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Background: Conventional analysis of single-plex chromogenic immunohistochemistry (IHC) focused on 
quantitative but spatial analysis. How immune checkpoints localization related to non-small cell lung cancer 
(NSCLC) prognosis remained unclear.
Methods: Here, we analyzed ten immune checkpoints on 1,859 tumor microarrays (TMAs) from  
121 NSCLC patients and recruited an external cohort of 30 NSCLC patients with 214 whole-slide IHC. 
EfficientUnet was applied to segment tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs), while 
ResNet was performed to extract prognostic features from IHC images.
Results: The features of galectin-9, OX40, OX40L, KIR2D, and KIR3D played an un-negatable 
contribution to overall survival (OS) and relapse-free survival (RFS) in the internal cohort, validated in 
public databases (GEPIA, HPA, and STRING). The IC-Score and Res-Score were two predictive models 
established by EfficientUnet and ResNet. Based on the IC-Score, Res-Score, and clinical features, the 
integrated score presented the highest AUC for OS and RFS, which could achieve 0.9 and 0.85 in the 
internal testing cohort. The robustness of Res-Score was validated in the external cohort (AUC: 0.80–0.87 
for OS, and 0.83–0.94 for RFS). Additionally, the neutrophil-to-lymphocyte ratio (NLR) combined with the 
PD-1/PD-L1 signature established by EfficientUnet can be a predictor for RFS in the external cohort.
Conclusions: Overall, we established a reliable model to risk-stratify relapse and death in NSCLC 
with a generalization ability, which provided a convenient approach to spatial analysis of single-plex 
chromogenic IHC.
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Introduction

Non-small-cell lung cancer (NSCLC) remains the top global 
reason for cancer-relevant deaths (1). Immunotherapy has 
evolved into the most promising cancer treatment strategies 
for NSCLC, accompanied by surprising therapeutic 
results of immune checkpoint inhibitors (ICIs) (2-4). 
Immune checkpoints pathways such as programmed cell 
death receptor-1 (PD-1)/programmed cell death ligand-1 
(PD-L1), lymphocyte activation gene-3 (LAG-3)/major 
histocompatibility complex class II (MHC-II), T cell 
immunoglobulin-3 (TIM-3)/galectin-9, tumor necrosis 
factor ligand superfamily member 4 (TNFSF4, OX40)/
tumor necrosis factor receptor superfamily member 4 
(TNFRSF4, OX40L), KIR2D, and KIR-3D from killer 
cell immunoglobulin-like receptors (KIRs) are modifiers in 
the immunomodulatory mechanism, which act as a switch 
for activation of T cells, natural killer cells (NK cells) and 
other immune cells (4,5). However, tumor cells could escape 
immune surveillance by unregulated expressing immune 
checkpoint molecules.

Most current studies exerted quantitative analysis on 
immune checkpoints, especially PD-1/PD-L1 (6), which is 
also a significant biomarker approved by the Food and Drug 
Administration (FDA) for the response of ICIs. Moreover, 
the existence and distribution of tumor-infiltrating 
lymphocytes (TILs) are related to a preferable survival and 
a strengthened efficacy to cancer treatments in multiple 
cancers, including NSCLC (7,8). These findings prompted 
the proposal of a series of immunohistochemistry (IHC)-
based predictive scores (9-11) in various cancers. However, 
most of these predictive scores only involve quantitative 
analysis, but not the spatial location of immune cells or 
immune checkpoints expression (12-16).

Multiplex immunohistochemistry (mIHC) has been 
considered a potential tool to reveal cell-cell interactions 
on a single section (17). Due to the spectral crosstalk 
in the mIHC, researchers need to purchase expensive 
hardware and software to visualize and analyze multiple 
biomarkers one by one (18). What is more, when multiple 
target proteins co-localize on the same cell, the cross-color 
interference caused by overlapping signals poses a huge 
challenge for mIHC (19). Limited by these deficiencies, 
most institutions have not achieved the conditions for 
performing the mIHC. However, due to the excessive 
workload of manually labeling tumor cells (TCs) and TILs 
in each whole slide, spatial analysis is still challenging to 
achieve in single-plex chromogenic IHCs. With the advance 
of medical artificial intelligence (20-23), making full use of 

single-plex chromogenic IHC techniques for spatial analysis 
between cells is critical to breaking through these economic 
and technical limitations.

To better reveal the function of immune checkpoints in 
the tumor microenvironment (TME), we applied a pattern 
recognition algorithm that identifies four types of TCs and 
TILs from single-plex chromogenic IHC sections, based 
on cell morphology and color. Upon cell segmentation, 
quantitative and spatial analysis of immune checkpoint 
expressions were carried out. Meanwhile, we performed 
another deep learning algorithm to extract prognostic 
features from IHC images to assist the prediction of immune 
checkpoint features in survival and relapse (Figure 1).  
We present the following article in accordance with the 
MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-96).

Methods

Ethics statement

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). It was approved by Shanghai 
Pulmonary Hospital Ethics Committee (approval number: 
15-235), and the written informed consent was obtained from 
all patients.

Human subjects

A total of 121 NSCLC patients with 1,859 tissue micro-
array (TMAs) images were included as the internal cohort 
at the Department of Oncology and Radiotherapy, Medical 
University of Gdansk, Poland, between April 2008 and August 
2010. For the external cohort, 30 NSCLC patients with 
214 whole-slide images were included at the Department of 
Medical Oncology, Shanghai Pulmonary Hospital in August 
2018. The follow-up deadline for the internal and external 
cohort was March 2016 and October 2020, respectively.

All patients were diagnosed as resectable NSCLC and 
had never received any treatment before the surgery. The 
patients who did not meet the diagnosis or lacked complete 
follow-up information were excluded. The tumor, nodes, 
and metastasis (TNM) stage of the internal cohort and 
external cohort was in term of the 7th and 8th editions of the 
TNM classification, respectively.

Single-plex chromogenic IHC staining

The single-plex chromogenic IHC was performed as 
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Figure 1 The research design and process of this study. We collected resected tumor tissues from 121 stage-I NSCLC patients and sliced 
them into paraffin sections for IHC staining of ten immune checkpoints. All sections were captured whole-slide images under microscopy 
(Part 1). Next, we inputted all original IHC images into the EfficientUnet-b3 model to acquire tumor cell segmentation masks. These 
masks were then processed with HSV thresholds, filtering, connected components extraction, and sampling to classify four types of cells 
in IHC images and the quantitative and spatial analysis of immune checkpoints expression on TCs and TILs. Fifty-five features were 
extracted upon analysis and were imputed into univariable and multivariable Cox regressions to establish the IC-Score (Part 2). Meanwhile, 
we also inputted all original IHC images into the Resnet to extract prognostic features and then applied univariable and multivariable Cox 
regressions to establish the Res-Score (Part 3). Further, to evaluate the performance of the IC-Score, Res-Score, and their combination with 
clinical features, we performed the AUC and NRI analysis on the dataset pretreated with 5-fold cross-validation with 100× bootstrap (Part 
4). Abbreviations: NSCLC, non-small cell lung cancer; IHC, immunohistochemistry; HSV, hue, saturation, and value; TC, tumor cell; TIL, 
tumor-infiltrating lymphocytes; IC-Score, immune checkpoints score; Res-Score, ResNet score; AUC, area under the receiver operating 
characteristic curve; NRI, net reclassification index.

published (24-31) (Figure 1). Ten primary antibodies 
for KIR 2D (L1, L3, L4, S4) (BC032422/ADQ31987/
NP_002246/NP036446, 1/75; Abcam, Cambridge, MA, 
USA), KIR 3D (L1) (AA 1-444, 1/1,500; Abcam), MHC 
Class II DP DQ DR (CR3/43, 1/100; Abcam), PD-1 (NAT 
105, predilute; Cell Marque, Rocklin, CA, USA), PD-L1 
(22C3; Dako, Carpenteria, CA, USA), GAL-9 (NBP2-
45619; Novusbio, CO, USA), OX40, OX40L, LAG-3, and 
TIM3 (EPR4392, 1/1,000; Abcam) were applied on TMA 
slides from the internal cohort. The antibodies for PD-1 
(ZM-0381, 1/100, Golden bridge zhongshan, Beijing, 
China), PD-L1 (13684S, 1/300, Cell Signaling, Beverly, 
MA, USA) were performed on whole IHC slides from the 

external cohort.

Tumor cell segmentation based on the EfficientUnet

This study performed the EfficientUnet model to 
segment the TCs and TILs, which was a combination 
of EfficientNet and UNet (32,33). UNet is a symmetric 
U-shaped fully convolutional neural network (CNN) 
developed initially for biomedical image segmentation, 
which processes a contraction path and an expansion path 
for encoder and decoder, respectively (32). EfficientNet 
is an adjusted CNN model which could scale the depth, 
width, and resolution of networks by a fixed set of scaling 
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factors (33). Considering the better performance of low-
level feature maps from encoder in the complicated spatial 
analysis, Baheti et al. originally applied EfficientNet (with 
intermediate low-level feature map) as the encoder of UNet 
(with intermediate high-level feature map) to replace the 
previous convolution layers (34). And the performance of 
EfficientUnet was much better than the other segmentation 
algorithms, including Dilated ResNet, ERFNet, DeepLab 
with ResNet18 Encoder, and the combination of UNet with 
ResNet or InceptionResNet (34).

As  the  Ef f i c i en tNet  has  e ight  va r i an t s ,  f rom 
EfficientNet-B0 to EfficientNet-B7. According to the 
preliminary experiment, EfficientNet-B3 has a comparable 
performance and the fewest parameters compared with 
EfficientNet-B4 to B7. Thus, we chose the EfficientNet-B3 
as the encoder, cooperated with the decoder architecture 
of the Unet to build a semantic segmentation network for 
two classes: tumor areas and non-tumor areas (Figure 1).  
The outputs of EfficientUnet were mapped to the range 
of 0 to 1, with a classification threshold of 0.5. There 
was no other preprocessing except image cropping since 
many diverse samples decreased the impact of color 
variability, with the application of data augmentation, 
including flip HueSaturationValue, RandomBrightness, and 
RandomContrast, to improve the adaptability.

We inputted all  1,859 original TMA images of 
3,000×3,000 pixels (px) into the EfficientUnet-b3 model to 
acquire TC segmentation masks. Two pathologists labeled 
the tumor areas in 20 slices via the LabelMe platform 
(Computer Science and Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, Boston, MA, 
USA; http://labelme.csail.mit.edu/Release3.0/). Further,  
21,000 patches were randomly cut out of multiple sizes 
(100×100 px, 144×144 px, 300×300 px, or 500×500 px) 
as the training set and the validation set at a ratio of 8:2. 
Finally, the number of trainable parameters of the final 
EfficientUnet was approximately 13M. The technical 
parameters were shown as below:

Epochs: 150; batch size: 12; input size: 320×320; loss 
function: BCEDiceLoss; optimizer: SGD (initial learning 
rate: 1e−3, momentum: 0.9, weight decay: 1e−4); scheduler: 
cosine annealing (minimum learning rate: 1e−5, patience: 2, 
gamma: 2/3).

The Sørensen-Dice coefficients (dice coefficient) of the 
EfficientUnet model on the training and validation set were 
up to 0.809 and 0.829. The slider cropping was also exerted 
on the internal testing set to cut out multi-size patches, and 
the multi-size prediction results were merged to produce 

the results. Finally, the dice coefficient of the EfficientUnet 
model on the internal testing set reaches 0.793. The above 
experiments were conducted with Pytorch (version 1.4.0) 
and 3×GTX1080Ti. The representative segmentation 
masks obtained by the EfficientUnet model are shown in 
Figure S1A,B,C.

The dice coefficient has been used to quantify the 
similarity between the predicted segmentation mask and the 
ground truth, calculated as below:

∩2 X Y
coefficient =

X + Y  
[1]

|X| represented the number of pixels in the predicted 
segmentation mask;

|Y| represented the number of pixels in the ground 
truth.

Classification of positive and negative cells

The segmentation task based on hue, saturation, and 
value (HSV) thresholding was performed on the tumor 
cell regions and the lymphocyte regions to distinguish 
the stained cells (brown) and unstained cells (blue). Here, 
we manually determined the threshold of positive cells 
on each slice by measuring the HSV of 30 cells per class 
with variable shades. The cutoff of each class was the 
range of the HSV values of the 30 cells of each class. 
Meanwhile, we also detected the cutoff of the impurity 
(such as artifacts and necroses) from 5 to 10 impure false-
positive staining of each IHC image according to the 
same procedure as positive and negative cells. All the 
impure staining of each slide was excluded based on the 
cutoff of HSV values. Next, we repeated this procedure 
for each slide to define the cutoff of positive cells one by 
one, which could manually solve the heterogeneity of the 
staining intensity among different samples. Afterward, 
mean filtering, morphological processing, and connected 
components extraction and corroded into scattered points 
to obtain virtual sampling cells. Finally, four types of cells, 
including positive TCs, positive TILs, negative TCs, and 
negative TILs, were sampled from the extracted connected 
components (Figure S1A,B,C).

Calculation of the distance between cells

The density of cells (cell/mm2) used in IHC research is an 
index with both spatial and quantitative information, which 
is calculated as the ratio of the number of positive cells and 

https://www.mit.edu/
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the size of the tissue. Since the TMAs used in the training 
and internal testing group were similar-sized circles, the 
comparative relationship between densities of different cells 
largely depends on the number of positive cells. To avoid 
the multicollinearity between the density and the number of 
positive cells, we detected the proximity distance between 
cells as spatial analysis.

The proximity distances between two types of cells in 
one tissue were defined as the nearest cell-to-cell distance’s 
mean value. In this study, we detected proximity distance 
of TIL all (negative and positive)

 -TC all, TC positive-TC 
positive, TIL 

positive 
-TC positive, TIL 

positive -TIL 
positive, and TIL 

positive-TC 
all for PD-

L1, galectin-9, TIM-3, OX40, OX40L, MHC-II, KID-2D, 
and KID-3D. Meanwhile, for PD-1 and LAG-3, only TIL 
all-TC all, TIL 

positive-TIL 
positive, and TIL 

positive-TC 
all can be 

detected due to the lack of expression on tumor cells. In this 

study, the distances between cells were calculated in pixels 
(px; 200 μm =123 px). The representative calculation of the 
above five distances was shown in Figure 2A,B,C,D,E.

Construction of the immune checkpoint score (IC-Score)

According to the quantitative and spatial analysis of 
1,859 TMA images, 55 parameters were extracted. 
Further, 55 parameters were inputted into the univariate 
Cox regression, and 22 significant features for overall 
survival (OS) and nine significant features for relapse-
free survival (RFS) were screened out (Table 1). The least 
absolute shrinkage and selection operator (LASSO)-Cox 
regression with 10-fold cross-validation (CV) method 
was then performed to select significant features from the 
significant prognostic markers to build formulas of the 

Figure 2 The representative images of segmentation and spatial analysis of the internal cohort. The local magnified images of the distance 
between all TCs and all TILs (A), all TCs and positive TILs (B), positive TILs and positive TILs (C), positive TCs and positive TCs (D), 
positive TCs and positive TILs (E). (A,B,C,D,E) were 150×150 px. Green dots represented positive TCs; red dots represented negative 
TCs; light blue represented positive TILs; dark blue represented negative TILs; and the red or yellow lines between cells were straight line 
distance between two cells. TC, tumor cell; TIL, tumor-infiltrating lymphocyte.

A

D

B

E

C

Positive tumor cells

Negative tumor cells

Positive tumor infiltrating lymphocytes

Negative tumor infiltrating lymphocytes
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Table 1 Significant factors in univariate cox regression of OS and RFS

Factors
OS RFS

No HR 95% CI P value No HR 95% CI P value

Distance between positive TILs (one positive TIL to another TIL)

PD-1

Near (≤125.34 px) 27 1.000

Far (>125.34 px) 74 1.975 1.078–3.618 0.028

OX40L

Near (≤48.14 px for OS, ≤61.55 px for RFS) 92 1.000 98 1.000

Far (>48.14 px for OS, >61.55 px for RFS) 23 1.788 1.076–2.989 0.025 17 1.801 1.032–3.144 0.038

OX40

Near (≤98.33 px) 92 1.000

Far (>98.33 px) 26 1.752 1.078–2.846 0.024

KIR-3D

Near (≤13.44 px) 13 1.000

Far (>13.44 px) 96 0.416 0.217–0.799 0.008

Distance between positive TCs (one positive TC to another positive TC)

TIM-3

Near (≤546.86 px) 59 1.000

Far (>546.86 px) 11 2.039 1.032–4.030 0.040

galectin9

Near (≤85.97 px for OS, ≤119.40 px for RFS) 65 1.000 75 1.000

Far (>85.97 px for OS, >119.40 px for RFS) 35 1.820 1.105–2.999 0.019 25 1.719 1.002–2.949 0.049

KIR-2D

Near (≤24.22 px) 68 1.000

Far (>24.22 px) 39 1.849 1.151–2.969 0.011

Distance between positive TCs and positive TIL (one positive TC to one positive TIL)

OX40L

Near (≤94.06 px) 50 1.000 50 1.000

Far (>94.06 px) 62 0.570 0.361–0.902 0.016 62 0.576 0.366–0.906 0.017

MHC-II

Near (≤18.68 px) 13 1.000

Far (>18.68 px) 97 0.374 0.200–0.699 0.002

KIR-3D

Near (≤20.28 px) 35 1.000 35 1.000

Far (>20.28 px) 73 2.337 1.366–3.977 0.002 73 2.444 1.379–4.330 0.002

Distance between all TCs and all TILs (one TC to one TIL)

Near (≤44.41 px) 83 1.000

Far (>44.41 px) 38 1.672 1.069–2.614 0.024

Table 1 (continued)
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Table 1 (continued)

Factors
OS RFS

No HR 95% CI P value No HR 95% CI P value

Distance between all TCs and positive TILs (one TC to one positive TIL)

OX40L

Near (≤173.56 px) 96 1.000

Far (>173.56 px) 20 1.731 1.025–2.922 0.040

OX40

Near (≤445.89 px) 104 1.000

Far (>445.89 px) 14 1.777 0.991–3.187 0.054

MHC-II

Near (≤44.03 px for OS, ≤135.56 px for RFS) 49 1.000 96 1.000

Far (>44.03 px for OS, >135.56 px for RFS) 63 1.415 0.915–2.299 0.113 16 1.761 0.984–3.150 0.057

KIR-2D

Near (≤223.71 px) 93 1.000

Far (>223.71 px) 16 1.833 1.031–3.258 0.039

KIR-3D

Near (≤21.19 px) 35 1.000 35 1.000

Far (>21.19 px) 74 2.235 1.208–3.901 0.005 74 2.017 1.181–3.443 0.010

Percentage of positive TILs

OX40

Low (≤44% for OS, ≤52% for RFS) 84 1.000 95 1.000

High (>44% for OS, >52% for RFS) 24 1.739 1.087–2.781 0.026 23 2.015 1.201–3.383 0.008

galectin9

Low (≤23% for OS, ≤20% for RFS) 22 1.000 20 1.000

High (>23% for OS, >20% for RFS) 83 1.964 1.002–3.850 0.049 85 2.053 1.016–4.149 0.045

KIR-2D

Low (≤37%) 46 1.000

High (>37%) 83 0.593 0.373–0.944 0.028

KIR-3D

Low (≤99% for OS, ≤85% for RFS) 84 1.000 26 1.000

High (>99% for OS, >85% for RFS) 25 0.327 0.128–0.836 0.020 83 0.327 0.128–0.833 0.019

Percentage of positive TCs

MHC-II

Low (≤93%) 99 1.000

High (>93%) 13 0.425 0.185–0.979 0.044

galectin9

Low (≤41%) 85 1.000

High (>41%) 20 0.450 0.223–0.909 0.026

Table 1 (continued)
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Table 1 (continued)

Factors
OS RFS

No HR 95% CI P value No HR 95% CI P value

KIR-3D

Low (≤99%) 95 1.000

High (>99%) 14 0.561 0.325–0.968 0.038

Clinical factors

Surgery type

Wedge 2 1.000

Segmentectomy 3 9534.267 0–3.547E+56

Lobectomy 62 7210.961 0–2.663E+56

Bilobectomy 7 6049.498 0–2.242E+56

Pneumonectomy 41 14177.646 0–5.236E+56

Sleeve lobectomy 6 10961.091 0–4.059E+56 0.020

Pathology

Adenocarcinoma 38 1.000

Non-adenocarcinoma 85 1.678 1.004–2.806 0.048

T-stage

1 85 1.000 85 1.000

2 36 2.011 1.260–3.210 0.003 36 2.011 1.260–3.210 0.003

N-stage

0 63 1.000 63 1.000

1 58 2.479 1.586–3.873 <0.0001 58 2.479 1.586–3.873 <0.0001

M-stage

0 114 1.000 114 1.000

1 7 4.019 1.803–8.961 0.001 7 3.855 1.734–8.574 0.001

Stage

1A 80 1.000 80 1.000

1B 41 5.188 3.242–8.301 <0.0001 41 4.092 2.574–6.504 <0.0001

No, number of each class; HR, hazard ratio; OS, overall survival; RFS, relapse-free survival; TC, tumor cell; TIL, tumor-infiltrating 
lymphocyte; KIR2D, killer cell immunoglobulin-like receptor-2D; KIR-3D, killer cell immunoglobulin-like receptor-3D; TIM-3, T cell 
immunoglobulin-3; LAG-3, lymphocyte activation gene-3; PD-1, programmed cell death receptor-1; PD-L1, programmed cell death 
ligand-1; MHC-II, major histocompatibility complex class II; OX40L, OX40-ligand. All cut-off points were determined by the X-Tile software.

IC-Score for OS and RFS (Figure 1).

Construction of the ResNet score (Res-Score)

The ResNet models we used in this study were ResNet 18, 
ResNet 101, and ResNet 152 in Pytorch 1.4.0, which were 

pre-trained on ImageNet (Table S1). All IHC images were 
inputted into the ResNet (35) to extract prognostic features. 
We calculated the mean of raw features obtained from all 
IHC images for the same patient. Further, we applied the 
univariable Cox regression and multivariable LASSO-Cox 
regression on these raw features to establish the Res-Score 

https://cdn.amegroups.cn/static/public/TLCR-21-96-supplementary.pdf


2461Translational Lung Cancer Research, Vol 10, No 6 June 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(6):2452-2474 | http://dx.doi.org/10.21037/tlcr-21-96

(Figure 1).

Construction of the integrated score

To optimize the IC-Score and Res-Score performance, we 
inputted all significant clinical and IHC analysis features 
(listed in Table 1) with the significant features extracted via 
the ResNet into the LASSO-Cox regression mentioned 
above to build formula of the integrated score (Figure 1).

Validation from the external cohort and public databases

To validate the accuracy of quantitative and spatial analysis 
of four types of cells and the performance of Res-Score, we 
recruited an external cohort of 30 NSCLC patients with 
214 whole-slide images at Shanghai Pulmonary Hospital. 
Considering the large size of raw whole-slide images 
(>50,000×50,000 px), five represented regions of interest 
(ROIs) of each slide were selected by two pathologists, with 
a size of 1,238×849 px. All these ROIs were inputted into 
the EfficientUnet trained by the internal training groups, 
and the same pre-trained ResNet was used in the internal 
cohort.

The external validation of the prognostic role and 
correlation of immune checkpoints proteins were 
performed via the survival plot and correlation analysis 
section from Gene Expression Profiling Interactive Analysis 
(GEPIA) database within lung adenocarcinoma (LUAD) 
and squamous cell carcinoma (LUSC) samples (http://
gepia.cancer-pku.cn/). The survival analysis between 
different mRNA levels of PD-1/PD-L1 was from the 
pathology section of the Human Protein Atlas (HPA) 
database within LUAD and LUSC samples (https://www.
proteinatlas.org/). The interaction analysis of correlated 
proteins in the internal cohort was validated via the multiple 
proteins section from the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING; https://string-db.
org/). Moreover, to enhance the prognostic signature of 
PD-1/PD-L1, we introduced a widely reported systemic 
inflammatory index, the neutrophil-to-lymphocyte ratio 
(NLR), in the external cohort. NLR was calculated as the 
ratio of neutrophils and lymphocytes count in the pre-
operate blood routine results.

Statistical analysis

The multiple imputation (36,37) was performed to fill the 

missing values. The clinical outcomes in this study were OS 
and RFS. The OS time was determined from the surgery 
to the death induced by any cause, while the RFS time was 
determined from the surgery to the disease recurrence.

Bivariable association between predictive variables and 
OS or RFS was evaluated by the Cox proportional hazards 
model and the log-rank test. The multivariable LASSO-
Cox regressions were used to establish integrated predictive 
models for OS and RFS. Further, the performance of risk-
stratification was assessed by the net reclassification index 
(NRI) and time-dependent receiver operating characteristic 
curve (ROC). The modeling process and predictive 
accuracy evaluation were exerted via 5-fold CV with 100× 
bootstrap resampling.

The optimal cutoff values of each feature were 
determined by the X-Tile software (38), which is based on 
the minimum P value or maximum Chi-square value. The 
one-way analysis of variance (ANOVA) was performed 
for statistical significance. All data analysis in this study 
was accomplished by R software (version 3.5.0, R Core 
Team), Python (version 3.7, Python Software Foundation), 
and GraphPad Prism (version 8.0, GraphPad Software). 
Statistical tests were two-sided, and P<0.05 was considered 
statistically significant.

Results

Characteristics of the patient cohort

The internal cohort included 1,859 TMA images of 121 
NSCLC patients. In this cohort, 96 (79.3%) patients 
were males, and 117 (96.7%) patients were smokers. Most 
patients (n=92, 76.0%) were under 70 years. Eighty (66.1%) 
patients had stage-IA NSCLC, while the rest had stage-IB 
NSCLC. Thirty-six (29.8%) patients had LUAD, and the 
rest had other NSCLC (Table S2).

The external set contained 214 IHC images (with a 
choice of 5 representative ROIs) on PD-1 and PD-L1 
from 30 resected NSCLC patients. In this cohort, 73.3% 
were under 70 years (n=22), 73.3% were male (n=22), 
30.0% were smokers (n=9), and 66.7% were diagnosed as 
adenocarcinoma (n=20). Moreover, 43.3% of the external 
cohort were at stage-I disease (n=13), while 33.3% (n=10) 
and 23.3% (n=7) were diagnosed as stage-II and stage-
III disease. In short, the external cohort had a similar 
characteristic of age and sex with the internal cohort, except 
the surgery procedures, TNM-stage, smoking status, and 
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histology (Table S1).

Quantitative and spatial analysis of 10 immune 
checkpoints

As mentioned in the Methods,  we performed the 
EfficientUnet to segment TCs and TILs (Figure S1A,B,C 
and Figure 2A,B,C,D,E). Among all immune checkpoints, 
TIM-3 and PD-L1 presented a relatively farther distance 
between TCpositive-TCpositive (TIM-3: 306.0±39.70 px; 
PD-L1: 240.0±46.29 px), TILpositive-TILpositive (TIM-3: 
131.9±16.97 px; PD-L1: 108.0±18.05 px), TCall-TILpositive 
(TIM-3: 283.1±25.03 px; PD-L1: 386.9±41.14 px), and 
TCpositive-TILpositive (TIM-3: 152.4±19.51 px; PD-L1: 
152.7±32.60 px). Moreover, KIR-3D appeared as the most 
densely distributed marker in the TME, with the nearest 
distance between TCpositive-TCpositive (50.60±9.862 px),  
TILpositive-TILpositive (24.33±3.318 px), TCall-TILpositive 
(44.98±6.256 px), TCpositive-TILpositive (37.08±4.834 px).  
The other spatial features were presented in Figures S2-S4,  
while the original distribution of the distance between 
TILpositive-TCall was shown in Figure S5A,B,C,D,E,F,G,H,I,J,K.

The percentage of positive TCs or TILs was calculated 
by the ratio of the number of positive TCs (or TILs) and 
all TCs (or TILs) on whole sections. KIR-3D presented 
the largest proportion of positive cells in both TCs 
(85.77%±2.316%) and TILs (75.50%±2.352%), while TIM-
3 and PD-L1 had the lowest positive percentage of TCs 
(TIM-3: 4.712%±0.8868%; PD-L1: 11.83%±2.129%) and 
TILs (TIM-3: 12.28%±1.806%; PD-L1: 19.38%±2.721%). 
The original distribution and mean values of other 
quantitative features were presented in Figure S5L,M. 
Moreover, we compared the AI-based quantitative results 
with manual evaluation from two pathologists and obtained 
a strong correlation (all R: 0.8476–0.9335; Figure 3A). Thus, 
this model presented a labor-saving way to automatically 
identify four types of cells with a comparable accuracy with 
manual recognition, which may promote the clinical routine 
test of multiple immune checkpoints.

Pearson correlation analysis identified a moderate 
correlation among LAG-3, OX40, OX40L, and KIR2D 
(R>0.5). As expected, the percentage of TILOX40+ and 
TCOX40L+ (R=0.7236; Figure S5N), and the percentage of 
TILOX40L+ and TCOX40+ (R=0.7294; Figure S5O) presented a 
relatively higher correlation. Surprisingly, the percentage of 
TILKIR2D+ (R=0.5737; Figure S5P) and TILOX40+ (R=0.5720; 
Figure S5Q) were significantly correlated with that of 
TILLAG-3+. The percentage of TCOX40+ (r=0.5654; Figure S5R)  

and TCOX40L+ (R=0.5564; Figure S5S) both had a similar 
correlation with TCLAG3+.The distance of TCOX40L+-
TCOX40L+ and the distance of TIL2D+-TIL2D+ were the only 
pair of spatial variables with significant correlation (R=0.628; 
Figure S5T). In conclusion, the interaction among the 
above three pathways (MHC-II/LAG-3, OX40/OX40L, 
and KIR2D) revealed the great potential of combining 
immune checkpoint inhibitors, which could provide new 
ideas for clinical combinational immunotherapy.

The impact of quantitative and spatial analysis of immune 
checkpoints on prognosis

When performing the univariate Cox regression analysis 
on the OS based on the raw data, 20 IHC-related variables 
remained significant risk factors (P<0.05). Moreover, we 
assumed the distance between TCall-TILOX40+ (P=0.054) 
as a marginally significant factor for OS. Among these 
21 variables, the distance between TCall-TIL positive (n=4), 
the distance between TILpositive-TILpositive (n=4), and the 
percentage of positive TILs (n=4) led in quantity. For ten 
markers included in this study, KIR-3D-related variables 
presented an enormous amount (n=5), while PD-L1 
or LAG-3 related variables did not prove independent 
prognostic factors (Table 1 and Table S2).

In terms of RFS, eight variables were independently 
significant (P<0.05), and the distance of TCall-TILMHCII+ 
(P=0.057) was the only marginal risk factor (Table 1;  
Table S2). Notably, all independent prognostic factors for 
RFS (P<0.05) were a subset from those for OS.

Construction of the IC-Score

As mentioned in Methods, we performed data preprocessing 
via the multiple imputations to complete all 121 patients’ 
variables and then randomly split all patients into 100 
training groups (n=90) and 100 internal testing groups 
(n=31).

To establish an IC-Score, we inputted all significant 
prognostic factors for OS and RFS (listed in Table 1) into 
a multivariable LASSO-Cox regression based on the 
minimal lambda (39), including two marginally significant 
variables. When analyzing the parameter’s contribution in 
the IC-Score for predicting OS, the percentage of positive 
TCs, the distance between positive TCs and TILs, and 
the percentage of positive TILs were the most significant 
classification (Figure 3B). However, the percentage of TCs 
were not substantial for RFS (Figure 3C). Moreover, the 
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Figure 3 The composition and function analysis of IC-Score, Res-Score, and integrated score. (A) The correlation coefficient (R value) 
between the manual and AI-based counting via the Spearman correlation test. The relative contribution of each quantitative and spatial 
classification in the IC-Score for OS (B) and RFS (C) is based on all internal testing groups'’ mean coefficient. The relative contribution 
of each immune checkpoint in the IC-Score for OS (D) and RFS (E) is based on all internal testing groups'’ mean coefficient. The 
number of internal testing groups with a P- value <0.05 in the log-rank test for OS (F) and RFS (G). ***P<0.001. From left to right are 
sub-group analysis in all patients, stage-IA disease, stage-IB disease, LUAD, and non-LUAD. TC, tumor cell; TIL, tumor-infiltrating 
lymphocyte; KIR2D, killer cell immunoglobulin-like receptor-2D; KIR-3D, killer cell immunoglobulin-like receptor-3D; TIM-3, T cell 
immunoglobulin-3; LAG-3, lymphocyte activation gene-3; PD-1, programmed cell death receptor-1; PD-L1, programmed cell death 
ligand-1; MHC-II, major histocompatibility complex class II; OX40L, OX40-ligand; OS, overall survival; RFS, relapse-free survival.

spatial parameters made an outstanding contribution, with 
a proportion of 46.36% and 69.82% for OS and RFS, 
respectively. Further, the spatial and quantitative parameters 
of KIR-3D were a notable predictor, which occupied a 
second-highest proportion followed by galectin-9 in OS 
and the highest proportion in RFS (Figure 3D,E).

When exerting Kapan-Meier survival curves with the 
log-rank test on 100 internal testing groups, patients with 
a low IC-Score from 95 groups had a significantly longer 
OS time than the ones with a high IC-Score. In subgroup 
analysis, the OS time of stage-IA and stage-IB could be 
significantly stratified by the IC-Score in 68 internal 
testing groups and 17 internal testing groups, respectively 
(stage IA vs. stage IB: P<0.001). As for the pathological 
subtype, the OS time of LUAD patients and non-LUAD 
patients in 46 and 68 internal groups could be stratified 
with the IC-Score (LUAD vs. non-LUAD: P=0.0017; 
Figure 3F).

In 50% (50/100) of internal testing groups, patients 
with a higher IC-Score were associated with a higher risk 
of recurrence. In stage-IA and stage-IB, patients from  
37 groups and 15 groups were fit with the association of 

Res-Score and RFS (stage IA vs. stage IB: P<0.001). Patients 
with a LUAD from 21 groups and those with a non-LUAD 
from 27 groups had a different RFS time with a different 
IC-Score (LUAD vs. non-LUAD: P=0.3205; Figure 3G). 
The survival analysis of OS and RFS in three training 
groups and internal testing groups were shown in Figure 4 
and Figure S6, respectively.

Construction of the Res-Score

As for the construction of Res-Score, we imputed all 
significant features extracted by the ResNet (Table S3) 
into a multivariable LASSO-Cox regression. In 96 internal 
testing groups, patients with a low Res-Score presented with 
a dramatically longer OS time than those with a high Res-
Score. Among patients with stage-IA of 84 internal testing 
groups, the Res-Score was still a predominant marker to 
distinguish OS time. A similar conclusion can be drawn for 
patients in stage-IB from 29 internal testing groups (stage-
IA vs. stage-IB: P<0.001). The risk-stratification function 
of the Res-Score was also demonstrated in patients with a 
LUAD of 46 internal testing groups and those with a non-
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Figure 4 The IC-Score for OS measured by time-dependent ROC curves and Kaplan-Meier survival in the representative 3 training and 
internal testing groups. (A) Training group I; (B) internal testing group I; (C) training group II; (D) internal testing group II; (E) training 
group III; (F) internal testing group III. We used AUCs at 1, 2, and 3 years to assess prognostic accuracy of OS, and calculated P values 
using the log-rank test. Data represent AUC or P value. HR, hazard ratio; AUC, area under ROC; ROC, receiver operator characteristic. 
The cut-off point was determined by the X-Tile software, and the time-dependent AUC with 95% CI was calculated by the “timeROC” 
package of R software.
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LUAD from 64 internal testing groups (LUAD vs. non-
LUAD: P=0.0105; Figure 3F). The survival analysis of OS 
in three training groups and internal testing groups were 
shown in Figure 5.

A high Res-Score is correlated to a growing risk of 
recurrence in 84 internal testing groups for all patients. 
In patients with stage-IA and stage-IB, 77 groups and  
20 groups met the above rule (stage-IA vs. stage-IB: 
P<0.001). In patients with a LUAD and a non-LUAD,  
35 groups and 60 groups met the above rule (LUAD vs. 
non-LUAD: P<0.001; Figure 3G). The survival analysis of 
RFS in three training groups and internal testing groups 
were shown in Figure S7. In summary, the IC-Score 
distinguished OS better than RFS, while the Res-Score 
had a more stable prognostic capability between OS and 
RFS. Moreover, both the IC-Score and the Res-Score were 
less significant in stage-IB and non-LUAD, which might 
attribute to the small sample of stage-IB or non-LUAD.

Construction of the integrated score based on the IC-Score 
and the Res-Score

We further combined IC-Score, Res-Score, and clinical 
factors to establish an integrated score. Here, we input 
all significant features from the univariable analysis into a 
multivariable LASSO-Cox regression, including clinical 
characteristics, spatial or quantitative features of immune 
checkpoints (listed in Table 1), and the prognostic features 
extracted from ResNet models.

Surprisingly, the integrated score was a robust predictor 
of OS in all internal testing groups, where patients with a 
high integrated score presented with a higher probability of 
death. According to the subgroup analysis, 90% of internal 
testing groups in stage-IA and 23% of stage-IB demonstrated 
a similar conclusion (stage-IA vs. stage-IB: P<0.001). Forty-
four groups of patients with a LUAD and 71 groups of those 
with a non-LUAD presented a significantly lower OS rate 
when classified as a high integrated score (LUAD vs. non-
LUAD: P<0.001; Figure 3F). The survival analysis of OS in 
three training groups and internal testing groups were shown 
in Figure 6.

Patients with a high integrated score were more likely to 
relapse in 91% of internal testing groups for all stages. In 
stage-IA, patients’ RFS time from 73% of internal testing 
groups could be dramatically divided into two classifications. 
In stage-IB, 15% of internal testing groups demonstrated 
a similar situation (stage-IA vs. stage-IB: P<0.001). The 
integrated score can risk-stratify patients’ RFS time with 

a LUAD and non-LUAD in 46 and 68 internal testing 
groups, respectively (LUAD vs. non-LUAD: P=0.0017; 
Figure 3G). The survival analysis of RFS in three training 
groups and internal testing groups were shown in Figure S8. 
In summary, the predictive efficiency of the integrated score 
for OS was also more likely to be significant than those for 
RFS. Meanwhile, the performance of the integrated score 
also correlated with TNM-stage and pathological subtypes. 
Moreover, the prognostic significance of the integrated 
score for RFS, especially in pathological subgroups, was 
superior to the IC-Score and Res-Score (Figure 3G).

Performance of IC-Score, Res-Score, and integrated score

The ability of the integrated score to predict 1-year 
[mean area under the receiver operating characteristic 
curve (AUC): 0.907], 2-year (mean AUC: 0.913), and 
3-year OS (mean AUC: 0.892) was superior to that of IC-
Score, Res-Score, clinical factors, and their combinations  
(Figure 7A,B,C; all P<0.001). Moreover, the integrated score 
was proved as the most potent predictor for 1-year (mean 
AUC: 0.854), 2-year (mean AUC: 0.864), and 3-year RFS 
(mean AUC: 0.843; Figure 7D,E,F; all P<0.001). However, 
the predictive performance of IC-Score (1-year mean AUC: 
0.713; 2-year mean AUC: 0.697; 3-year mean AUC: 0.689) 
for relapse was poorer than that of the Res-Score (1-year 
mean AUC: 0.781; 2-year mean AUC: 0.816; 3-year mean 
AUC: 0.804) and clinical features (1-year mean AUC: 0.774; 
2-year mean AUC: 0.735; 3-year mean AUC: 0.691). Thus, 
the performance of the combination of the Res-Score with 
clinical features (1-year mean AUC: 0.843; 2-year mean 
AUC: 0.863; 3-year mean AUC: 0.843) was extremely close 
to that of the integrated score.

Due to the evenly matched performance of the 
integrated score and the Res-Score combination with 
clinical features, we further performed the NRI analyses 
(Figure 7G). Most of the NRI analysis results were in 
accordance with that of ROC analysis. Compared with 
other models, the integrated score presented a notable 
improvement of predictive accuracy, except the Res-
Score combined with clinical variables for RFS. Although 
the integrated score demonstrated a weak advantage on 
predicting 1-year (mean NRI: 0.028) and 2-year RFS (mean 
NRI: 0.010), the predictive accuracy of the integrated 
score for 3-year RFS was marginally more insufficient 
than that of the combination of the Res-Score with clinical 
variables (mean NRI: −0.005). In summary, the integrated 
score, based on quantitative and spatial analysis of immune 
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Figure 5 The Res-Score for OS measured by time-dependent ROC curves and Kaplan-Meier survival in the representative 3 training and 
internal testing groups. (A) Training group I; (B) internal testing group I; (C) training group II; (D) internal testing group II; (E) training 
group III; (F) internal testing group III. We used AUCs at 1, 2, and 3 years to assess prognostic accuracy of OS, and calculated P values 
using the log-rank test. Data represent AUC or P value. HR, hazard ratio; AUC, area under ROC; ROC, receiver operator characteristic. 
The cut-off point was determined by the X-Tile software, and the time-dependent AUC with 95% CI was calculated by the “timeROC” 
package of R software.
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Figure 6 The integrated score for OS measured by time-dependent ROC curves and Kaplan-Meier survival in the representative 3 training 
and internal testing groups. (A) Training group I; (B) internal testing group I; (C) training group II; (D) internal testing group II; (E) training 
group III; (F) internal testing group III. We used AUCs at 1, 2, and 3 years to assess prognostic accuracy of OS, and calculated P values 
using the log-rank test. Data represent AUC or P value. HR, hazard ratio; AUC, area under ROC; ROC, receiver operator characteristic. 
The cut-off point was determined by the X-Tile software, and the time-dependent AUC with 95% CI was calculated by the “timeROC” 
package of R software.
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Figure 7 The performance evaluation of all prognostic models. The predictive accuracy for 1-year OS (A), 2-year OS (B), 3-year OS (C), 
1-year RFS (D), 2-year RFS (E), and 3-year RFS (F) based on the AUC with 100× bootstrap resampling for each model is shown in a box 
plot. Median values of 100× bootstrap resampling are shown with thick lines, and the mean values are shown by dots in the boxes. The mean 
NRIs of the comparison between the integrated-score and the rest models based on 100× bootstrap resampling is presented in table (G). 
OS, overall survival; RFS, relapse-free survival; IC-Score, immune checkpoint score; Res-Score, ResNet score; AUC, AUC, area under the 
receiver operating characteristic curve.
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checkpoints, and prognostic features extracted by ResNet 
models, demonstrated a stable potential to predict OS and 
RFS in resected NSCLC. The solid prognostic value of the 
integrated score provided an approach to a convenient risk-
stratification of the patient by inputting all patients’ relevant 
immune-checkpoint-staining IHC images into the model.

External validation of the EfficientUnet model and the 
Res-Score

In the internal cohort, the percentage of the cells expressed 
galectin9, OX40, OX40L, KIR-2D, and KIR-3D played an 
essential function in OS or RFS. According to the GEPIA 
dataset, the gene expression of KIR2DL1 (P=0.029 for 
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OS), KIR2DL3 (P=0.017 for OS; P=0.038 for RFS), and 
KIR2DL4 (P=0.014 for OS) were significant for survival 
in LUAD and LUSC patients, with a similar hazard ratio 
(HR) of the internal cohort (Figure S9A,B,C). Although 
the survival time with different expression levels of the 
rest molecules did not reach a statistical difference, their 
HR trends were also consistent with internal groups  
(Figure S9D,E,F,G,H). Moreover, the correlation of LAG3-
OX40 (P<0.0001, R=0.39), LAG3-OX40L (P<0.0001, 
R=0.44), LAG3-KIR2D (KIR2D-L1: R=0.37; KIR2D-L3: 
R=0.48; KIR2D-L4: R=0.59; KIR2D-S4: R=0.34; all 
P<0.0001), except the correlation of KIR2D-OX40 (all 
R≤0.25), were also validated on gene-level from the GEPIA 
dataset (Figure S10). The interaction of KIR2D and OX40 
proteins was relatively indirect and mediated by LAG3 
from the STRING database, which might be postulated 
to explain the lower correlation of KIR2D and OX40  
(Figure S11A). In short, these similar trends between 
the public data and the internal cohort validated the 
reliability of the conclusion, which were drawn based on the 
segmentation of TCs and TILs and further classifications of 
positive and negative cells.

According to the HPA dataset, the mRNA levels of PD-
L1 and PD-1 were not significant for OS (Figure S11B,C),  
which is the same as the conclusion from the internal 
cohort. With the quantitative and spatial analysis of PD-1/
PD-L1 expressions through the EfficientUnet in the 
external cohort (Figure 8A,B), the principal component 
analysis (PCA) was further exerted to obtain a 5-dimension 
PD-1/PD-L1 signature whose cumulative proportion of 
explained variance approached 76.2% (Figure S11D). The 
distance of TILPD1+-TILPD1+, TILPDL1+-TILPDL1+, TCPDL1+-
TILPDL1+, and TCs-TILs were the features with the most 
representation (cos2; Figure 8C) and contribution (contrib; 
Figure S11E). The image processing of IHC images on PD-
1/PD-L1 from the external testing cohort was presented 
in the Figure S12. Further, 30 patients were clustered into 
two groups through the k-mean clustering, while the two 
clusters did not present any significant difference in OS 
and RFS (Figure 8D,E). Surprisingly, the combination of 
preoperative NLR from the blood routine and the PD-1/
PD-L1 signature was not a robust prognostic index for 
OS (Figure 8F), but was vital for RFS (P<0.0001 for RFS;  
Figure 8G), although NLR was not a significant feature for 
OS and RFS in this population (Figure 8H,I). Thus, the 
combination of PD-1/PD-L1 signature with NLR might be 
a potential prognostic biomarker of clinical immunotherapy, 
compared with the PD-1/PD-L1 signature alone.

Moreover, we input all ROIs of the external cohort into the 
ResNet trained by the internal cohort to obtain raw features. 
Further, we took the corresponding features into the internal 
cohort formula to calculate the Res-Score for the external 
cohort. The patients with a higher Res-Score presented a 
significantly lower OS time and RFS time than those with a 
lower Res-Score (P<0.001 for OS; P=0.0097 for RFS; Figure 
8J,K). The Res-Score also presented a stable predictive ability 
for OS [1.5-year AUC: 0.800 (0.622–0.978); 1.75-year AUC: 
0.868 (0.718–1.019); 2-year AUC: 0.861 (0.703–1.019)] and 
RFS [1.5-year AUC: 0.875 (0.667–1.083); 1.75-year AUC: 
0.941 (0.826–1.057); 2-year AUC: 0.826 (0.627–1.026)] 
(Figure 8L). In short, the high performance of the Res-Score 
in the external cohort validated its generalization ability in 
various populations, which provided the great potential to 
assist clinical decisions in various institutes.

Discussion

This study implemented quantitative and spatial analysis 
of ten immune checkpoints on TCs and TILs based on 
the EfficientUnet and ResNet to establish predictors 
for OS and RFS. Further, the IC-Score and Res-Score 
constructed by LASSO-Cox regressions were significant 
prognostic biomarkers for OS and RFS (all  mean  
AUC >0.75). The integrated score was a combination of the 
IC-Score, Res-Score, and clinical variables, demonstrating 
a notable improvement in prognostic ability. Moreover, 
the prognostic role and correlation of significant immune 
checkpoint proteins were validated from public datasets. 
Further, the Res-Score demonstrated a stable performance 
in the external cohort, presenting a generalization ability 
among different populations. In conclusion, we revealed 
that the spatial analysis and deep learning of single-plex 
chromogenic IHC held an excellent value in risk-stratify 
relapse and death in resected NSCLC.

Current studies have confirmed that the PD-1/PD-
L1 axis was prevalent in resected NSCLC (stage I-III) by 
identifying a tangible PD-1 expression on TILs and an 
increased PD-L1 expression on TCs (40). Moreover, the 
application of ICIs in resected NSCLC patients has also 
been proved an efficient approach by clinical trials and was 
promising to decrease postoperative recurrence risks (41,42). 
However, these previous studies primarily focused on the 
PD-1/PD-L1 pathway, and a robust biomarker for multiple 
immune checkpoints in NSCLC was still absent. Thus, the 
IC-Score, Res-Score, and integrated score showed a great 
potential to screen out the resected NSCLC patients whose 
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Figure 8 The quantitative and spatial analysis of PD-1/PD-L1, and the performance of the Res-Score in the external cohort. The density 
curves of spatial features (A) and quantitative features (B) of PD-1/PD-L1 proteins. The spatial features included the distance of TILPD1+ 

to TILPD1+ (mean ± SEM: 84.77±7.32 px), TILDL1+ to TILPDL1+ (89.76±7.26 px), TCPD1+ to TCPD1+ (181.7±10.00 px), TCPDL1+ to TCPDL1+ 
(248.7±15.14 px), TCPD1+ to TILPDL1+ (104.2±7.593 px), TCPDL1+ to TILPDL1+ (130.0±5.436 px), TCall to TILPD1+

 (188.8±16.41 px), TCall to 
TILPDL1+ (383.8±15.59 px), and TCall to TIL (40.96±1.202 px). The quantitative features included the ratio of TIL-PD1+ (0.2207±0.02319), 
TIL-PDL1+ (0.4103±0.06764), TC-PD1+ (0.1747±0.01837), and TC-PDL1+ (0.2370±0.03319). (C) The cos of each feature of PD-1/PD-L1 
in each dimension of the PCA. The Kaplan-Meier curves of the PD-1/PD-L1 signature clustering for OS (D) and RFS (E), the combination 
of NLR and the PD-1/PD-L1 signature for OS (F) and RFS (G), NLR for OS (H) and RFS (I), and the Res-Score for OS (J) and RFS (K). 
(L) The AUC of the Res-Score for 1.5-year, 1.75-year, 2-year OS and RFS. The lines represent the 95% CI of each AUC value. *The cut-off 
points of (A, B, G, H) were determined by X-Tile software. PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; Res-
Score, ResNet-Score; OS, overall survival; RFS, relapse-free survival; TC, tumor cell; TIL, tumor-infiltrating lymphocyte; SEM, standard error 
of the mean; HR, hazard ratio; px, pixel; AUC, area under the receiver operating characteristic curve.
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risk of relapse and death was relatively high and might 
benefit from the ICIs targeting the ten immune checkpoints 
included in this study.

Secondly, the quantitative and spatial analysis of immune 
checkpoints revealed a clue for future combinational 
ICIs administration. We found a correlation between the 
quantity or distribution of OX40/OX40L, LAG-3, and 
KIR2D. Although there have not been any published 
research confirming an improved clinical efficacy of the 
combination of anti-OX40 with anti-LAG3 or anti-KIR2D 
on NSCLC patients, a series of experiments have posed 
evidence anti-OX40 could improve T cell differentiation 
and cytolytic function (43). The relevance between the 
expression of LAG-3 and KIR2D seemed to be a novel 
perspective for combinational immunotherapy since current 
clinical trials used to combine anti-KIR2D with anti-
PD1. The function of LAG-3 on NK cells was not well 
investigated and controversial. However, a factual finding 
was that inhibition of LAG-3 could increase the secretion 
of interferon-gamma (IFN-γ), tumor necrosis factor-
alpha (TNF-α), macrophage inflammatory proteins-1 
alpha (MIP-1α), MIP-1β, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (44). In this way, the 
expression of LAG-3 could collaborate with the inhibition 
of NK cell functions from KIR2D.

Thirdly, the quantitative and spatial features of PD-1/
PD-L1 proteins in both internal and external cohorts did 
not play a significant role in the prognostic prediction, 
although the PD-1/PD-L1 axis was the most targeted 
protein in immunotherapy. Meanwhile, the inflammation 
response, such as the status of neutrophils and lymphocytes, 
is considered as a critical factor in cancer initiation, 
treatment, and prognosis. Thus, the NLR could assist 
the PD-1/PD-L1 in predicting OS and RFS, consistent 
with recent studies (45-47). Whether the combination of 
preoperative NLR and PD-1/PD-L1 signature correlated 
with the response to ICIs remains to be investigated, but it 
still provides hope for discovering therapeutic biomarkers 
of ICIs.

There remained several limitations in this study. First, 
the internal cohort of this study included a proportion of 
missing data. Although we performed multiple imputations 
to compensate for the missing features, the statistical results 
might partially differ from the raw data. Secondly, the 
staining proteins of external IHC slides were less than that 
of internal IHC slides, which is not conducive to validating 
the IC-Score in the external testing cohort. Further, the 
segmentation of TCs and TILs was based on regional 

labeling instead of individual cells, which needs to be 
further optimized.

In conclusion, we provided an economical and convenient 
approach to analyzing the single-plex chromogenic IHC 
of multiple immune checkpoints, promising to risk-stratify 
relapse and death in resected NSCLC.
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