate slope
in degrees. Gridded precipitation and temperature data at
1 km resolution were extracted from preprocessed data avail-
able on WorldClim.36,37 This source provides a set of data
layers generated through interpolation of average monthly
climate data obtained during the period 1950–2000. Euclidean
distance to water bodies was calculated using SRTM Water
Body Data files at 250 m resolution,38 and distance to rivers
and roads calculated using data from Digital Chart of the
World at 250 m resolution.39 Land cover type was extracted
from the qualitative global land cover map for 2005, defined
within the United Nations land cover classification system
using environmental satellite (ENVISAT) mission’s Medium
Resolution Imaging Spectrometer (MERIS) sensor at 300 m
resolution.40 Monthly raster datasets of normalized difference
vegetation index (NDVI) indicators at 1 km resolution were
extracted from the SPOT 5 vegetation project41 for the period
2005 and 2009. Gridded mean, minimum, maximum, and stan-
dard deviations were obtained for the entire period and for
the specific survey year (2009). Population density was
extracted from the AfriPop project at 100 m resolution,42 and
rural–urban classification at 1 km from the Global Rural-
Urban Mapping Project (GRUMP).43 Input grids were either
extended or clipped to match the geographic extent of a land
mask template, aligned to it, and eventually resampled to a
5 km resolution by bilinear interpolation for continuous sur-
face, and majority approach for categorical data. Bilinear
interpolation determines the new value of a cell based on a
weighted distance average of the nearest input cell centers,
whereas majority approach determines the new value based
on the most popular values within the resampling window.
We assumed that both methods cause some smoothing of the
data. Environmental data were extracted to school locations
using ArcMap 12.0 (Environmental Systems Research Insti-
tute Inc., Redlands, CA).

Table 1

Number of schools and children tested by ELISA against each antigen, stratified by school selection criteria: high microscopy prevalence,
high anemia prevalence, and randomly selected

Any P. falciparum antigen Any P. vivax antigen

Schools Children Schools Children

Total tested 62 5,913 71 6,609

School selection criteria

PfMSP-1 PfGLURP PvMSP-1 PvAMA

Schools Children Schools Children Schools Children Schools Children

High microscopy prevalence 20 2,088 20 2,093 20 2,080 20 2,074
High anemia prevalence 20 2,118 20 2,092 20 2,080 20 2,104
Random selection 22 1,614 10 1,037 31 2,327 10 1,024
Total tested 62 5,820 50 5,222 71 6,487 50 5,202

AMA = apical membrane antigen; ELISA = enzyme-linked immunosorbent assay; GLURP = glutamate-rich protein; MSP = merozoite surface protein; Pf = Plasmodium falciparum;
Pv = P. vivax.
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Model development and testing. Environmental and serol-
ogy data were merged and analyzed using Stata 12.0. Contin-
uous environmental variables were standardized to facilitate
later model convergence. Models were developed separately
to describe P. falciparum or P. vivax seroprevalence.
Univariate associations between school seroprevalence and

environmental variables were explored, and colinearity (cor-
relation coefficient > 0.9) between variables was tested. A
school-level minimal adequate logistic regression model was
developed by the backward stepwise method, whereby vari-
ables with P > 0.05 were removed in the order of least signif-
icance; all excluded variables were subsequently retested in
the final model. Akaike information criterion (AIC) and
Bayesian information criterion (BIC) were used to inform
model selection.44,45

Four multivariate Bayesian binomial regression models
were developed using WinBUGS 1.4 (Medical Research
Council Biostatistics Unit and Imperial College London,
London, United Kingdom) for P. falciparum and for P. vivax.
The most complex model included the retained school-level
environmental variables, school-level random effect, and
school-level geostatistical random effect (using an isotropic,
stationary exponential decay function).46 Additional models
excluded the environmental variables, the spatial random
effect, or both.
Semi-informative priors were set for the rate of decay of

spatial correlation, f, informed by the maximum and minimum
distance between schools, and non-informative priors used for
other coefficients. Models were burned in for 10,000 iterations
to achieve convergence, and then nodes were sampled for
10,000 iterations, thinning each 10 iterations. Final model
selection was informed by examining the variance of school
and spatial random effects and deviance information crite-
rion (DIC).47

Model validation. Models were externally validated by
training the model on an N-5 school dataset, then predicting
probability that seroprevalence thresholds (2%, 5%, and
40%) exceeded for the five excluded schools. These thresh-
olds were estimated to describe the lowest and highest areas
of seroprevalence, and hence endemicity, to support specific
intervention targeting. The process was repeated until pre-
dictions for all schools were available. Model performance
was assessed by examining the area under the curve (AUC) of
the receiver operator characteristic (ROC) at each threshold.48

AUC > 0.7 indicates a reasonable discriminative capacity, and
AUC > 0.9 very good discriminative capacity.49,50

Generating a predictive seroprevalence map. A grid of
12,048 locations at 5 km spacing was generated across
Oromia, and environmental variables included in final models
were extracted to these locations. The selected Bayesian
models were trained on actual school seroprevalence data,
then predicted at each location by calculating the sum of
the products of the covariate coefficients and the values
of the covariates at each grid node, plus the interpolated
geostatistical random effect, and back transforming from the
logit to the prevalence scale.
Ethical considerations. The school surveys received ethical

clearance from the Ethiopian Science and Technology
Agency (RDHE/2-89/2009), with additional clearance subse-
quently given for serological analysis of blood spots (3.10/53/
2003). Consent for participation used a passive, opt-out proce-
dure, with school director providing written consent for the

survey to proceed. Schools were requested to hold meetings in
advance with parents to inform them of the survey and allow
withdrawal of children if necessary. Participating children
gave written assent and were informed of their right to with-
draw at any time. Children reporting fever during surveys were
tested with a multispecies HRP2-panLDH RDT (CareStart;
AccessBio, Somerset, NJ), and any child with a positive RDT
was treated according to the national guidelines.51

RESULTS

Serology findings. Serology results were available for
P. falciparum from 5,914 children from 62 schools, with a
mean 95 (range 10–111) samples per school. Plasmodium vivax

results were available from 6,609 children from 71 schools, with
mean 93 (range 5–111) samples per school. Data were from
children aged 5 to 18 years (mean 11 years).
Of all children tested, 11.6% (688/5,913) were P. falciparum

seropositive and 11.1% (735/6,609) P. vivax seropositive;
1.0% and 0.5% children were microscopy-positive for
P. falciparum and P. vivax parasites, respectively. Cross-
tabulation of microscopy and antigen-specific serology results
are presented in Table 2. Where data were available for both
species, 4.7% of 5,420 children were seropositive against both
species. When restricting our analyses to schools with more
than 50 children tested (56 schools for P. falciparum, 62 for
P. vivax), P. falciparum and P. vivax school seroprevalence
ranged from 0% to 50% and 0% to 53.7%, respectively.
Among 50 schools tested against 4 antigens, correlation was

seen between school seroprevalence determined for PfMSP-1
and PfGLURP (R2 = 0.84), and for PvMSP-1 and PvAMA
(R2 = 0.80). For both species, coating plates with MSP-1
resulted in higher sensitivity than PfGLURP or PvAMA.
A strong correlation (R2 = 0.84) was seen between school
P. falciparum and P. vivax seroprevalence.
Comparing serology to microscopy. Schools with 0% posi-

tive samples by microscopy were found to have from 0% to
30% seroprevalence. Although the proportion of microscopy
positive and seropositive children in a school are not directly
comparable, it is plausible to expect some association between
the two measures (Figure 1).

Table 2

Description of frequency of diagnostic test (microscopy and serology)
results at individual level (combinations of microscopy and sero-
positivity by antigen are presented for Plasmodium falciparum and
P. vivax separately)

P. falciparum diagnostic tool combinations

PfGLURP + PfGLURP –

Microscopy Pf + PfMSP-1 + 38 5
Microscopy Pf + PfMSP-1 – 3 6
Microscopy Pf – PfMSP-1 + 217 246
Microscopy Pf – PfMSP-1 – 106 4,481

P. vivax diagnostic tool combinations

PvAMA + PvAMA –

Microscopy Pv + PvMSP-1 + 4 10
Microscopy Pv + PvMSP-1 – 2 14
Microscopy Pv – PvMSP-1 + 141 381
Microscopy Pv – PvMSP-1 – 78 4,423

AMA = apical membrane antigen; GLURP = glutamate-rich protein; MSP = merozoite
surface protein; Pf = P. falciparum; Pv = P. vivax.
Data are only presented for individuals with results recorded for P. falciparummicroscopy,

PfGLURP and PfMSP-1 (N = 5,102), and individuals with complete results for P. vivax
microscopy, PvAMA and PvMSP-1 (N = 5,053).
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Environmental risk factors. Colinearity was found among
the precipitation, temperature and NDVI variables, and
between distance to both permanent and any type of water
body. Distance to water bodies and rivers, land gradient,
and urban areas showed univariate associations with both
P. falciparum and P. vivax seroprevalence (Supplemental
Table 1).
The minimal adequate multivariate P. falciparum frequentist

model includes elevation and angle of land slope, distance to
permanent river, bare or sparse land cover, population den-
sity, and urban areas. The minimal adequate P. vivax

frequentist model includes distance to permanent river and
water body, precipitation during the wettest quarter of the
year (projection from 1950 to 2000 to allow for high spatial
resolution), and mean NDVI over the preceding 5 years.
Bayesian modeling of P. falciparum.When comparing out-

put from nonspatial and spatial models of P. falciparum,
incorporating spatial structure in models was found to
explain much of the variation between schools, indicated
by a reduction of s 2

school when spatial random effects were
included in models. A lower DIC in models including spa-
tial structure justified retention in the final P. falciparum
Bayesian model.
Inclusion of environmental variables in the spatial model

was shown to reduce s 2
spatial and the DIC, as well as increase

the rate of decay of spatial correlation (j), indicating that much
of the first-order spatial variation can be explained adequately
by the included environmental data. Therefore, the final model
to describe P. falciparum seroprevalence in Oromia incorpo-
rates environmental covariates to explain first-order determin-
istic spatial variation, with the spatial random effect adequately
capturing second-order structure (Table 3). The final model
had mean prediction error of −0.31, indicating a tendency
to moderately underpredict P. falciparum seroprevalence.
Mean absolute error of the model, indicating the magnitude
of error in predictions, was 6.64. Internal validation demon-
strates a good discriminatory ability of the final model for
2% and 5% seroprevalence thresholds, with an AUC of
0.83 and 0.84, respectively. The model performs very well
in identifying areas of over 40% seroprevalence (AUC =
0.96). Actual and predicted school seroprevalence were
found to be correlated (Pearson r = 0.62, P < 0.001). The
final model was used to predict P. falciparum seropreva-
lence at 5 km resolution across Oromia, the posterior mean
is shown in Figure 2, with probability of 2%, 5%, and 40%
thresholds shown in Figure 3.
Bayesian modeling of P. vivax. Similar to the P. falciparum

models, incorporating spatial structure in P. vivaxmodels was
found to explain much of the variation between schools,
indicated by a reduction of s2

school and lower DIC. Inclusion

Figure 1. School-level seroprevalence and prevalence of infec-
tion detected by microscopy for Plasmodium falciparum (A) and
P. vivax (B). Scatter plots are presented for 56 schools with
P. falciparum data and 62 schools with P. vivax data, restricted to
those with serology results from ³ 50 children. Nonlinear regression
identified a Gompertz function as best fit to P. falciparum (R2 =
0.810), and to P. vivax data (R2 = 0.657).

Table 3

Final Bayesian Plasmodium falciparum model developed using data
from 62 schools, and P. vivaxmodel developed from 71 schools’ data
(both models retained school-level and spatial random effects)

P. falciparum model parameter
value (95% BIC)

P. vivax model parameter
value (95% BCI)

Altitude −0.568 (−1.035, −0.087) –

Slope −0.595 (−0.996, −0.234) –

Distance to
permanent river

−0.411 (−0.774, −0.036) –

Population density
in 2010

0.418 (−0.107, 0.911) –

Bare or sparse
land (binary)

1.026 (−0.392, 2.298) –

Urban area (binary) −3.13 (−6.279, −0.028) –

s 2
school 0.254 (0.006, 1.250) 0.288 (0.013, 0.939)

s2
spatial 1.183 (0.177, 2.311) 3.631 (1.31, 10.85)

f 9.763 (2.631, 19.03) 0.866 (0.211, 2.093)
Range in kilometer 45.57 (17.54, 127) 548.3 (160.5, 1,592)
DIC 308.8 330.8

BIC = Bayesian information criterion; DIC = deviance information criterion.
School and spatial variance (s 2

school and s 2
spatial), rate of decay of spatial correlation (f),

range in kilometer at which correlation between schools falls to 5% are presented with
95% Bayesian credible intervals. The P. falciparum model includes parameter values and
95% BCI for standardized environmental fixed effects. No environmental fixed effects
were retained in the final P. vivax model.
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of environmental variables in the spatial P. vivax model did
not substantially reduce the s2

spatial, and little difference was
seen in j and DIC between the models with and without
environmental variables. The final model for P. vivax is,
therefore, the spatial model with no environmental covariates
(Table 3). The final model had mean prediction error of 0.03,
and mean absolute error, indicating the magnitude of error
in predictions, of 6.64. Internal validation of this model indi-
cates good performance at the 2% seroprevalence threshold
(AUC = 0.81) and very good performance at 5% and 40%
thresholds (AUC = 0.91 for both). Actual and predicted sero-
prevalence were correlated (Pearson r = 0.68, P < 0.001). Pre-
dictions of the final model at 5 km resolution are displayed in
Figure 4 as the posterior mean seroprevalence, and in Figure 5
as the probability of seroprevalence thresholds being exceeded.

DISCUSSION

This study shows the capability of serological markers to
detect large-scale heterogeneity in malaria transmission using

samples collected during cross-sectional school surveys, in a
setting with seasonal and low transmission. Seroprevalence
was found to be associated with environmental variables; this
relationship was used to predict seroprevalence at unsampled
locations using Bayesian geostatistical modeling methods
incorporating fixed and random effects.
School seroprevalence determined by different antigens

showed strong correlation for each species, with MSP showing
higher sensitivity for both P. falciparum and P. vivax than
P. falciparumGLURP and P. vivaxAMA, respectively. How-
ever, previous studies have shown AMA-1 to have higher
immunogenicity than MSP-1.11 As transmission declines, indi-
vidual antibody responses become more disparate, and there-
fore it is recommended that future serological analysis be
conducted using multiple antigens or a whole parasite lysate.
The range of seroprevalence found across schools where no

children were microscopy positive during the cross-sectional
survey demonstrates the value of serological indicators, that is,
in differentiating between schools where transmission occurs
but the peak transmission period was missed by surveys, and

Figure 2. Map of predictive Plasmodium falciparum seropositivity using spatial model with environmental fixed effects. Measured P. falciparum
seroprevalence from the 62 schools used to train the model are shown by circles with size proportional to seroprevalence. Inset map indicates the
location of Oromia Regional State (shaded) within Ethiopia.
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those with very low malaria risk. Differences may also be
apparent if transmission has ceased in the area in recent years
before the age of the youngest school child. This is difficult to
demonstrate without clinical data.
Both species’ final models incorporated a spatial random

effect to describe spatial autocorrelation, whereby schools
located closely together were more similar than schools at
greater distance. All models included a nonspatial random
effect. The P. falciparum model indicated that spatial auto-
correlation was present to a distance of approximately 46 km,
while the P. vivax model showed a range of over 500 km. The
P. falciparum range is a distance at which similarities in cli-
matic factors and ecology would be expected, and therefore it
is feasible that these areas experience similar transmission
intensity. However, the very large spatial range of P. vivax
suggests that the spatial random effect is capturing other
large-scale variations not tested for inclusion in the Bayesian
spatial model. A similar finding was reported in spatial
modeling of malaria in Bangladesh, where environmental var-
iables described a large proportion of spatial variation in
P. falciparum, but little of the P. vivax distribution.52

Frequentist models developed for P. vivax suggested bio-
logically plausible environmental risk factors of distance to
rivers and water bodies, vegetation cover, and precipitation;
nonetheless, these did not adequately explain the large-scale
trends in P. vivax seropositivity after accounting for spatial
dependency. The final P. vivax map presented here therefore
simply uses spatial interpolation to predict seroprevalence at
unsampled locations. The larger spatial scale of P. vivax may
be due in part to the production of hypnozoites, since the
reactivation of parasites and subsequent antibody production
may occur in a different location to site of parasite acquisition,
or in the absence of ongoing transmission. However, it is
unlikely that recrudescent infections would have had a major
confounding effect on school seroprevalence, unless large-scale
population movements would have occurred. Furthermore, the
wider P. vivax range may be due to the parasite’s ability to
generate sporozoites at lower temperatures and the potential
to be transmitted at higher altitudes.53 Indicators of tempera-
ture and altitude, considered to define vector survival and
sporogeny, were not found to be associated with P. vivax sero-
prevalence, and not retained in the final multivariate model.
The key environmental variables identified for inclusion in

the P. falciparum map indicated that higher risk exists in low-
altitude and low-gradient areas close to rivers. We postulate
that seasonal flooding in flatlands where floodwaters may
pool and act as vector breeding sites could be the driver of
this relationship.
A further extension to the current models in the future

could be incorporation of intervention coverage, such as dis-
tricts targeted by indoor residual spraying of households with
insecticide, and estimations of long-lasting mosquito net cov-
erage and use alongside environmental covariates. Further-
more, a Bayesian approach to selection of environmental
covariates may have resulted in a different panel of covariates
tested in final models.
Despite the difficulties in modeling P. vivax seroprevalence,

our maps of both P. falciparum and P. vivax seroprevalence
do show broad concordance with predictive maps developed
by the Malaria Atlas Project to describe age-standardized
parasite rates using model-based geostatistical prediction
methods,48,54,55 with similar areas of Oromia identified as

Figure 3. Probability of Plasmodium falciparum seroprevalence
exceeds the defined thresholds of 2% (A), 5% (B), and 40%
(C) according to final predictive model for P. falciparum. Red areas
are those very likely to exceed the threshold, blue areas very unlikely
to exceed the threshold, and pale yellow areas have high uncertainty.
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areas of highest and lowest risk for malaria. Survey locations
with microscopy-positive samples in the most recent Ethiopian
Malaria Indicator Survey in 2011 also correlate with our pre-
dictive map, with infections identified along the Rift Valley as
well as in the far west of Oromia.29 Considering that sites
included in the current modeling approach were selected
using a combination of purposive and random methods, a
further improvement to the approach presented here would
involve defining a likelihood function more appropriate for
preferentially sampled geostatistical data, as described in
Diggle and others.56 The use of conventional geostatistical
methods to model these data, which assumes non-preferential
sampling, could potentially result in misleading inferences.
Nevertheless, since a stratified random sampling approach
was used for selection of the 200 schools included in the wider
malariometric survey, and the use of both purposive and
random methods to identify schools for serological testing,
these results remain meaningful, even if a cautious interpreta-
tion considering potential biases is required.

This study was designed to evaluate large-scale spatial het-
erogeneity of P. falciparum and P. vivax malaria. Although
logistical constraints limited the number of samples analyzed,
the original surveys were powered to microscopy-based para-
site rate—therefore, seroprevalence rates being higher than
microscopy should mean that adequate samples were exam-
ined to evaluate associations with environmental variables
and build the statistical model. The study was not designed
to assess microheterogeneity in transmission within commu-
nities, which has been demonstrated in other settings with
similarly low transmission levels (e.g., Somalia, The Gambia,
Guinea-Bissau).15,17 The randomization process and use of
school-attending children as a sampling frame should result
in a sampled population representative of the whole school
catchment area and wider community. We acknowledge that
there is potential for school catchment areas in Ethiopia to
have diversity in transmission intensity as a result of steep
gradients and presence of local water bodies, dams, and irri-
gation systems.24,26 Individual differences in immune status

Figure 4. Map of predictive Plasmodium vivax seropositivity, using spatial model without environmental fixed effects. Measured P. vivax
seroprevalence from the 71 schools used to train the model are shown by circles with size proportional to seroprevalence. Inset map indicates the
location of Oromia Regional State (shaded) within Ethiopia.

174 ASHTON AND OTHERS



and antibody production in response to Plasmodium antigen
exposure are expected, and may be moderated by other para-
sitic infections, including helminthes57; yet, infection risks for
these are likely to be broadly similar across all sites, and
individual differences in immune response are likely to be
randomly dispersed among the population.
The Bayesian spatially explicit models developed in this

study could be refined by inclusion of serology data from addi-
tional sites, both within Oromia to assist in categorizing areas
of high model uncertainty, as well as from other regional states
to assist in developing a nationally representative risk map.
Serological analysis of filter paper blood spots included in peri-
odic national surveys such as Malaria Indicator Surveys or
Demographic and Health Surveys would be a simple strategy

to collect additional seroprevalence data nationally.
Generation of estimates of cluster seroprevalence can

therefore complement the collection of parasitological indica-
tors from periodic large scale surveys in low-transmission set-
tings by indicating recent and historical transmission intensity,
depending on population tested and antigens used. In settings
with unstable transmission, these data may indicate receptiv-
ity to transmission,58,59 therefore can support policy makers in
targeting interventions to areas of current transmission or at
risk of transmission. The geostatistical map presents estimates
of these serological indicators beyond the sampled locations,
allowing evidence-based intervention targeting to take place
beyond sampled clusters, along with estimates of model uncer-

tainty demonstrating settings where further data may be
needed for decision making.60,61

Should serology become a primary indicator for malaria
surveillance, it may be worthwhile to review the recom-
mended sampling strategy for serological indicators, to ensure
a cost-efficient, timely and appropriately powered survey.
Further developments to this work and exploration of the use
of serological indicators as part of a package of surveillance
tools in Ethiopia could be validation of measured seropreva-
lence and model predictions against other available data,
including clinical burden recorded routinely at health facili-
ties and cluster-level Malaria Indicator Survey data.
These data represent the spatial integration of simple survey

design with a relatively basic laboratory assay that can subse-
quently guide malaria control and surveillance. The approach
has particular utility in low-transmission settings and, there-
fore, has important applications for malaria elimination.
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