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1  | INTRODUC TION

Global climate change is occurring at an unprecedented rate, which 
may have significant influences on all levels of biodiversity from 
genes to ecosystems (Grünig et al., 2020). The Fifth Assessment 

Report (AR5) produced by the Intergovernmental Panel on 
Climate Change (IPCC) states that global warming is expected 
to continue with the average temperature of earth increasing by 
0.3– 4.5℃ by 2,100 compared with 1986– 2005. Climate change 
has caused substantial geographical distribution changes in a wide 
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Abstract
Climate change influences species geographical distribution and diversity pattern. 
The Chinese fire- bellied newt (Cynops orientalis) is an endemic species distributed 
in East- central China, which has been classified as near- threatened species recently 
due to habitat destruction and degradation and illegal trade in the domestic and in-
ternational pet markets. So far, little is known about the spatial distribution of the 
species. Based on bioclimatic data of the current and future climate projections, we 
modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated 
the importance of environmental factors in shaping their distribution, and identi-
fied distribution shifts under climate change scenarios. In this study, 46 records of 
C. orientalis from East China and 8 bioclimatic variables were used. Among the ten 
modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to 
their predictive abilities. The current habitat suitability showed that C. orientalis had 
a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The 
models suggested that precipitation of warmest quarter (bio18) and mean tempera-
ture of wettest quarter (bio6) had the highest contribution to the model. This study 
revealed that C. orientalis is sensitive to climate change, which will lead to a large 
range shift. The projected spatial and temporal pattern of range shifts for C. orientalis 
should provide a useful reference for implementing long- term conservation and man-
agement strategies for amphibians in East China.
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variety of taxa from mammals, to birds, reptiles, and amphibi-
ans (Buckley et al., 2018; Kafash et al., 2018; Scridel et al., 2018; 
Subba et al., 2018). Many studies have shown that species respond 
differently to climate change, causing either expansion, shift, or 
contraction in the species ranges (Yousefi et al., 2020). For ex-
ample, previous studies have demonstrated that in response to 
global warming, terrestrial species are shifting their distribution 
toward higher altitudes or latitudes (Zhang et al., 2018). Future 
climate change will probably result in large shifts in amphibian 
habitat suitability, thus determining substantial change in patterns 
of amphibian diversity in China (Duan et al., 2016). The largest ex-
tant amphibian species Andrias davidianus will lose more than two- 
thirds of its suitable range in all scenarios of future climates tested 
based on SDM, and shift their range toward higher latitudes and 
altitudes (Zhang et al., 2020). However, the Chinese Skink Eumeces 
chinensis habitats are predicted to have no appreciable habitable 
range changes (Yang et al., 2020).

Species distribution modeling (SDM) is a common and effective 
method of assembling and presenting the spatial distributions of dif-
ferent taxa, including amphibians (Duan et al., 2016; Hu et al., 2016). 
In the past two decades, SDMs have emerged as one of the most 
effective techniques to investigate the impact of climate change in 
species habitat suitability (Araujo et al., 2019). With many different 
methods, tools, and protocols have been developed recently, var-
ious SDM methods have been used to evaluate the ecological re-
quirements, ecological responses, and distribution areas (Guisan 
et al., 2017). SDMs provide useful information in terms of habitat 
suitability and help to find the climate conditions for future adapta-
tion regarding conservation (Zhang et al., 2020).

SDMs are statistical models that use observed species distribu-
tional record data to infer species ecological requirements and map 
their habitat suitability (Austin, 2002). SDMs relate species presence 
records to mainly environmental factors to predict the potential dis-
tribution area (Pearson et al., 2004), which have been implemented 
in managing biological invasions, identifying and protecting critical 
habitats, selecting and translocating reserves, and so on (Thapa 
et al., 2018; Zhang et al., 2020). The most popular SDMs include 
MaxEnt, random forest, boosted regress trees, generalized additive 
models, and multivariate adaptive regression spines (García- Callejas 
& Araújo, 2016).

Amphibians represent the most threatened vertebrate group in 
the world, for those population's declines many factors have been 
targeted as responsible, including by overexploitation, pollution, 
habitat degradation and destruction, diseases, invasive species, and 
climate change (Li et al., 2013). Among these, climate change is re-
garded as one of the most important drivers of amphibian extinction. 
Chinese fire- bellied newt (Cynops orientalis) is an endemic species 
and distributed in East- central China (Che & Wang, 2016), which is 
distributed on hilly lands or low mountain areas, and their habitats 
are ponds, streams, and wetlands found at low and middle elevations 
around slow- moving bodies of water in China (Figure 1).

One crucial issue related to the ecological importance of 
C. orientalis is to determine how climate change will affect the 

spatial extent of their suitable habitat. To the best of our knowl-
edge, no study has investigated potential impacts of future climate 
change in the habitat suitability for C. orientalis yet. To evaluate 
the properties of habitat distribution and environmental factors 
shaping suitability of habitat, we used ten models to predict dis-
tributions of C. orientalis in China using an extensive collection of 
georeferenced occurrence records and recent surveys. We struc-
tured our study under the hypothesis that climate change will re-
sult in the range contraction of C. orientalis, meanwhile pushing 
this species to higher altitudes and/or latitudes. The objectives of 
the present study include the following: (a) identifying the most 
important factors in model predicting, (b) determining the poten-
tial distribution of C. orientalis in current and future climate, and 
(c) comparing the future and current distribution patterns, and 
then quantifying the potential effect of climate changes. These 
findings will provide insight into C. orientalis habitat protection at 
the entire distribution range.

2  | MATERIAL S AND METHODS

2.1 | Species occurrence records

Our study area is located in central and southern China, ranging 
from 110 to 124°E and 22 to 34°N (Figure 2). We determined the 
extent of the accessible area by considering the known geographi-
cal distribution of Cynops orientalis (Fei et al., 2012) and the distri-
bution predicted by a previous SDM study focusing on this species 

F I G U R E  1   Chinese fire- bellied newt from TaiZhou, Zhejiang 
Province, China. Photograph taken by Zhixiang Pan
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(Chen, 2013). We assembled a database of recent georeferenced 
occurrence records of C. orientalis in China (Table S1). A total of 
2,864 occurrence data were recorded based on field surveys, pub-
lished work, and online resources like GBIF (http://www.gbif.org/). 
To minimize sampling bias effect in our dataset (Boria et al., 2014), 
we randomly selected only one record per each 2.5 × 2.5 arcmin 
grid cell (4.6 × 4.6 km at the equator), that is, the resolution of 
our environmental predictors (Boria et al., 2014). Records with 
obvious geocoding errors were discarded, and duplicate records 
were removed manually. Finally, we assembled a database of 46 
spatially georeferenced occurrence records for model calibration, 
covering through central and southern China, which conformed to 
minimum required number for accurate projection (Van Proosdij 
et al., 2016). Although we acknowledge that the sample size is 
small and that the ultimate strength of the SDM inference may be 
affected as a result, previous studies revealed that SDMs based on 
small sample size can also provide useful predictions (Hernandez 
et al., 2006; Pearson et al., 2006).

2.2 | Environmental predictors

We downloaded the standard 19 bioclimatic variables and el-
evation with a resolution of 2.5 arcmin from WorldClim ver-
sion 2.1 (available at https://www.world clim.org), which are the 
average for the years 1970– 2000 (Fick & Hijmans, 2017). With 
potential direct or indirect relationships on the life history of 
amphibians, these bioclimatic variables have been widely used in 
SDMs (Malekoutian et al., 2020; Sangermano et al., 2015). For 
the purpose of avoiding the effect of redundancy, we filtered the 
variables among 19 Bioclimatic variables by pairwise Pearson's 
correlation coefficients (r), thereby selecting the restrictive vari-
ables for C. orientalis with the value of |r| to be less than 0.70 
(Dai et al., 2018). We also downloaded the future climate projec-
tions with the same spatial resolution of current period data from 
WorldClim for four periods, 2030 (average for 2021– 2040), 2050 
(average for 2041– 2060), 2070 (average for 2061– 2080), and 
2090 (average for 2081– 2100), under two shared socio- economic 
pathway (SSP) scenarios (i.e., SSP245 and SSP585). To reduce 

uncertainties among different GCMs, we averaged projections of 
six GCMs as future climates to predict future habitat suitability 
of C. orientalis.

2.3 | Modeling procedure

To develop an accurate projection for C. orientalis, we used an ensem-
ble modeling approach of ten algorithms in biomod2 package (See the 
section of Abbreviations) (Thuiller et al., 2019). We sampled 10,000 
pseudo- absences from the study area to obtain pseudo- absences or 
background records that are required for several algorithms (Guisan 
et al., 2017). We used a fivefold cross- validation approach to run 
the models, in which 80% of data (presences and pseudo- absences) 
were randomly chosen for model training and the last were remained 
for model test (Guisan et al., 2017; Thuiller et al., 2019). We used 
two criterion parameters, true skill statistics (TSS) and area under 
the receiver operating characteristic curve (AUC) to evaluate pre-
dictive performances of the algorithms (Allouche et al., 2006). The 
algorithms with TSS ≥0.50 and AUC ≥0.70 were selected to estimate 
relative contributions of predictor variables in determining the dis-
tribution by a randomization method (Guisan et al., 2017) and to 
project habitat suitability of C. orientalis under current and future 
climates (Gallien et al., 2012).

The committee averaging approach taking into account averages 
of all model predictions with the same weight was used to reduce the 
algorithms bias effect in the single predictions (Guisan et al., 2017; 
Thuiller et al., 2019). For a better interpretation of distribution 
changes under present and future climates, we converted potential 
distribution projections into binary maps (suitable/unsuitable) by 
maximizing the TSS value (Guisan et al., 2017; Liu et al., 2013).

We counted the number of raster cells (2.5 × 2.5 arcmin grid cell) 
classified as the loss areas, stable areas, and gain areas to estimate 
changes in range size by comparing suitable habitats under future 
and current climate conditions (Thuiller et al., 2019). The elevation 
of suitable raster cells under current and future climate scenarios 
was extracted to evaluate changes in altitudinal distribution of C. 
orientalis with one- way ANOVA and Tukey's post hoc test at the sig-
nificance level of 0.05.

F I G U R E  2   Predictive abilities (AUC 
and TSS) of ten modeling algorithms used 
to estimate habitat suitability for Cynops 
orientalis

http://www.gbif.org/
https://www.worldclim.org
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3  | RESULTS

3.1 | Model performances and contributions of 
predictor variables

According to the results of pairwise Pearson's correlation coeffi-
cients (Figure S1), eight predictor variables (mean diurnal range, bio2; 
isothermality, bio3; temperature seasonality, bio4; max temperature 
of warmest month, bio5; min temperature of coldest month, bio6; 
mean temperature of wettest quarter, bio8; precipitation of driest 
month, bio14; precipitation seasonality, bio15; and precipitation of 
warmest quarter, bio18) were selected to develop SDMs for C. ori-
entalis (Figure S1). Among the ten modeling algorithms, four (GAM, 
GBM, Maxent, and RF) had clearly better predictive performances 

than the others (Figure 2). On the basic values of relative contribu-
tion, bio18 was the most important variable to limit the habitat suit-
ability of C. orientalis, followed by bio6 (Figure 3, Figure S3).

3.2 | Habitat suitability under present and 
future climates

The result of projection suggested that the suitable habitat for this 
species is mainly located in Eastern China, including Hunan, Jiangxi, 
Zhejiang, Anhui, and Hubei provinces (Figure 4). Besides, small areas 
in Jiangsu and Fujian provinces also have suitable habitat. The re-
sult of range changes indicated that six of the eight models showed 
range expansion under future climate conditions (Table 1), and the 
gain areas would appear at the south of suitable habitat (Figure 5). 
The projections of habitat suitability for C. orientalis under future 
climate condition varied depending on the SSPs used. We especially 
found that the distribution range under SSP245 would expand by 
18.07% in the 2030, while that of under SSP585 would expand 
by 29.75%. On the contrary, the range under SSP585 would contract 
by 27.38% in the 2090, while that of under SSP245 would expand by 
19.36% (Table 1). The elevation of habitat suitability under present 
climate condition (179.85 ± 3.36 m) was found to be significantly 
greater than those habitat suitability under future climate condi-
tion (F8, 35,626 = 22.24, p < .001), except for that of the 2090 under 
SSP585 and 2030 under SSP245 (Figure 6).

4  | DISCUSSION

In this study, we performed a detailed analysis on the suitable habi-
tat of the Chinese fire- bellied newt C. orientalis under current and 
future climate conditions, which will function as an important step 

F I G U R E  3   Relative contributions of the eight selected predictor 
variables in the ensemble model of habitat suitability for Cynops 
orientalis

F I G U R E  4   Binary output of habitat suitability for Cynops orientalis under current climate conditions. Blue color indicates suitable area, 
and gray color represents unsuitable range. Black pane shows the study area
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in formulating a feasible strategy for their conservation. Our model 
indicated that the suitable habitat area encompassed ca. 41,862 km2 
for the species under current climate conditions and the center area 
was in southwest Anhui and north Jiangxi provinces. With good pre-
dictive accuracy, this study revealed that the C. orientalis has a rela-
tively wide distribution, but the suitable habitats are discontinuous, 
showing the characteristics of a fragmented distribution. Our results 
show that C. orientalis is very sensitive to climate change, which will 
lead to the large range shift (loss and/or gain) of suitable habitats 
(Figures 5, 6, and Figure S2).

Among the ten variables adopted in the model, bio18 and bio6 
made the most contributions to the distribution model for C. orienta-
lis compared with other variables, indicating that these two factors 
play important roles in its distribution. Climate is a more important 

driving factor than elevation, suggesting that microclimates in the 
East China make for a powerful driver of C. orientalis ecological niche 
and distribution. Variables related to extreme environmental condi-
tions (precipitation of warmest quarter and the mean temperature of 
wettest quarter) also emerged as important in explaining the distri-
bution of C. orientalis. Precipitation is closely related to the amount 
of water in ponds, streams, and slow- moving wetlands as well (wet 
conditions). Temperature plays an important role in determining 
species' distributions, and evaluating the influence of climatic vari-
ables across a large geographic area to provide information about 
suitable habitat for a given species. The suitable temperature ranges 
for C. orientalis were 15– 25℃ (Lu et al., 2017). This suggests a phys-
iological limit to the distribution of C. orientalis.

With global warming, some species will migrate to high lat-
itude or high elevation, while other species may adapt to these 
changes physiologically or phenologically (Li et al., 2013; Zhang 
et al., 2020). In this study, future projection indicates that the suit-
able range of C. orientalis will not shift toward higher altitudes and 
latitudes. Habitat suitability under current and future scenarios 
showed the large range shift (loss and/or gain), with more habitat 
suitability toward the south parts of study area and some scattered 
locations. These findings are not consistent with our initial work-
ing hypotheses. Climate change- induced altitudinal and/or latitu-
dinal range shifts have been observed in a number of organisms, 
which reveal that amphibians prefer the wet conditions more avail-
able in the northeast (Chen et al., 2011; Poloczanska et al., 2013). 
Amphibians are experiencing global declines, and thus, a number 
of SDMs have been built to estimate their habitat suitability under 
future climate conditions (Duan et al., 2016; Popescu et al., 2013; 

TA B L E  1   Range size change in Cynops orientalis in 2030, 2050, 
2070, and 2090 under two SSPs

Years
Shared socio- economic 
pathways

Range 
change (%)

2030 SSP245 18.07

SSP585 29.75

2050 SSP245 0.03

SSP585 39.99

2070 SSP245 – 25.52

SSP585 24.42

2090 SSP245 19.36

SSP585 – 27.38

F I G U R E  5   The current and future suitable habitats of Cynops orientalis. Blue areas are currently suitable habitats that may still be suitable in 
the future. Red areas are suitable habitats added in the future. Black areas are currently suitable habitats that become unsuitable in the future
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Zhang et al., 2020). In fact, evidence that climate change is directly 
contributing to amphibian declines is weak, partly because re-
searchers have not often ruled out alternative hypotheses, such as 
chytrid fungus or climate– fungus interactions (Li et al., 2013). We 
should consider that species dispersal capability is a critical limit-
ing factor influencing species distribution and SDM projections can 
be largely divergent depending on different assumptions regarding 
dispersal abilities (Guisan et al., 2017; Li et al., 2013). The suitable 
area of C. orientalis in future was not higher than current habitat. 
In the present SDM study, we adopted an unlimited dispersal abil-
ity assumption and our SDM projections suggest that in addition 
to considerable range shift, C. orientalis will expand its range in 
some provinces. It is unclear whether C. orientalis has the ability to 
keep pace with climate change- induced range shifts and colonize 
new areas.

It is worth noting that climate change will also determine sub-
stantial environmental changes in the microclimatic zones. East 
China is a mosaic of mountains lower than 2000 m and charac-
terized by a relatively mild climate, potentially hosting microcli-
matic zones capable of supporting a variety of habitats in relative 
stability (Ju et al., 2007; Qian & Ricklefs, 2000). The mountains 
might intercept moisture and heat, transported by monsoons 
from the ocean, providing relative climatic and ecological stability. 
Temperature data from microhabitats and macrohabitats in pri-
mary rainforests show that microhabitats can reduce mean tem-
perature and the duration of extreme temperature exposure; thus, 
microhabitats have the potential to buffer species from climate 
change (Scheffers et al., 2014). Microclimatic zones may have mit-
igated demographic stresses and also have been available for East 
Asian species (Li et al., 2009). While the effects of climate change 
are largely studied in surface habitats, the impacts on microcli-
matic habitats are still poorly explored (Mammola et al., 2019). The 
temperature increment in these transitional microclimatic habi-
tats is expected to parallel the external one almost synchronically 
(Mammola et al., 2019). Furthermore, climate change is expected 
to determine drops in relative humidity and even desiccation of 

subterranean habitats (Mammola et al., 2019). This species occurs 
only in very small locations, and based on the loss- gain maps, these 
species will tend to gain more than they lose under climate change. 
Local disasters, such as diseases, drought and land transformation 
by human activities, can easily cause extinction (Li et al., 2013; Shu 
et al., 2013). Climate change- induced range contraction will sum up 
to other threats that are currently severely affecting this species, 
from commercial overexploitation for human consumption to hab-
itat degradation and disruption (Turvey et al., 2018). In view of our 
results, we strongly recommend that future adaptive management 
strategies should take into consideration the potential impacts of 
climate change in C. orientalis.

As a result, increased use of illegal trade in the domestic and in-
ternational pet markets may lead to extinction that occurs despite 
the presence of suitable habitats now and in the future. Climatic 
change will not result in a decrease in the availability of suitable 
habitats. The present study suggests that C. orientalis is vulnera-
ble to climate change, which will lead to the large range shift (loss 
and/or gain) of suitable habitats under future climatic conditions. 
However, large amounts of currently suitable habitat may disap-
pear because of land- use change and human use for illegal trade 
pet market purposes. This study will provide a useful reference for 
implementing long- term conservation and management strategies 
for amphibians.
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