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Abstract
Background Ethiopian sheep living in different climatic zones and having contrasting morphologies are a most promis-
ing subject of molecular-genetic research. Elucidating their genetic diversity and genetic structure is critical for designing 
appropriate breeding and conservation strategies.
Objective The study was aimed to investigate genome-wide genetic diversity and population structure of eight Ethiopian 
sheep populations.
Methods A total of 115 blood samples were collected from four Ethiopian sheep populations that include Washera, Farta 
and Wollo (short fat-tailed) and Horro (long fat-tailed). DNA was extracted using Quick-DNA™ Miniprep plus kit. All DNA 
samples were genotyped using Ovine 50 K SNP BeadChip. To infer genetic relationships of Ethiopian sheep at national, 
continental and global levels, genotype data on four Ethiopian sheep (Adilo, Arsi-Bale, Menz and Black Head Somali) and 
sheep from east, north, and south Africa, Middle East and Asia were included in the study as reference.
Results Mean genetic diversity of Ethiopian sheep populations ranged from 0.352 ± 0.14 for Horro to 0.379 ± 0.14 for Arsi-
Bale sheep. Population structure and principal component analyses of the eight Ethiopian indigenous sheep revealed four 
distinct genetic cluster groups according to their tail phenotype and geographical distribution. The short fat-tailed sheep 
did not represent one genetic cluster group. Ethiopian fat-rump sheep share a common genetic background with the Kenyan 
fat-tailed sheep.
Conclusion The results of the present study revealed the principal component and population structure follows a clear pattern 
of tail morphology and phylogeography. There is clear signature of admixture among the study Ethiopian sheep populations

Keywords Fat-tail · Genetic diversity · Ovine 50 K SNP · Population structure

Introduction

Given its proximity to the Arabian Peninsula, Ethiopia is con-
sidered as a corridor for the introduction of livestock species 
including sheep to the African continent (Hanotte et al. 2002; 
Muigai and Hanotte 2013). Sheep and their products play a 
critical role in the livelihood of millions of farmers and pasto-
ral communities in Ethiopia and are important for the national 
economy (Assefa et al. 2015). Ethiopia possesses highly diver-
sified indigenous sheep populations adapted to highly diverse 
agro-ecologies and the populations are maintained by differ-
ence ethnic communities (Haile et al. 2002; Gizaw et al. 2008). 
There are about 29.33 million heads of sheep which are phe-
notypically identified into 14 populations (Gizaw et al. 2008; 
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Leta and Mesele 2014). However, the local sheep populations 
with very low productivity dominate smallholder production 
systems, which are mainly confounded by lack of effective 
long-term sheep genetic improvement, multiplication and 
effective delivery systems, environmental as well as socio-eco-
nomic factors (Tadele 2010; Gizaw et al. 2013). On the other 
hand, the demand for sheep and their products has increased 
from time to time due to a growing human population and 
urbanization. Therefore, it is an urgent need to improve their 
productivity in order to raise smallholder farmers’ incomes, to 
meet the demand of the growing human population as well as 
the national economy (FAO 2012).

The local sheep populations in Ethiopia are mainly named 
after the geographic location or ethnic group, based on phe-
notypic characteristics or agro-ecology (Solomon et al. 2011). 
This might have led to group genetically similar populations 
into phenotypically distinct groups. The previous studies 
indicated that Ethiopian indigenous sheep were clustered 
together based on their geographic distribution and tail phe-
notypes (Gizaw et al. 2007; Edea et al. 2017; Ahbara et al. 
2019). Characterizing genetic diversity and understanding of 
population structure is a key aspect of developing sustainable 
breed improvement strategies (Groeneveld et al. 2010) and 
understanding adaptation to extreme environments (Ai et al. 
2014). Molecular characterization were done on genetic diver-
sity and population structure of Ethiopian sheep populations 
using microsatellite markers (Gizaw et al. 2007; Hellen 2015). 
In a recent study, Edea et al (2017) and Ahbara et al (2019) 
evaluated population structure of Ethiopian indigenous sheep 
populations (Kefis, Adane, Arabo, Gafera, Molale, Bonga, 
Gesses, Kido, Doyogena, ShubiGemo, Loya, Adilo, Menz, 
Arsi-Bale, Horro and Black Head Somali) and revealed high 
level of admixture among the populations using high and 
medium density SNP chip panel, respectively. Recently devel-
oped genome-wide ovine SNP array has provided a tool for 
investigating genetic diversity at high resolution, inferring 
population history, and mapping genomic regions subject to 
selection and adaptation (Kijas et al. 2009; Yang et al. 2016; 
Zhao et al. 2017).

However, there are still indigenous sheep populations in 
Ethiopia yet to be evaluated at genome-wide. These sheep 
populations include Farta, Wollo, Washera and Horro sheep 
which are adapted to diverse agro-ecologies and with different 
tail phenotype. Therefore, in this study we aimed to investigate 
genome-wide genetic diversity and population structure of the 
indigenous sheep populations in Ethiopian.

Material and methods

Sheep populations, sampling and SNP genotyping

Blood samples were collected from four Ethiopian sheep 
populations (n = 115) adapted to diverse agro-ecological 
environments. Detail description of the populations is sum-
marized in Table 1. Farta (n = 26) and Wollo (n = 28) sheep 
are short fat-tailed coarse-wool sheep and adapted to sub-
alpine environments (2000–3200 m a.s.l); Washera (n = 31) 
sheep is short fat-tailed hairy sheep and mainly inhabits wet, 
warmer mid-highlands (1600–2497 m a.s.l); Horro (n = 30) 
sheep is long fat-tailed hairy sheep and predominant in mid-
to high-altitude environments (1400–2000 m a.s.l) (Gizaw 
et al. 2008). Geographic positioning system (GPS) coor-
dinates were recorded for each sheep population and geo-
graphical distribution map was developed based on their 
GPS coordinates (Supplementary Fig. 1).

The samples were collected from different households 
in different villages using 5 ml of vacutainer tube with 1 ml 
EDTA as anti-coagulant. A maximum number of 1–3 distinct 
breeding adult animals were sampled per household based 
on flock owners’ information and typical phenotypic char-
acteristics that allow to avoid sampling of related animals. 
Genomic DNA was extracted using Quick-DNA™ Mini-
prep plus kit following the procedures of Biological Fluid 
and Tissue protocol (https ://WWW.zymor esear ch.com/m/
D4068 ). All 115 genomic DNA samples were genotyped 
using Ovine 50 K SNP BeadChip (Illumina, San Diego, CA, 
USA) by GeneSeek/Neogen (Lincoln, NE, USA).

To infer genetic relationships of Ethiopian sheep popu-
lations at national level, Ovine 600 K SNP BeadChip gen-
otype data of 44 animals representing four extra Ethiopian 
sheep populations (Adilo = 11; Arsi-Bale = 8; Blackhead 
Somali = 13; Menz = 12) were included in the study. Detail 
description of the extra four Ethiopian sheep populations 
is summarized in Table 1. The genotype data (600 K) were 
obtained from NRSP-8 Community File Sharing Platform 
(https ://www.anima lgeno me.org/repos itory /pub/KORE2 
017.1122/).Ovine  50 K SNP BeadChip genotype data of 
105 animals representing six breeds from east (Kenya: 
Red Maasai), north (Egyptian Barki; Moroccan sheep) and 
south (South Africa: Namaqua Afrikaner) Africa, Middle 
East (Iran: Afshari) and south-west Asia (India: Garole) 
were included in the study to investigate the genetic rela-
tionships in greater detail and infer population structure of 
Ethiopian sheep populations at continental and global lev-
els. The genotype data (50 K) were obtained from Sheep 
HapMap and Animal Resources dataset (https ://www.
sheep hapma p.org/hapma p.php). Therefore, a total of 14 
sheep populations, including extra four Ethiopian sheep, 
are included in the study as reference.

https://WWW.zymoresearch.com/m/D4068
https://WWW.zymoresearch.com/m/D4068
https://www.animalgenome.org/repository/pub/KORE2017.1122/).Ovine
https://www.animalgenome.org/repository/pub/KORE2017.1122/).Ovine
https://www.sheephapmap.org/hapmap.php
https://www.sheephapmap.org/hapmap.php
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Quality control and genetic diversity analyses

Genotypic data for 600 K and 50 K platforms were merged 
and common autosomal SNP markers (42,227) were 
obtained. These common autosomal SNPs with call rate less 
than 90% and minor allele frequency (MAF) less than 0.05 
were filtered out using PLINK v1.9 (Purcell et al. 2007) and 
leaving 37,771 autosomal SNPs. Using the same software, 
this generated dataset were further subjected to linkage dis-
equilibrium (LD) pruning to avoid the possible influence 
of clusters of SNPs on population relationships and struc-
ture analyses (Yuan et al. 2017). Following the LD prun-
ing, 30,292 autosomal SNPs were retained for population 
structure analyses.

To evaluate the levels of within-population genetic diver-
sity, the expected (HE) and observed (Ho) heterozygosity 
and inbreeding coefficient (F) were estimated for each 
population using Arlequin v.3.5.2 (Excoffier and Lischer 
2010). To partition genetic variation among groups, among 
population within groups and individuals within population, 
analysis of molecular variance (AMOVA) was performed 
following 10,000 permutations in Arlequin v.3.5.2 (Weir 
and Cockrham 1984). The analysis was done for the 14 
global sheep populations grouped into major clusters based 
their geographical origin and community the populations 
are kept. This include East African (Ethiopia and Kenya), 
Arab region (Egypt, Morocco and Iran), India (Indian Garole 

sheep) and South African (Namaqua Afrikaner sheep). We 
further regrouped Ethiopian sheep populations separately 
according to their tail phenotype (Short fat-tailed: Wollo, 
Farta, Washera and Menz; Long fat-tailed: Arsi-Bale, Adilo, 
and Horro; Fat rumped: Blackhead Somali) and geographi-
cal location (Northern: Washera, Farta, Wollo and Menz; 
Southern: Adilo, Arsi-Bale and Horro; Eastern: Blackhead 
Somali).

Genetic population structure analyses

Principal components analysis (PCA) was performed using 
PLINK v1.9 (Purcell et al. 2007) to investigate the genetic 
structure and relationships among the studied populations 
based on genetic correlations between individuals. A graphi-
cal display of the first two principal components (PC1 and 
PC2) was generated using gglot2 package provided by R 
(Wickham 2009). Population structure analyses carried out 
in STRU CTU RE v.2.3.4 (Pritchard et al. 2000) was used 
to investigate underlying genetic structure and estimate the 
proportion of shared genome ancestry between the studied 
populations. The STRU CTU RE output was further analyzed 
in STRU CTU RE HARVESTER (Earl 2012) to determine 
the optimal number of ancestral genomes (K) and propor-
tions of genome ancestry shared among the studied popu-
lations using ΔK method (Evanno et al. 2005). To further 
evaluate the within and between Ethiopian and global sheep 

Table 1  Distinguishing physical features and agro-ecology of Ethiopian sheep populations

BHS black head Somali
Source: Gizaw et al. (2008); Edea et al. (2017)

Physical fea-
tures and their 
ecology

Population

Washera Farta Horro Wollo BHS Arsi-Bale Menz Adilo

Fiber type Short-haired Coarse wool Short-haired Coarse wool Short-haired Hairy fiber Coarse wool Hairy fiber
Tail pheno-

type
Short fat-tail Short fat-tail Long fat-tail Short fat-tail Short fat-

rump
Long fat-tail Short fat-tail Long fat-tail

Coat color Brown, white, 
white and 
brown

White, brown, 
black

Brown, fawn Black, white 
or brown

White body, 
black head 
and neck

Brown, red, 
black, gray, 
white

Black, 
Brown, 
white

Brown, white, 
gray

Horn Polled Male short 
horned, 
most 
females 
polled

Polled Male short 
horned, 
most 
females 
polled

Polled Males and 
most 
females are 
horned

Horned Male short 
horned, most 
females 
polled

Altitude (m) 1600–2497 2000–3142 1400–2000 2000–3200 500–1500 2492–2810 2500–3000 1618–2043
Agro-ecology Wet, warmer 

mid- high-
lands

Sub-alpine Wet highlands Sub-alpine Arid lowland Wet highland Sub-alpine Wet highland

Use Meat Meat & wool Meat Meat &wool Meat Meat Meat &wool Meat
Management Mixed crop-

livestock
Mixed crop-

livestock
Mixed crop-

livestock
Mixed crop-

livestock
Pastoral/agro-

pastoral
Mixed crop-

livestock
Sheep-barley Mixed crop-

livestock
Community Amhara and 

Agew
Amhara Oromo Amhara Oromo/

Somali
Oromo Amhara Wolaita/Hadiya
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populations relationships, we used pairwise genetic differ-
entiation estimates to construct the neighbor-network tree 
using SplitsTree4v.4.6 (Huson and Bryant 2005).

Results

Genetic diversity

The mean values of HE, Ho and F, as measures of within-
population genetic diversity, for 14 sheep populations are 
shown in Fig. 1 and supplementary Table S1. The lowest 

values of HE and Ho were observed in Horro sheep while 
the highest values were observed in Moroccan, Egyptian 
Barki, Arsi-Bale and Menz sheep populations, respec-
tively. The highest and lowest inbreeding coefficient (F) 
was observed in Moroccan and Namaqua Afrikaner sheep 
populations, respectively. Analysis of molecular variance for 
the 14 global populations grouped according to geographi-
cal regions revealed that 9.67% (P < 0.0001) of the variance 
was among groups (East Africa; Arab region; India and 
South Africa) (Table 2). When an analysis was performed 
for Ethiopian sheep populations grouped based on their 
tail phenotype (Table 1), 3.14% (P < 0.001) of the variance 

Fig. 1  Distribution of the 
genetic diversity indices within 
each population. a observed 
heterozygosity (Ho); expected 
heterozygosity (HE) and b the 
inbreeding coefficient (F)

Table 2  Analysis of molecular variance of the studied sheep populations from analysis of 37,771 SNPs

Bold values indicate degree of freedom within population
DF degree of freedom, Va, Vb, Vc, Vd explain null distributions of the variance; P < 0.0001; components in the respective sources of variance 
(Weir and Cockrham 1984)

Grouping Source of variation DF Variance components Percentage 
of variation

Geographical region (Inter-regional) Among groups 3 727.082 Va 9.67
Among population within groups 301 332.156 Vb 4.42
Within populations 305 6462.026 Vc 85.92
Total 609 7521.264 100

Tail phenotype Among groups 2 213.379 Va 3.14
Among population within groups 197 174.803 Vb 2.58
Within populations 200 6397.488 Vd 94.28
Total 399 6785.669 100

Geographical region (Inter-local) Among groups 2 721.083 Va 4.67
Among population within groups 197 255.405 Vb 3.40
Within populations 200 6361.020 Vd 91.93
Total 399 7337.508 100
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was among groups (Table 2). We further ran AMOVA by 
grouping the Ethiopian sheep populations according to their 
geographical distribution (Table 1). Results indicated that 
4.67% (P < 0.001) of the variation was among groups, 3.40% 
among populations within groups and 91.93% within popu-
lations (Table 2).

Principal component analyses

The principal component analysis (PCA) plot incorporating 
the global populations indicated that the 14 sheep popula-
tions are differentiated based on regions (east Africa: Kenya 
and Ethiopia; North Africa: Moroccan and Barki sheep pop-
ulations; South Africa: Namaqua Afrikaner; Middle East: 
Afshari; India: Garole) (Fig. 2a). Moreover, the east Africa 
sheep populations differentiated based on their tail mor-
phology. PC1 separates east Africa populations from South 
Africa, North Africa, Middle East and India sheep popu-
lations. Ethiopian (except BHS) and India populations are 
separated from east Africa, north Africa, South Africa and 
Middle East sheep populations by PC2. Among east Africa 
populations, Ethiopian fat-rumped sheep, BHS, and Ken-
yan fat-tailed sheep, Red Maasai, cluster together which is 

well supported by phylogenetic and structure analysis results 
(Figs. 3, 4, respectively).

To illustrate relationships within individuals and among 
Ethiopian sheep populations, PCA was performed (Fig. 2b). 
Principal components 1 and 2 accounted for 16.89% and 
9.17% of the total variation, respectively and clustered the 
eight sheep populations according to their tail phenotypes 
and geographical distribution: long fat-tailed (Arsi-Bale, 
Horro, Adilo), short fat-tailed (Washera, Farta, Wollo, 
Menz), and fat-rumped (Black Head Somali). PC1 separate 
short fat-tailed sheep (FA: Farta, WO: Wollo, and Menz) 
from the rest of sheep populations including most individual 
animals of the other short fat-tailed sheep (WA: Washera). 
PC2 separate the short fat-tailed sheep (WA:Washera), the 
long fat-tailed sheep (Horro), few individuals of Farta and 
Arsi-Bale sheep from the rest of sheep populations.

Phylogenetic network analysis

A Neighbor-Net network constructed from pairwise com-
parison cluster the global dataset (14 sheep populations) 
according to their geographic region and tail phenotype as 
indicated in Fig. 3. The line in the phylogenetic network 

Fig. 2  Clustering of individual animals in the studied sheep populations a in a global and b Ethiopian indigenous sheep populations datasets

Fig. 3  Neighbor network con-
structed in a global geographic 
context
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refers to population subdivision and the nodes refers to sub-
populations. Among Ethiopian sheep, the short fat-tailed 
sheep (Farta, Wollo and Washera) were closely clustered. 
The two highland and long fat-tailed Ethiopian sheep (Horro 
and Adilo) were closely clustered. The Ethiopian fat-rumped 
(BHS) and the Kenyan fat- tailed (Red Maasai) sheep as well 
as the two North Africa sheep (Egyptian Barki and Moroc-
can sheep) were closely clustered. Long branches were noted 
for Namaqua Afrikaner (fat-tailed), Indian Garole (thin-
tailed), and Iranian Afshari (thin-tailed) sheep possibly due 
to proximity in geographical region and their tail variation 
which could be associated to adaptation. The findings were 
further supported by global principal component and popu-
lation STRU CTU RE analyses (Figs. 2a, 4, respectively).

The close clustering of East African sheep populations 
and distinct separation from their Northern counterparts 
was well demonstrated by our phylogenetic and global PCA 
analysis results (Figs. 3, 2a, respectively).

Genetic population structure analyses

Genetic population structure analysis on the global dataset 
(14 sheep populations) was carried out using hypothetical 

ancestral clusters (K) ranging from 2 to 15 and cluster the 
studied populations according to their geographic region and 
tail phenotype (Fig. 4). The highest ∆K value registered at 
K = 8 suggesting this to be the most optimal number of clus-
ters explaining the variation in the dataset (Fig. 5a). The 
proportion of each ancestral cluster in each population at 
K = 8 is shown in Fig. 4 and Supplementary Table S2. Indian 
Garole and Namaqua Afrikaner sheep separated from the 
rest of sheep populations at K = 2 and K = 3, respectively. 
East Africa (Ethiopia and Kenya) sheep populations sepa-
rated from the rest of the sheep populations at K = 4.

At optimal K (K = 8), Ethiopian (Blackhead Somali) 
and Kenyan (Red Maasai) sheep share up to 94% a single 
common genetic background (Cluster 3). The Asian thin-
tailed sheep, Indian Garole, formed an independent cluster 
(Cluster 2) with high proportion (~ 95%). The South Africa 
fat-tailed sheep, Namaqua Afrikaner, formed a clear sepa-
rate cluster (Cluster 5) with the highest proportion (~ 100%) 
from the rest of the populations. The two North African 
representatives shared one genetic background (Cluster 
8), and both shared 22–26% common genetic background 
with Afshari of Iranian sheep (Cluster 1). The Asian thin-
tailed sheep showed distinct clustering from east Africa and 

Fig. 4  Population structure 
analyses of the studied popula-
tions in a global context. The 
eight genetic clusters are desig-
nated (Cluster 1) ~ (Cluster 8), 
respectively

Fig. 5  Graph of cross valida-
tion (CV) error generated 
for: a global and b Ethiopian 
indigenous sheep populations 
datasets
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South African fat-tailed and from east Africa (Ethiopia) fat-
rumped sheep.

Three to nine hypothetical ancestral clusters (K) were 
tested with structure on the Ethiopian dataset (national 
dataset). The highest ∆K value suggested K = 4 as most 
optimal number of ancestral clusters present in the national 
dataset (Fig. 5b). The proportion of each ancestral cluster 
in each population at K = 4 is shown in Fig. 6 and Sup-
plementary Table S3. Menz (highest proportion ~ 100%), 
Wollo, Farta and few individuals of Washera sheep share 
one genetic cluster group (Cluster A). Cluster B observed in 
Washera (proportion ~ 55%) and few individuals of Wollo, 
and Farta sheep. Horro, Arsi-Bale (ARB) and Adilo sheep 
form Cluster C whereas Cluster D observed in Blackhead 
Somali (BHS) and some individuals of Arsi-Bale (ARB) 
and Adilo sheep. Ethiopian short fat-tailed sheep (Wash-
era, Wollo, Farta, and Menz) did not represent one genetic 
cluster group rather they form two different genetic cluster 
groups (Cluster A and B) which is supported by admixture 
analysis for other Ethiopian short fat-tailed sheep popula-
tions (Ahbara et al. 2019). Farta, Wollo and Menz sheep 
formed one genetic cluster group (Cluster A) while Wash-
era and few individuals of Farta and Wollo sheep formed 
another genetic cluster group (Cluster B). Close clustering 
was observed among Ethiopian long fat-tailed sheep (Horro, 
Adilo, and Arsi-Bale) (Cluster C). The findings are further 
supported by national principal component and global sheep 
genetic population structure analyses results (Figs. 2b, 4, 
respectively).

Discussion

The genotype data generated by Ovine 50 K SNP BeadChip 
were used to investigate genetic diversity and population 
structure of Ethiopian indigenous sheep populations. To 
assess the genetic diversity and relationships in greater detail 
and infer population structure of Ethiopian sheep popula-
tions at the continental and global levels, populations from 
other regions of the African continent and the world were 
included. The findings revealed that the estimated within 
Ethiopian sheep population diversity is in line with previous 

studies on indigenous sheep populations in Ethiopia using 
microsatellite markers and SNP chip (Gizaw et al. 2008; 
Edea et al. 2017; Ahbara et al. 2019). The presence of high 
genetic diversity within-population is congruent with the 
high variability observed in phenotypic characters, particu-
larly in coat color within the sub-alpine sheep populations 
(Gizaw et al. 2008). High degree of genetic diversity within-
population is a characteristic of large traditional populations 
that have not been subjected to strong selection indicating 
the need to conserve such traditional populations (Lauvergne 
et al. 2000), and thus can be exploited through implementing 
appropriate breeding strategies.

Ethiopian indigenous sheep showed slightly lower levels 
of genetic diversity (HE = 0.366) than the presumed ances-
tral populations in the Middle East (Afshari; HE = 0.376) 
and North Africa (HE = 0.401). Populations found near to 
domestication center are expected to retain higher allelic 
diversity than those that migrated farther away (Peter et al. 
2007). The higher level of diversity estimates in North 
Africa as compared to east Africa populations can be further 
explained by the fact that North Africa populations reflect a 
high degree of admixture between fat-tailed and thin-tailed 
sheep as demonstrated in the STRU CTU RE analyses result 
(Fig. 4 and Supplementary Table S2). Given its proximity to 
the Near East and Mediterranean Sea, North Africa served 
as a gateway for early livestock introduction to the African 
continent and is considered as a secondary hotspot of genetic 
variation (Gautier 2002).

Although they are defined by the same tail phenotype, the 
four Ethiopian short fat-tailed sheep (Wollo, Menz, Farta 
and Washera) did not cluster together. Adaptation to dif-
ferent eco-climates that can impede gene flow, may have 
shaped this genetic sub-structuring (Madrigal et al. 2001; 
Gizaw et al. 2007). The close clustering of the three short 
fat-tailed sheep (Wollo, Farta and Menz) is consistent with 
adaptation to similar eco-climates (sub-alpine), similar in 
tail phenotype and they are maintained by the same eth-
nic group or community which may act as barriers to gene 
flow that shape population genetic structure (Madrigal et al. 
2001). The distinct clustering of the warmer mid-highland 
short fat-tailed sheep (Washera) from the three sub-alpine 
short fat-tailed sheep (Wollo, Farta and Menz) could be 

Fig. 6  Population structure 
analyses of Ethiopian sheep
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associated with adaptation to different eco-climates and face 
different selection pressure, which may have shaped their 
genomes in different manner. Likewise, The close associa-
tion observed among the three long fat-tailed sheep popula-
tions (Horro, Arsi-Bale, and Adilo) could be due to they 
are predominantly maintained by the same ethnic group or 
community, have same tail phenotype, and inhabit similar 
eco-climates (highland) and face common selective pres-
sures, which may have shaped their genomes in a similar 
manner. The chances of animal exchange are greater within 
the same ethnic group or community than between any two 
different ethnic groups or communities (Gizaw et al. 2007).

The distant association observed between the short fat-
tailed sheep, Menz, and the fat-rumped sheep, Black Head 
Somali, could be due to selection for ecological adaptation, 
geographical isolation and differences in tail phenotype 
(Gizaw et al. 2008; Edea et al. 2017). This finding is not 
in line with the report of Ahbara et al. (2019). The author 
indicated that the short fat-tailed, Molale-Menz, clustered 
together with the Ethiopian fat-rumped sheep which could 
be close proximity of sampling sites for the two different 
sheep populations since they are distinct in tail phenotype, 
adapted to different eco-climates, and maintained by differ-
ent ethnic group or community which may have shaped their 
genomes differently (Gizaw et al. 2008).

The close association between Ethiopian fat-rumped 
sheep, BHS, and the Kenyan fat-tailed sheep, Red Maasai, 
could be because of the two sheep populations are reared 
under mobile pastoral and agro-pastoral systems and there is 
a high chance of exchanging animal across the border (Wil-
son 2011). They are also adapted to similar ecological envi-
ronments (lowland) and face common selective pressures 
(Wilson 2011). The close clustering of Ethiopian fat-rump 
sheep (BHS) and Kenyan fat-tailed sheep (Red Maasai) sug-
gests the dependent introduction and dispersion histories of 
Africa fat-tailed and fat-rumped sheep into the continent. 
This finding is agree with previous report that indigenous 
African sheep genetic resources have been classified into 
two main groups with a largely non-overlapping distribu-
tion: thin-tailed and fat-tailed (including fat-rump) sheep 
(Wilson 1991) but not in line with the report of Ryder (1984) 
which indicated that the fat-tailed sheep were introduced 
into Africa during the third wave of migration following 
thin-tailed hair sheep and thin-tailed wool sheep, fat-rumped 
sheep much later.

The close association of the two phenotypically differ-
ent (variation in tail type) North African sheep populations 
could be due to gene flow between the two populations since 
they have close geographical proximity. Previous studies 
revealed that north Africa is mostly populated by fat-tailed 
sheep (Muigai and Hanotte 2013), but our STRU CTU RE 
analysis indicated there is high signatures of admixture in 
the genomes of north Africa populations as compared to 

their east and South African populations and they shared 
22–26% its genome with Middle East thin-tailed sheep (Ira-
nian Afshari). The influence of Middle Eastern thin-tailed 
sheep detected in north Africa sheep can be explained by 
the historical introduction of sheep into Africa and their 
dispersion across the continent through the Nile Valley; for 
instance, thin-tailed sheep spread into the Western Sahara 
via Northern Africa (Muigai and Hanotte 2013), which may 
have left its genomic footprint in the current north Africa 
sheep populations.

The close clustering of east Africa sheep populations 
and distinct separation from their north counterparts was 
well demonstrated by our phylogenetic and PCA analyses 
(Figs. 3, 2a, respectively). This result coincides with the 
evidence that fat-tailed sheep were introduced into Africa 
via two independent routes: one via the north-east Africa 
and the Mediterranean Sea coastline, and the other via the 
Horn of Africa crossing through the strait of Babel-Mandeb 
(Ryder 1984).

The distinct clustering of Asian thin-tailed sheep from 
fat-tailed east and South Africa as well as from fat-rumped 
east Africa (Ethiopia) sheep suggests its independent intro-
duction into the continent. It is in line with the distinct his-
tories and non-overlapping geographic distributions of the 
African thin-tailed with fat-tailed and fat-rumped sheep 
(Hanotte et al. 2002; Muigai 2003b), and support the pre-
dominance of fat-tailed sheep in the east and South parts of 
Africa (Muigai and Hanotte 2013). Moreover, analyses of 
autosomal markers and the Y chromosome have revealed the 
distinct evolutionary histories of thin- and fat-tailed African 
sheep populations (Aswani 2007).

Conclusions

Our genome-wide SNP analyses revealed that there is clear 
signature of admixture among Ethiopian sheep popula-
tions which could be accounted by some level of current 
admixture which results in low variation among the sheep 
populations but large within population variation. The prin-
cipal component (PCA) and population structure analyses 
of Ethiopian sheep revealed four distinct genetic cluster 
groups according to their tail phenotype and geographical 
distribution. The short fat-tailed sheep populations did not 
represent one genetic cluster group which require further 
investigation. Our population structure analyses of Ethiopian 
sheep population demonstrated a clear pattern of the tail 
morphology and their phylogeography. Further investigation 
is required on morphometric basis of tail morphology vari-
ation in indigenous Ethiopian sheep populations to confirm 
the genetic basis of tail morphology variation investigated 
(Ahbara et al. 2019). Principal component and population 
structure analyses of global sheep population suggests the 
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independent introduction of thin-tailed sheep into the con-
tinent but the dependent introduction and dispersion histo-
ries of fat-tailed and fat-rumped sheep. Principal compo-
nent and phylogenetic analysis of global sheep population 
results coincide with the evidence that fat-tailed sheep were 
introduced into Africa via two independent routes: Horn of 
Africa, via the strait of Bab-el-Mandeb and Northern Africa, 
via the Isthmus of Suez from the Middle East (Ryder 1984).
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