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Abstract: Differences in adipose tissue deposition and properties between pig male sex categories, i.e.,
entire males (EM), immunocastrates (IC) and surgical castrates (SC) are relatively well-characterized,
whereas the underlying molecular mechanisms are still not fully understood. To gain knowledge
about the genetic regulation of the differences in adipose tissue deposition, two different approaches
were used: RNA-sequencing and candidate gene expression by quantitative PCR. A total of 83 differ-
entially expressed genes were identified between EM and IC, 15 between IC and SC and 48 between
EM and SC by RNA-sequencing of the subcutaneous adipose tissue. Comparing EM with IC or SC,
upregulated genes related to extracellular matrix dynamics and adipogenesis, and downregulated
genes involved in the control of lipid and carbohydrate metabolism were detected. Differential
gene expression generally indicated high similarity between IC and SC as opposed to EM, except
for several heat shock protein genes that were upregulated in EM and IC compared with SC. The
candidate gene expression approach showed that genes involved in lipogenesis were downregulated
in EM compared with IC pigs, further confirming RNA-sequencing results.

Keywords: pigs; adipose tissue; entire males; immunocastration; surgical castration; RNA-sequencing;
expression

1. Introduction

Castration of male piglets has been practised for centuries, mainly to prevent con-
sumers’ negative response to boar taint. The most common practice is surgical castration
performed within the first week of piglets’ life [1] and, therefore, represents an early-life de-
privation of male hormones. Lately, surgical castration as practised has been criticised and
its further use questioned due to the pain inflicted to the animals during the procedure [2].
The two most viable alternatives are rearing of entire males (EM) or immunocastrated
males (IC) [3–5]. Entire males are characterised by a high androgenic potential compared
to surgically castrated pigs (SC), show a higher capacity for protein and a lower capacity
for lipid deposition [6,7], and are, therefore, also more cost-effective. On the other hand,
rearing EM is problematic due to more aggressive behaviour, excessive carcass leanness,
inferior fat and meat quality of EM, and especially the development of boar taint [8,9]. The
second alternative is immunocastration, which is a procedure of immunogenic blocking
of testicular function consisting of the vaccination against endogenous gonadotropin-
releasing hormone (GnRH) causing a castration-like effect [10,11]. For an effective response,
the vaccine should be administered twice. According to the most common vaccination
practice, the first dose is administered early in life at around 10–12 weeks of age, and the
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second dose is administrated at around 19–21 weeks (i.e., 4–6 weeks before slaughter),
which denotes that the deprivation of male hormones is effective later than in the case of
SC. Before the second vaccination (V2), IC pigs are metabolically equal to EM [11,12], but
after V2, their metabolism progressively turns towards more castrate-like, with a notable
increase in feed intake and fat tissue deposition [13,14], which increases almost linearly
with the time elapsed from the V2 to slaughter [15]. We recently demonstrated [16] that
the increase in quantity of fat depots after immunocastration is associated with a larger
adipocyte and lobulus surface area in the backfat, together with notably increased activity
of lipogenic enzymes (i.e., fatty acid synthase, glucose 6-phosphate dehydrogenase, malic
enzyme and citrate cleavage enzyme) and increased fat saturation as a result of the elevated
de novo synthesis of palmitic and stearic acids.

Studies addressing the causal molecular processes responsible for the differences in
fat deposition between male sex categories are scarce. Moreover, the existing investiga-
tions [17–19] were merely focused on the comparison between EM and SC pigs. In these
studies, the underlying molecular regulations between EM and SC were identified by as-
sessing the differences in gene expression using quantitative PCR (qPCR) [17] or microarray
approach [18,19]. Quantitative PCR is highly sensitive and reproducible; however, it can
capture the expression of a relatively small number of transcripts, while microarray tech-
nology is capable of capturing the expression of the larger, but predefined set of transcripts.
Another approach, a high-throughput sequencing technology (RNA-seq), has recently
become the preferred method for determination of RNA presence and quantity due to
the detection of the large dynamic range of expression levels [20]. In the present study,
RNA-seq analysis was performed to find possible molecular mechanisms responsible for
the differences in fat deposition between male sex categories. To remove animal-specific
differences and to highlight general genes and mechanisms with the highest variance,
RNA-seq on pooled RNA samples was performed [21]. However, it is possible that some
genes, with lower expression variance, might not be detected when samples are pooled.
Therefore, pooled RNA-seq was complemented with a candidate gene expression approach
using qPCR on individual animals to discover the expression of the target genes with the
known importance for the main lipid metabolic mechanisms.

The objective of our study was to characterize the underlying molecular processes
occurring in the adipose tissue of EM, IC and SC pigs using two approaches: the detection
of differentially expressed genes and identification of gene networks using RNA-seq on
pooled RNA; validation of differentially expressed genes discovered by RNA-seq as well
as measuring the expression of pre-selected candidate genes involved in lipid metabolism
on individual animals by qPCR.

2. Results
2.1. RNA-Sequencing Approach
2.1.1. Description of RNA-seq Data

RNA-seq approach was performed to identify genes and gene pathways responsible
for the differences in backfat tissue properties according to male sex category (i.e., EM,
IC and SC). The sequencing yielded approximately 89.5 million paired-end raw reads per
pool. A total of 77.1, 96.7 and 91.0 million high-quality reads were obtained for EM, IC and
SC pig samples, respectively (Supplementary Table S1). Approximately 77% of the clean
reads were mapped to the annotated Sscrofa 10.2 genome (Ensembl release 89). Of all the
mapped clean reads, 72.2–73.03% of reads had unique matches and 4.24–4.53% showed
multiple-position matches (Supplementary Table S2).

2.1.2. Gene Expression Level Analysis

Gene expression level was estimated for each sample. A total of 12,120 genes were
expressed in adipose tissue of EM, IC and SC pigs. Among them, 112, 220 and 229 genes
were uniquely expressed in EM, IC and SC, respectively (Supplementary Figure S1).
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2.1.3. Differential Expression Analysis

Differential expression analysis detected 83 differentially expressed genes between
EM and IC with |log2(fold change) > 1| and −log10(q-value) < 0.005 (Figure 1a). Among
them, 60 genes were upregulated and 23 were downregulated in EM compared with IC.
Comparing IC and SC (Figure 1b), 15 significantly differentially expressed genes were
detected. Among them, six genes were upregulated and nine were downregulated in IC
compared with the SC. There were 48 differentially expressed genes between EM and SC,
with 40 genes upregulated and 8 genes downregulated in EM compared with SC. The
Volcano plot (Figure 1) shows differentially expressed genes between EM and IC, IC and
SC, and EM and SC. The complete lists of all identified differentially expressed genes with
their respective fold changes p- and q-values are given in Supplementary Table S3.

The common differentially expressed genes were identified in the pair-wise compar-
isons between sex categories (Figure 2). The comparisons of EM vs. IC and EM vs. SC
showed 33 common genes, the comparisons EM vs. IC and IC vs. SC showed 10 common
genes, while the comparisons EM vs. SC and IC vs. SC showed three common genes.

To annotate differentially expressed genes related to the adipose tissue regulation in
different male sex categories, the GO (Gene ontology) (Figure 3) and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathways (Figure 4) were analyzed for the upregulated
and downregulated genes, respectively. Regarding the genes upregulated in EM compared
with IC (Figure 3a), the GO terms were mainly related to the extracellular region, including
the extracellular matrix, extracellular space, extracellular region part and proteinaceous
extracellular matrix (adj. p < 0.05), while the downregulated genes were related to mono-
carboxylic acid metabolic process, monosaccharide biosynthetic process, single organism
metabolic process, small molecule metabolic process and molecular function of oxidore-
ductase activity (adj. p < 0.05). No significantly enriched GO terms or pathways were
found for the genes that were differentially expressed between IC and SC. Concerning the
upregulated genes in EM compared with SC pigs, there were seven significantly enriched
GO terms (Figure 3c). A total of four of them belonged to the cellular component category
and were, as in the case of EM vs. IC comparison, mostly associated with the extracellular
region. Molecular function category also contained the term extracellular matrix structural
constituent, while the biological process category contained the terms protein trimerization
and protein heterotrimerization (adj. p < 0.05). No significantly enriched terms were found
for the downregulated genes in EM compared with SC pigs. The complete lists of top 15
identified GO terms with corresponding differentially expressed genes are reported in
Supplementary Table S4.

Pathway analysis showed that the upregulated genes in EM compared with IC
(Figure 4a) were associated with the extracellular matrix receptor interaction, focal ad-
hesion, protein digestion and absorption and the renin-angiotensin system (adj. p < 0.05),
whereas the downregulated genes in EM vs. IC (Figure 4b) were mainly enriched in the
adipocytokine signaling pathway, adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway, carbon metabolism, insulin signaling pathway and peroxisome
proliferator-activated receptor signaling pathway (adj. p < 0.05). The downregulated genes
in IC vs. SC were in three pathways, with the most relevant one being oxidative phospho-
rylation (adj. p < 0.05). Comparing EM with SC, two pathways were enriched (i.e., protein
digestion and absorption and protein processing in the endoplasmic reticulum) based on
the upregulated genes in EM (adj. p < 0.05), whereas no pathways could be identified in the
case of the downregulated genes in EM. The complete lists of the top 15 enriched pathways
with differentially expressed genes are reported in Supplementary Table S5.

2.2. Gene Expression Using Quantitative PCR Approach

Relative expression of the eleven pre-selected candidate genes involved in lipid
metabolism and energy homeostasis was quantified in the backfat of EM, IC and SC.
The genes ACACA (acetyl-CoA carboxylase), ACLY (ATP citrate lyase), FASN (fatty acid
synthase), ELOVL6 (ELOVL fatty acid elongase 6) and ME1 (malic enzyme 1) had signifi-
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cantly lower expression (p < 0.05) (Figure 5a) in EM than IC, which ranged from 2.44 (log2
fold change = 1.28) for ACACA gene to 8.48 (log2 fold change = 3.08) for FASN gene. There
were no significant differences between IC and SC in the expression of the pre-selected
candidate genes (p > 0.05). The genes FASN and ELOVL6 were downregulated in EM
compared with SC (p < 0.05).
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Figure 1. Volcano plots depicting genes expressed in the backfat tissue from pigs according to male sex category: (a) EM and
IC, (b) IC and SC, and (c) EM and SC pigs. The horizontal lines indicate the significance threshold of differentially expressed
genes at -log10(q-value) < 0.005. The vertical lines represent the threshold of |log2 (fold change) > 1|. Red dots represent
upregulated and downregulated differentially expressed genes with |log2 (fold change) > 1| and -log10(q-value) < 0.005.
Genes (dots) that are labelled are the most important genes which were identified and discussed in the Discussion chapter.
Blue and green dots are representing the remaining detected genes that did not meet the determined criteria. EM = entire
males; IC = immunocastrated pigs; SC = surgically castrated pigs; FC = fold change.
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Figure 2. Venn diagram of differentially expressed genes between EM vs. IC, IC vs. SC and EM vs.
SC. EM = entire males; IC = immunocastrated pigs; SC = surgically castrated pigs.

Among the genes that were chosen based on the RNA-seq results (i.e., COL1A2—
collagen type I alpha 2 chain, G6PD—glucose-6-phosphate dehydrogenase, GADD45G—
growth arrest and DNA damage inducible gamma, PAPPA-2—pappalysin 2, PCK1—
phosphoenolpyruvate carboxykinase 1, SCD—stearoyl-CoA desaturase and HSP70.2—heat
shock protein family A member 1B), several differed significantly also using the qPCR
approach (Figure 5b). The genes COL1A2 and PAPPA-2 were upregulated in EM compared
with IC and SC (p < 0.001), the gene HSP70.2 was upregulated in EM and IC compared with
SC, while the genes G6PD and SCD were downregulated in EM compared with IC and SC
(p < 0.01). Most of the genes were regulated in the same direction in RNA-seq and qPCR
approaches, except the GADD45G gene for which no significant differences were found
between any of the pair-wise comparisons in the case of qPCR validation (Supplementary
Figure S2).
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Figure 3. Functional categorization of differentially (a) upregulated and (b) downregulated genes between EM and
IC and (c) upregulated genes between EM and SC. Gene ontology (GO) enrichment analysis is representing cellular
component category (CC), biological process category (BP) and molecular function category (MF). Gene ratio is the ratio
between differentially expressed genes and total differentially expressed genes in the given GO term. EM = entire males;
IC = immunocastrated pigs; SC = surgically castrated pigs.
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EM and SC. Gene ratio is the ratio between differentially expressed genes and total differentially expressed genes in the
given KEGG pathway. EM = entire males; IC = immunocastrated pigs; SC = surgically castrated pigs; ECM = extracellular
matrix; AMPK = adenosine monophosphate-activated protein kinase; PPAR = peroxisome proliferator activated receptor.
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Figure 5. Differential expression of (a) the candidate genes involved in lipid metabolism and (b) the genes detected in
the RNA-sequencing approach between entire males (EM), immunocastrated pigs (IC) and surgically castrated pigs (SC)
in the inner backfat layer. The results are presenting ∆Ct value of target transcripts derived using the comparative Ct
method (∆Ct = Ct geometric mean of controls − Ct target transcript). Larger ∆Ct represents higher gene expression. Triangles
are representing the mean ∆Ct value. In the case of statistical significance (reported as Tukey adjusted p-value), the
asterisks are drawn (**** p < 0.0001, *** p < 0.001; ** p < 0.01; * p < 0.05). ACACA = acetyl CoA carboxylase; ACLY = ATP
citrate lyase; COL1A2 = collagen type I alpha 2 chain; ELOVL6 = ELOVL fatty acid elongase 6; FASN = fatty acid syn-
thetase; G6PD = glucose-6-phosphate dehydrogenase; GADD45G = growth arrest and DNA damage inducible gamma;
HSP70.2 = heat shock protein family A member 1B; LEP = leptin; LEPR = leptin receptor; LIPE = lipase E; LPL = lipoprotein
lipase; ME1 = malic enzyme 1; PAPPA-2 = pappalysin 2; PCK1 = phosphoenolpyruvate carboxykinase 1; PPARγ = peroxi-
some proliferator activated receptor gamma; SCD = stearoyl-CoA desaturase; SREBF1 = sterol regulatory element binding
transcription factor 1.

3. Discussion
3.1. RNA-Sequencing Approach

In the present study, several gene networks and underlying genes responsible for
the differences in backfat deposition between the three male sex categories (i.e., EM, IC
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and SC) were identified. Functional enrichment analysis showed that the upregulated
genes in EM as compared with IC and SC were significantly enriched in extracellular
region/matrix cellular components, extracellular matrix receptor interaction and focal
adhesion pathways. For instance, this includes genes involved in the synthesis of collagen
(e.g., COL1A2, COL6A3), which are the major components of the extracellular matrix
(ECM) [22]. It has been demonstrated in different tissues that EM, due to the effect of
androgens, have more collagen than castrates [23]; in that respect, IC were shown to be
in-between EM and SC [16,24]. Similarly, in cattle, downregulation of genes related to
collagen synthesis (including COL1A2) in subcutaneous adipose tissue and muscle have
been related to castration [25,26]. Furthermore, in a present study, a key enzyme for
collagen synthesis, i.e., P4HA3 (prolyl 4-hydroxylase subunit alpha), was upregulated
in EM as compared with IC and SC pigs. This gene encodes a component of prolyl 4-
hydroxylase catalyzing the formation of 4-hydroxyproline, which is essential for folding of
newly synthesized procollagen chains [27]. In our study, several other genes, coding matrix
proteins regulating collagen fibrillogenesis, were also upregulated in the EM compared with
IC or SC. This accounts for genes encoding proteoglycans, i.e., DCN (decorin) and FMOD
(fibromodulin), which are required for proper collagen folding and ECM stabilization
through the interaction with several molecules present in the ECM [28–30], and POSTN
(periostin), which is a mediator of the biomechanical properties of the connective tissue [31].
The expression of the POSTN gene is crucial for the collagen cross-linking and maintenance
of the ECM [32,33]. Some other genes involved in the ECM degradation (i.e., matrix
metalloproteinases MMP2 and MMP27) were in the present study also upregulated in EM
as compared with IC, although the level of expression difference was relatively low. Thus,
it can be hypothesized that EM have a more developed or denser connective tissue within
fat depots due to a higher synthesis and remodulation of the ECM, which is supported by
the upregulation of the genes related to ECM in EM as compared with IC and SC.

Large differences in expression, between EM and both groups of castrated pigs, were
found for the PAPPA-2 gene, which was downregulated in IC and SC. The pappalysin
2 enzyme cleaves insulin-like growth factor 1 (IGF-1) in ternary complex with insulin-
like growth factor binding proteins (IGFBPs), thereby releasing IGF-1 and consequently
leading to the increased IGF-1 bioavailability [34–36]. Insulin-like growth factor 1 has been
implicated in the proliferation and differentiation of adipocytes [37]. Higher levels of serum
IGF-1 were also reported for EM than SC [11,38], whereas in IC pigs, the levels of IGF-1
start to decrease after the effective immunization. Stable IGF-1 level is in IC pigs (compared
to that of SC) reached within 5 to 10 days after V2 [10]. Therefore, downregulation of
PAPPA-2 expression in IC and SC pigs is indicative of increased binding of IGFBPs with
IGF-1 and consequently inhibition of IGF-1 action in castrated animals, which affects
adipocyte proliferation and differentiation.

Adipose tissue of EM contains smaller adipocytes than adipose tissue of IC and
SC, while there seem to be no differences in the number of adipocytes between EM, IC
and SC [16]. However, the present research identified a higher expression of the genes
involved in adipocyte proliferation and differentiation (i.e., SCARA5—scavenger receptor
class A member 5, LGALS3—galectin 3, RBP1—retinol binding protein 1) in EM than
IC or SC. For instance, SCARA5 gene, which mediates the early stage of mesenchymal
cell lineage commitment into adipocytes [39], was upregulated in EM compared with IC
and SC. Similarly, LGALS3 gene, which was also upregulated in EM compared with IC,
has been found to activate the expression of the major transcription factor for adipocyte
differentiation, i.e., peroxisome proliferator activated receptor gamma—PPARγ [40]. In
accordance, retinol-binding protein 1, which is the inhibitor of the PPARγ gene [41], was
downregulated in EM compared with IC and SC. Although the RNA-seq results for EM
indicated overexpression of some genes involved in adipogenesis (i.e., SCARA5, LGALS3,
RBP1), the expression of the PPARγ gene, recognized as a master regulator of adipogenesis
and most abundantly expressed in adipose tissue [42], did not differ between the sex
categories.
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With the smaller adipocytes observed in EM than IC and SC pigs [16], we observed a
downregulation of the PCK1 and SCD genes (both involved in monocarboxylic metabolic
process, small molecule biosynthetic process, PPAR signaling and AMPK signaling path-
ways) in EM compared with both IC and SC. Phosphoenolpyruvate carboxykinase 1
enzyme is involved in glyceroneogenesis and reesterification of free fatty acids in white
adipose tissue [43], and the changes in PCK1 expression and activity were previously
associated with the fat quantity [44–48]. Similarly, SCD expression has also been demon-
strated to regulate lipid deposition and metabolism. The expression of the SCD gene is
induced in differentiated adipocytes [49]. The SCD gene is responsible for the biosynthesis
of monounsaturated fatty acids (MUFA) from the saturated fatty acids (SFA). Fatty acid
composition data of the backfat demonstrated that IC and SC have increased MUFA con-
tent compared to EM [16,24]. Since SCD expression is under the hormonal (e.g., leptin,
insulin, androgens) or nutritional regulation [50], the respective differences between male
sex categories [11,12] corroborate with the upregulated expression of SCD. Functional
enrichment analysis showed a downregulation of some genes (i.e., G6PD, PGD, GYS2,
PCK1) in EM vs. IC pointing on differences between them in biological processes related to
carbohydrate metabolism (e.g., monosaccharide biosynthetic process, carbohydrate biosyn-
thetic process). This result is consistent with the findings of the authors Floc’h et al. [51],
who observed that immunocastration affects energy metabolism much faster than protein
metabolism and that glucose clearance after meal intake in IC pigs is faster than in EM.
This is also consistent with the evidence that carbohydrates are used for lipogenesis with
higher intensity in IC after V2, while the protein deposition remains similar [12]. Another
interesting differentially expressed candidate gene involved in lipid metabolism was the
adipokine zinc-alpha-2-glycoprotein (AZGP1). This gene was downregulated in EM and
SC compared with IC. The AZGP1 gene stimulates lipid degradation in adipocytes and
is, therefore, considered a lipid-mobilizing factor [52]. It was suggested that AZGP1 is
part of a mechanism by which growth hormone (GH) modulates subcutaneous adipose
tissue lipid metabolism indicating a potential role for GH-AZGP1 axis in protecting against
the development of obesity [53]. The upregulated expression of this gene in IC may be
indicative of a specific IC metabolism after V2, but this could also depend on vaccination
timing.

Several members of the heat shock protein family 70 (HSP70, i.e., HSP70.2, HSPA1L,
HSPH1) were overexpressed in EM and one of them also in IC (i.e., HSP70.2) compared with
SC pigs. Heat shock proteins act as protein chaperons during the protein assembly, protein
folding and unfolding, refolding or degradation of damaged proteins, protein translocation
and maintenance of structural proteins. A variety of stress factors (for instance exercise)
can affect the overexpression of heat shock proteins [54], which is in line with a higher
level of activity and aggressive behavior reported for EM than SC [55,56]. A higher protein
abundance of HSP70 proteins in EM than SC pigs was also reported in a recent proteomic
study [57]. Immunocastrates (after the effective immunization) reduce their activity and
aggressive behavior to the level similar to SC [58], although some factors like feed restriction
could still increase aggressiveness and stress response in IC pigs [14]. Overexpression of
the HSP70.2 in EM and IC in the present study could be also related to the quantity of fat
depots as indicated by [59]. Additionally, a polymorphism in the HSP70.2 gene was also
reported to be associated with backfat thickness in pigs [60].

Regarding the overall similarities between the male sex categories, the number of
differentially expressed genes was the lowest when IC was compared with SC. Moreover,
33 genes were common in comparison of EM vs. IC and EM vs. SC. This suggests that
castration, regardless of the method used, similarly affects gene expression. This is also
consistent with our previous study on the same pigs, where the histo-morphological
characteristics of adipose tissue were 5 weeks after V2 similar in IC to SC pigs [16].
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3.2. Candidate Gene Expression Approach

In general, we observed lower expression of genes FASN, ME1, G6PD, ACLY, ACACA
involved in the lipogenesis in EM than IC or lower expression of genes FASN and ELOVL6
in EM than SC, which agrees with the increased lipid deposition in castrated pigs. For
instance, the FASN gene, which was downregulated in EM compared with IC and SC,
is responsible for catalyzing the conversion of malonyl-CoA into palmitate [61]. Several
other studies showed that the presence of androgens downregulates the FASN gene ex-
pression [17,19] or FASN protein abundance [62], which corroborates with the commonly
known effect of androgens on body fat deposition [63]. The lower capacity for fatty acid
synthesis in EM than IC was also confirmed by other genes involved in the fatty acid syn-
thesis, including the ones providing the energy for reductive biosynthesis (ME1 and G6PD),
supplying acetyl-CoA for fatty acid biosynthesis (ACLY) and catalyzing carboxylation
of acetyl-CoA to malonyl-CoA (ACACA) [61]. Our previous study on the same animals
showed that the activities of fatty acid synthase, malic enzyme, glucose-6-phosphate de-
hydrogenase and ATP citrate lyase enzymes were significantly lower in the backfat of
EM than IC, indicating a rapid increase in fat deposition only 5 weeks after V2, whereas
in SC, other factors (e.g., inhibitors) may cause lower lipogenic activity [16]. Another
gene that was downregulated in EM compared with IC and SC was ELOVL6, which is
responsible for the elongation of SFA and MUFA with 12, 14, and 16 carbon atoms. Loss
of ELOVL6 function increases the level of palmitic acid and reduces the level of stearic
and oleic acid [64]. In agreement with this, data on the fatty acid composition of backfat
showed that the content of stearic and oleic acid was the lowest in EM and the highest in
SC pigs, with the inconsistent placement of IC [16,24]. In the present study, differential
gene expressions of FASN, ME, ACACA, ACLY and ELOVL6 were not initially detected
with the RNA-seq approach. The detection of additional differentially expressed genes
using qPCR may be indicative of a higher sensitivity of qPCR than RNA-seq [65] and/or
using pooling technology for RNA-seq.

4. Material and Methods
4.1. Animals and Sample Collection

The animals used in this study were obtained from a trial conducted within ERA-
NET SusAn project SuSI (grant number 696231). The trial was approved by the Ethical
committee of the Regional council of Tübingen, Germany (project identification number
HOH 47/17TH, 22/08/2017) described in detail by [66]. Briefly, 36 pigs originating from
one slaughter batch (12 EM, 12 IC and 12 SC) of the commercial Landrace x Pietrain
crosses were used. Surgically castrated pigs were castrated within the first week of life,
while IC were vaccinated at the age of 12 and 21 weeks with a vaccine against GnRH
(Improvac®vaccine, Zoetis Germany, Berlin, Germany). All animals had ad libitum access
to the same commercial diet (described in details by [24]). At the age of 26 weeks and the
bodyweight of 121.7 ± 1.6 kg (mean ± SEM), animals were slaughtered according to the
standard abattoir procedure. Within the first thirty minutes after slaughter, carcasses were
split apart, the inner layer of subcutaneous fat at withers (i.e., between first thoracal and
last cervical vertebra) was sampled, immediately frozen in liquid nitrogen and stored at
−80 ◦C for subsequent RNA extraction.

4.2. RNA Extraction and Quality Check

Total RNA was extracted from approximately 90 mg of frozen backfat tissue using
RNeasy plus Universal Mini Extraction Kit (Qiagen, Crawley, UK) according to the manu-
facturer’s instructions. The concentration and quality of the isolated RNA were validated
by measuring the ratio of optical densities (OD) at 260 and 280 nm using NanoPhotometer
spectrophotometer (IMPLEN, Westlake Village, CA, USA). The integrity of the RNA (RIN)
samples was further assessed using 1% agarose electrophoresis and Agilent 2100 Bioana-
lyzer (Agilent, Santa Clara, CA, USA). Samples with the OD260/OD280 ratio between 1.7
and 2.1 and RIN value more than 6.3 were used for RNA-seq and qPCR analysis.
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4.3. cDNA Library Construction and RNA-Sequencing

Isolated RNA samples were pooled with equal quantities in each sex category (i.e.,
EM, IC and SC groups) and cDNA sequencing libraries were generated using NEBNext
Ultra RNA Library preparation Kit for Illumina (NEB, Ipswich, MA, USA) according to
the manufacturer’s instructions. Briefly, mRNA was extracted using poly-T oligo (dT)
magnetic beads. The enriched mRNAs were fragmented using divalent cations under
elevated temperature in NEBNext First Strand Reaction Buffer (5×), followed by synthesis
of the first cDNA strand using random hexamer primer and M-MuLV Reverse Transcriptase
with reduced RNase H activity, and the second strand cDNA synthesis using second-strand
synthesis reaction buffer with enzyme mix (i.e., DNA polymerase I, RNase H). Remaining
overhangs were blunted using exonuclease/polymerase. Afterwards, adenylation of 3′

ends of the cDNA fragments and ligation of NEBNext adaptors was performed, followed by
the purification step using AMPure XP System (Beckman Coulter, Beverly, MA, USA) and
size selection step using USER enzyme (NEB, Ipswich, MA, USA). Enrichment of the cDNA
libraries was performed with PCR. Obtained PCR products were further purified using
AMPure XP System (Beckman Coulter Life Sciences, Indianapolis, IN, USA) and quantified
using the Agilent Bioanalyzer 2100 System (Agilent, Santa Clara, CA, USA). Libraries of
the different index-coded samples were clustered on a cBot Cluster Generation System
(Illumina, San Diego, CA, USA) and sequenced on an Illumina Hiseq (Illumina, San Diego,
CA, USA) generating 150 bp paired-end reads (Novogene Bioinformatics Technology Co.,
Ltd., Beijing, China). The RNA-seq experiment was submitted to the NCBI Gene Expression
Omnibus (GEO) (Bethseda, MD, USA) and assigned the GEO accession number GSE164391.

4.4. Bioinformatic Analysis
4.4.1. Quality Control, Mapping and Assembly

The raw sequencing data were filtered by Novogene Bioinformatics Technology Co.,
Ltd. (Beijing, China) through in-house perl scripts by (1) discarding the reads with adaptor
contamination, (2) removing the reads with more than 10% of uncertain nucleotides and
(3) discarding reads with low-quality nucleotides (base quality less than 20) constituting
more than 50% of the read. The error rate (%), quality scores (Q20 and Q30 values) and
GC-content (%) of the resulting high-quality clean reads were evaluated. Subsequently,
clean reads were aligned against the Ensembl reference genome Sscrofa 10.2 (Ensembl
release 89) using TopHat2 v. 2.0.12 [67] by calling Bowtie v. 2.2.3 [68] with the default
parameters allowing up to 2 bases mismatches.

4.4.2. Quality Control, Mapping and Assembly

HTSeq v. 0.6.1 software [69] was used to count the reads number mapped to each
gene. Afterwards, the expected number of Fragments per Kilobase of transcript sequence
per Millions of base pairs sequenced was calculated for each gene.

For this experiment comparing different male sex categories without replicates, the
read counts were adjusted by the trimmed mean of M-values (TMM) using edgeR R pack-
age (v. 3.22.0) [70]. Identification of differentially expressed genes comparing two groups
(i.e., EM vs. IC, IC vs. SC, EM vs. SC) was performed using the DEGSeq R package
(v. 1.20.0), which integrates Fisher’s exact test and likelihood ratio test to perform differ-
ential expression analysis following a binomial distribution [71]. The resulting p-values
were adjusted using the Benjamini-Hochberg method. Significant differential expression
threshold was set at the corrected q-value of 0.005 and |log2 (Fold change)| of 1. Volcano
plot was created using EnhancedVolcano R package v. 1.8.0 [72].
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4.4.3. Functional Enrichment Analysis

Gene ontology (GO) analysis of differentially expressed genes was performed by the R
package GOSeq (v. 1.0.3) [73] with the correction of gene lengths. Gene ontology terms with
the corrected p-values below 0.05 were considered significantly enriched. Additionally,
KOBAS software [74] was used to test the statistical enrichment of differentially expressed
genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using Fisher’s
exact test. Test results were subjected to multiple testing correction of the p-values by
Benjamini and Hochberg correction.

4.4.4. Candidate Genes Expression Analysis by Quantitative PCR

Total RNA per individual pig was used to validate the RNA-seq results and to mea-
sure the expression of the selected candidate genes (i.e., genes related to lipid metabolism).
Seven genes were selected from the list of differentially expressed genes detected in RNA-
seq data, while the other candidate genes were chosen based on their key role in lipid
metabolism or energy homeostasis (Table 1). Primers and fluorescent 6-FAM dye-labelled
minor groove binder probes/predesigned assays were obtained from Applied Biosys-
tems. Taq-man probes for the pig PAPPA-2 and G6PD genes were designed with Custom
TaqMan Assay Design Tool using predicted mRNA Sus scrofa sequence (reference NCBI
sequence for PAPPA-2: XM_003130330.6 and G6PD: XM_021080744.1). Candidate genes
with corresponding assay IDs or primer sequences are given in Table 1.

The qPCR was performed using the TaqMan Universal PCR Master Mix II (Applied
Biosystems, Waltham, MA, USA) in the Applied Biosystems 7500 Fast Real-time PCR
System. Reaction parameters were identical for all of the tested genes. Briefly, 1.5 µg of
the total RNA from individual animals was used for reverse transcription using High-
capacity cDNA Reverse Transcription Kit (Applied Biosystem, CA, USA) following the
manufacturer’s instructions. Prior to the qPCR analysis, cDNA samples were diluted
10-fold. As negative controls, mixes without cDNA were used. Quantitative PCR was
performed in triplicates with the following cycling conditions: one cycle of 50 ◦C for 2 min,
one cycle of 95 ◦C for 10 min, and 40 cycles of amplification (15 sec at 95 ◦C and 1 min at
60 ◦C). The PCR efficiency of each gene was defined using standard curves composed of
the three 10-fold cDNA dilutions.

Peptidylprolyl isomerase A (PPIA), DNA Topoisomerase II Beta (TOP2B) and Beta-2
microglobulin (B2M) (Table 1) were selected as endogenous controls for data normalization
with geometric averaging [75]. Quantification of target transcripts, normalized against the
geometric mean of PPIA, TOP2B and B2M, was performed according to the comparative
Ct method (∆Ct = Ct geometric mean of controls−Ct target transcript). Normalized qPCR data were
analyzed using one-way ANOVA tests in R software with a sex category as a fixed effect.
Relative changes in the expression of the studied target transcripts (log2 fold changes in
the expression) between EM and IC, EM and SC and IC and SC were determined by the
comparative 2−∆∆Ct method [76].
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Table 1. Taq-man probes/primers with corresponding metabolic functions used in the study.

Metabolic Function Full Gene Name Gene Symbol Primer Sequence 1 or Taq-Man Assay ID 2 Amplicon Length 3 RNA-Seq or Reference 4

Lipogenesis

Fatty acid synthase FASN Ss03386194_u1 95 [17]

Glucose-6-phosphate dehydrogenase G6PD F: GCTTTCCATCAGTCGGATACACATA
R: GAACAGCCACCACAGGGT
P: CAAGTCGCCCGATGCT

96 RNA-seq

Malic enzyme 1 ME1 Ss03374853_m1 92 [16]

ATP citrate lyase ACLY Ss03386194_u1 69 [16]

Acetyl-CoA carboxylase ACACA Ss03389963_m1 61 [17]

Stearoyl-CoA desaturase SCD Ss03392313_m1 65 RNA-seq

ELOVL fatty acid elongase 6 ELOVL6 Ss06879466_m1 90 [77]

Lipid and carbohydrate
metabolism

Phosphoenolpyruvate carboxykinase 1 PCK1 Ss03390599_g1 65 RNA-seq

Adipogenesis

Peroxisome proliferator activated receptor
gamma

PPARγ Ss03394829_m1 72 [77]

Sterol regulatory element binding
transcription factor 1

SREBF1 Ss03382914_u1 102 [77]

Lipolysis
Lipoprotein lipase LPL Ss03394612_m1 66 [78]

Lipase E LIPE Ss04955671_mH 65 [79]

Energy homeostasis
Leptin LEP Ss03392404_m1 68 [80]

Leptin receptor LEPR Ss03379257_u1 142 [81]

Collagen synthesis Collagen type I alpha 2 chain COL1A2 Ss03375009_u1 76 RNA-seq

Response to stress Growth arrest and DNA damage inducible
gamma

GADD45G Ss04246860_g1 54 RNA-seq

Protein protection from the
oxidative stress

Heat shock protein family A member 1B HSP70.2 Ss03392270_g1 69 RNA-seq

Proteolysis against IGFBPs Pappalysin 2 PAPPA-2 F: CGGAGGGAGGACAGAACAG
R: TCACTGATTGTGTGGGAGCAA
P: ACACACCTGCAATGAT

70 RNA-seq

Endogenous control

Beta-2 microglobulin B2M Ss03391154_m1 60 [82]

Peptidylprolyl isomerase A PPIA Ss03394782_g1 91 [83]

DNA Topoisomerase II Beta TOP2B Ss04953704_m1 61 [84]
1 F = forward primer (5′→3′), R = reverse primer (5′→3′), P = probe; 2 https://www.thermofisher.com/si/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/taqman-gene-expression/single-tube-
taqman-gene-expression-analysis.html; 3 Amplicon length is in base pairs; 4 Selected based on RNA-sequencing results or according to the literature.

https://www.thermofisher.com/si/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/taqman-gene-expression/single-tube-taqman-gene-expression-analysis.html
https://www.thermofisher.com/si/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/taqman-gene-expression/single-tube-taqman-gene-expression-analysis.html


Int. J. Mol. Sci. 2021, 22, 1768 15 of 18

5. Conclusions

In summary, RNA-seq and candidate gene expression approaches revealed differences
in expression between EM, IC and SC pigs. Specifically, castration of male pigs, regardless
of the method, resulted in downregulation of genes involved in ECM dynamics and genes
related to adipogenesis. Accordingly, one of the most differentiated candidate gene detected
in EM compared to castrates was the PAPPA-2 gene, which affects IGF-1 bioavailability
and thus influences adipocyte proliferation and differentiation. The downregulated genes
between EM and castrates were involved in lipid and carbohydrate metabolism, consistent
with the reduced expression of genes involved in lipogenesis detected using the candidate
gene expression approach. Differential expression of heat shock family 70 genes could be a
consequence of the more stressful conditions to which EM and IC pigs are exposed.
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14. Batorek, N.; Čandek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production

performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330–1338. [CrossRef] [PubMed]
15. Lealiifano, A.K.; Pluske, J.R.; Nicholls, R.R.; Dunshea, F.R.; Campbell, R.G.; Hennessy, D.P.; Miller, D.W.; Hansen, C.F.; Mullan, B.P.

Reducing the length of time between slaughter and the secondary gonadotropin-releasing factor immunization improves growth
performance and clears boar taint compounds in male finishing pigs1. J. Anim. Sci. 2011, 89, 2782–2792. [CrossRef] [PubMed]
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