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This Letter proposes a customised approach for attribute selection applied to the fuzzy rough quick reduct algorithm. The unbalanced data is
balanced using synthetic minority oversampling technique. The huge dimensionality of the cancer data is reduced using a correlation-based
filter. The dimensionality reduced balanced attribute gene subset is used to compute the final minimal reduct set using a customised fuzzy
triangular norm operator on the fuzzy rough quick reduct algorithm. The customised fuzzy triangular norm operator is used with a
Lukasiewicz fuzzy implicator to compute the fuzzy approximation. The customised operator selects the least number of informative
feature genes from the dimensionality reduced datasets. Classification accuracy using leave-one-out cross validation of 94.85, 76.54,
98.11, and 99.13% is obtained using a customised function for Lukasiewicz triangular norm operator on leukemia, central nervous system,
lung, and ovarian datasets, respectively. Performance analysis of the conventional fuzzy rough quick reduct and the proposed method are
performed using parameters such as classification accuracy, precision, recall, F-measure, scatter plots, receiver operating characteristic
area, McNemar test, chi-squared test, Matthew’s correlation coefficient and false discovery rate that are used to prove that the proposed
approach performs better than available methods in the literature.
1. Introduction: The decision-making process in health care
is supported by suitable classification techniques in machine
learning. Early diagnosis of the disease contributes to higher
chances of recovery and cure. The accuracy of the classifier is the
most important parameter in medical applications. Hence attribute
selection and classification play a significant role in healthcare
applications [1]. The attribute selection methods gain importance
because of the higher dimensionality of microarray datasets
and small sample size that contribute to degradation in the
performance of the classifier. The process of attribute selection
involves the elimination of redundant genes and preservation of
informative genes, thereby reducing the dimensionality and
computation cost and increasing the classification accuracy (CA).
The dependency between attributes could be used for feature
selection in rough sets. The quick reduct algorithm begins with
an empty set and adds attributes, one at a time by computing the
dependency of each attribute and chooses the best candidates to
generate a reduct set that is least exhaustive with the highest
dependency value [2].
Fuzzy-based independent component sub-space using fuzzy

backward feature elimination is proposed to improve the perform-
ance of support vector machine (SVM) and Naive Bayes classifiers.
An accuracy of 85% is reported on leukemia and 81% on lung
cancer dataset [3]. The particle swarm optimisation (PSO) adaptive
K-nearest neighbour-based gene selection method is proposed and
SVM is used to reconfirm the usefulness of the identified genes [4].
The method to perform subset evaluation using neighbourhood
approximation and attribute grouping is proposed and this approach
selects three genes in the final minimal reduct and an accuracy
of 84% is reported [5]. A two-phase hybrid model based on
improved binary PSO is proposed for the diagnosis of cancer and
the CA reported is in the range of 92 –100%. This model also
selects the least number of genes (<1.5%) from the raw dataset
[6]. The fuzzy rough set method to maximise both relevance and
significance of the selected features is proposed that makes use of
dependency, relevance, redundancy and significance as criteria
for subset selection [7]. Markov blanket is used with an incremental
wrapper to generate high-quality feature subset [8]. A formally
correct and unified mathematical framework is proposed in [9].
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A filter-wrapper approach is proposed to select the best set of
features and the fuzzy rough set model using representative
instances is proposed in [10]. Feature selection based on large-scale
multi-objective binary optimisation is proposed and the method is
implemented on cancer microarray gene expression datasets [11].
A hybrid approach to feature selection using correlation coefficient
for dimensionality reduction and fuzzy rough quick reduct (FRQR)
algorithm for generating the minimal reduct set is proposed in [12].
A correlation-based filter with a PSO-based wrapper is used for
dimensionality reduction and FRQR algorithm is used to generate
the final reduct set using cancer microarray gene expression datasets
[13]. An entropy based filter is used for dimensionality reduction
and customised similarity measure using FRQR is used to generate
the minimal reduct set [14].

The above-discussed methods used the concept of the fuzzy
rough set to generate the minimal reduct set. The two key problems
of conventional FRQR approaches are – (i) the complexity in
computing the Cartesian product of the fuzzy equivalence classes
and (ii) in certain cases, the fuzzy lower approximation gets
bigger than the fuzzy upper approximation. To solve the above
issues, our proposed approach of correlation-based feature selection
(CFS) is used as a dimensionality reduction technique and custo-
mised triangular norm-based minimal reduct set generation pro-
duces the minimal number of informative genes and produces
comparably better CA.

This Letter is organised as follows: Section 2 presents the contri-
butions of the research work, Section 3 discusses the proposed
method for attribute subset selection; Section 4 discusses the simu-
lation results and discussions and Section 5 discusses the
conclusions.
2. Contributions: This Letter aims to reduce the feature sets and
achieve better CA. The contribution of the proposed work is to
customise the fuzzy triangular norm (t-norm) operator so that it
produces a lesser number of feature genes in the final minimal
reduct set and also provides better performance in terms of the
different statistical parameters analysed when compared to the
conventional FRQR approach.
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3. Proposed method for attribute subset selection: The
framework for the proposed approach can be described using the
block diagram as shown in Fig. 1.

The raw dataset is reduced for its dimensionality by using
Pearson’s correlation coefficient. The dimensionality reduced
gene expression dataset is subjected to attribute subset selection
using the customised function for Lukasiewicz fuzzy t-norm oper-
ator and Lukasiewicz implicator on the FRQR algorithm. The final
minimal reduct generated is used to perform different statistical ana-
lysis to prove that this new customised operator performs better than
those available in the literature.

3.1. Data preprocessing: Min–max normalisation is performed for
our raw datasets. Classes are not approximately represented in
imbalanced datasets [15]. Hence, the synthetic minority
over-sampling technique (SMOTE) is used to create synthetic
minority class samples for our normalised datasets. CFS uses
Pearson’s correlation coefficient to perform dimensionality
reduction on the normalised and balanced datasets.

3.2. Proposed customised fuzzy t-norm operator for FRQR:
Elimination of redundant features and preserving the quality of
the original feature genes are the two main goals of feature
selection. Representation of the information system in a concise
manner is very much essential for real world applications. Hence
the concept of a reduct is introduced that could determine the
minimal representation of the original dataset.

3.2.1 Working of FRQR algorithm: The algorithm for FRQR is
described as follows: at the beginning of execution of this algorithm,
the current best set of attributes represented as a potential reduct
is initialised to an empty set. The first step is to compute the
fuzzy indiscernibility. The second step in the algorithm is the com-
putation of the tolerance of the attributes using the similarity
measure. The fuzzy tolerance relation is used along with the fuzzy
t-norm to compute the final reduct. The third step is to compute
the fuzzy lower approximation, i.e. generalised by means of an
implicator and a fuzzy t-norm. The fourth step is to compute the
positive region. The minimal reduct set is computed using the
degree of dependency, i.e. the last step in the quick reduct algorithm
[16]. This Letter proposes the computation of the indiscernibility
relation by using a customised function for Lukasiewicz fuzzy
t-norm operator to compute the fuzzy lower approximation.

3.2.2 Computation of reduct set using fuzzy implicator and
customised t-norm operator: Fuzzy tolerance, equivalence, and
Fig. 1 Framework of the proposed approach
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T_equivalence are the various methods used in the computation
of the fuzzy indiscernibility. Computation of the minimal reduct
set using customised similarity measure is proposed in [14].
This section describes the computation of the minimal attribute
subset using the customised function for Lukasiewicz fuzzy
t-norm. A fuzzy relation Rat( p, q) between two patterns ‘p’ and
‘q’ [ A # < is a AXA � 0, 1[ ] mapping such that Rat( p, q) is a
fuzzy set in A. For each y [ <, Raty

( p) = Rat( p, q). In fuzzy
rough sets, the similarity between any two patterns in a set A is
modelled by a fuzzy relation Rat defined as

Rat( p, p) = 1, (1)

Rat( p, q) = Rat(q, p), (2)

qR(Rat( p, q)Rat(q, r)) ≤ Rat( p, r). (3)

Equation (1) is called reflexivity, (2) is called symmetricity and
(3) is called transitivity relation for all p, q, r in A [17]. Given a tri-
angular norm or t-norm, the concepts of symmetricity and trans-
itivity need not be satisfied. The approximation of a set requires
the use of some fuzzy logical counterparts of connectives that
are involved in the generalisation of the fuzzy lower and upper
approximation. A pair of fuzzy lower and upper approximation
operators on a fuzzy set X based on a similarity relation Rat( p, q)
is defined in as

RatX ( p) = inf max
y[<

1− Rat( p, q), X q
[ ]{ }

, (4)

R̄atX ( p) = supmin
y[<

Rat( p, q), X q
[ ]{ }

. (5)

There are two common problems with the fuzzy rough attribute
selection using (4) and (5), namely, the complexity of calculating
the Cartesian product of fuzzy equivalence classes gets larger and
larger in each step and in some cases, the fuzzy lower approxima-
tion becomes bigger than fuzzy upper approximation [18]. To
solve the above issues, alternate fuzzy lower and upper approxima-
tions are proposed in [19, 20] and represented as

mRatX ( p) = inf
q[<

IL{mRata
( p, q), mp[q]}, (6)

mR̄atX (x) = sup
q[<

qR{mRata
( p, q), mp[q]}, (7)

where IL represents the Lukasiewicz implicator (default) used for
our proposed method and is represented in (8) as

IL = min(1, 1− p+ q). (8)

mRata
( p, q) represents similarity measures available and the pro-

posed method uses the similarity measure represented as

mRata
(p, q) = 1− (a(p)− a(q))/(amax − amin). (9)

For fuzzy t-norm operators ‘1’ is the neutral element. The
region where max 1− Rar( p, q), X q

[ ]{ } = 1 does not have any
impact on the formation of lower approximation membership due
to the presence of ‘inf’ operator on it. Hence a region where
max 1− Rat( p, q), X q

[ ]{ }
= 1 needs to be found and the lower

and upper approximations need to be computed for that region
[20]. An operator qRat

( p, q) is called a conjunctor that maps from

0, 1[ ] ⊗ 0, 1[ ] � 0, 1[ ], (10)

where ⊗ denotes any operation on any two attributes, then (10) sat-
isfies

qRat
(1, p) = p for all p [ 0, 1[ ]. (11)
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All sets that satisfy (11) are called the border conjunctors [9]. The
fuzzy t-norm operator represented by qRat

( p, q) satisfies the condi-
tions namely single identity in (12), monotonicity in (13), associa-
tivity in (14) and commutativity in (15) that can be represented as
under:

qRat
( p, 1) = p, (12)

p ≤ r, q ≤ u ⇒ qRat
( p, q) ≤ qRat

(r, u), (13)

qRat
(qRat

( p, q), r) = qRat
(x, qRat

(q, r)), (14)

qRat
( p, q) = qRat

(q, p). (15)

A border conjunctor that satisfies (10) and (11) is called a t-norm.
Equation (16) represents the minimum t-norm, (17) represents the
product t-norm and (18) represents the (default) Lukasiewicz
t-norm that is used frequently

qRat
( p, q) = min p, q

{ }
, (16)

qRat
( p, q) = p∗q{ }

, (17)

qRat
( p, q) = max 0, p+ q− 1

{ }
. (18)

To improve the statistical parameters such as the accuracy of the
classifier, a new customised function for the Lukasiewicz fuzzy
t-norm is introduced in (19) as

if ( p+ q
{ }

, 1)
return min( p, q){ }

else

return(0),

(19)

where [p, q] lies between [0,1]. The maximum value that ‘p’ and ‘q’
can take is 1. Hence at all times

p+ q ≤ 2. (20)

Ignoring the ideal case in (20) where the values of both ‘p’ and ‘q’
will be equal to 1, we can rewrite (18) as

p+ q , 2. (21)

Now, the left-hand side of (19), i.e. p+ q
{ }

can be rewritten as
p+ q

{ } = p+ q− 1
{ }

then (19) is rewritten as in (22)

p+ q− 1
{ }

, 1. (22)

Considering the customised function as represented in (19), it is
inferred as

min( p, q) ⇒ min(1, p) ⇒ 'p'. (23)

Else (19) returns the value of zero. Hence (19) satisfies the basic
condition for fuzzy t-norm in the FRQR algorithm.

3.2.3 Computation of positive region and degree of dependency:
For a fuzzy decision system (<, A< D) with < =
x1, x2, . . . , xn
{ }

and B # A, the positive region of D with respect
to B is defined as

POSB(D) = <
Dk[</D

Rat(B)Dk
−

, (24)

where Rat(B)Dk
−

(xi) = inf maxxj[< 1− Rat(B)(xi.xj) · Dk (xj)
{ }

. The
degree of dependency is computed for all the features in the
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dataset. The final reduct is obtained by taking those feature genes
that contribute to the increase in dependency value. The stopping
criterion for the algorithm is defined as the point at which an attri-
bute does not contribute to an increase in dependency value and
thereby produces the final attribute subset. If P depends totally on
Q, then there exists a functional dependency between them. For
P, Q # Ca, Q depends on P in a degree k(0 ≤ k ≤ 1) denoted
by P ⇒k Q, if

k = lp(Q) =
∑
x[<

mPOSRP (Q)( p)/ <| |, (25)

where lp(Q) in (25) represents the quality of approximation [14].
The computed dependency value k lies in the range [0 1] where
‘1’ represents total dependency, ‘0’ represents no dependency and
any value between ‘0’ and ‘1’ indicates partial dependency. The
most significant features are obtained by computing the change in
the dependency value when features are removed from the set of
candidate gene subsets [14]. High variations in the values indicate
that it is a significant feature and needs to be retained and added to
the final reduct set. The significance value of zero indicates that the
feature can be removed from the reduct set. The output of the pro-
posed method is the reduced gene attributes in the final minimal
reduct. The CA, one of the adequate measures in microarray gene
expression data gets affected because of the problem of ‘curse of
dimensionality’ wherein there are only a few testing and training
samples. The solution to this problem is to use the leave-one-out
cross validation (LOOCV) strategy for cross validation to
compute the CA using a decision stump classifier.

4. Results and discussion: The dataset used for our study is
considered as the benchmarked dataset for microarray data used
in a number of standard research papers [1, 4, 6, 11–14, 21, 22]
and is downloaded from the Kentridge biomedical repository
[23]. The binary un-paired dataset samples used for training and
testing the classifier are disjoint and non-overlapping. They
include leukemia, central nervous system (CNS), lung cancer, and
ovarian cancer samples. The binary datasets used for our study
consist of unbalanced raw data. Leukemia data consists of 72
samples, CNS data consists of 60 samples, lung cancer or lung
carcinoma data consists of 181 patient samples and ovarian
cancer data consists of 253 samples. The proposed algorithms are
implemented on an Intel Core i7 CPU that has a 3.2 GHz
processor and 8 GB RAM running on a 64 bit Windows
operating system.

The normalised and SMOTE balanced datasets are reduced for
their dimensionality using a correlation-based filter by removing
the redundant genes and preserving the informative ones. The
dimensionality reduced datasets are subjected to attribute subset
selection using the customised function for Lukasiewicz fuzzy
t-norm operator on FRQR. The performance of the proposed
approach is compared with the conventional FRQR using the
decision stump classifier and LOOCV cross validation strategy to
generalise the results as the sample size is smaller in cancer gene
expression datasets. The performance analysis is done on different
datasets using conventional FRQR and proposed customised fuzzy
t-norm FRQR and the results are tabulated in Table 1.

The false discovery rate (FDR) is the probability of getting a
positive test result when the result is actually negative. The
formula to compute FDR is given as

FDR = FP/(TP+ FP). (26)

The values of precision, recall, and F-measure are found to be
better, the CA of the proposed method is found to be higher,
FDR (complement of precision) and the number of feature genes
in the final reduct set is lesser for all the datasets under study
15
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Table 1 Performance analysis on different datasets – conventional FRQR versus proposed customised FRQR

Dataset Number of
genes in
the raw
dataset

Number of
genes

obtained
using CFS

Method No. of
feature
genes
selected

CA,% FDR Precision Recall F-measure TP FN FP TN

leukemia 7129 112 conventional FRQR 8 87.63 0.120 0.880 0.880 0.880 44 6 6 41
proposed method 2 94.85 0.063 0.938 0.957 0.947 45 2 3 47

CNS 7129 100 conventional FRQR 10 69.14 0.333 0.667 0.810 0.731 34 8 17 22
proposed method 3 76.54 0.275 0.725 0.881 0.796 37 5 14 25

lung cancer 12,533 252 conventional FRQR 8 96.70 0.026 0.974 0.980 0.977 147 3 4 58
proposed method 2 98.11 0.020 0.981 0.993 0.987 149 1 3 59

ovarian cancer 15,154 44 conventional FRQR 8 96.22 0.059 0.941 0.981 0.961 159 3 10 172
proposed method 3 99.13 0.000 1.000 0.981 0.991 159 3 0 182

TP, true positive; FN, false negative; FP, false positive; TN, true negative.

Fig. 2 Scatter plot for conventional FRQR for leukemia dataset

Fig. 3 Scatter plot for proposed customised FRQR for leukemia dataset

Table 2 ka, MAE, RMSE metrics for conventional FRQR versus
proposed customised FRQR

Dataset Conventional FRQR Proposed method

ka MAE RMSE ka MAE RMSE

leukemia 0.752 0.147 0.340 0.900 0.089 0.225
CNS 0.377 0.365 0.475 0.526 0.347 0.420
lung cancer 0.919 0.069 0.161 0.954 0.037 0.138
ovarian cancer 0.924 0.064 0.191 0.983 0.036 0.097
compared to the conventional FRQR method. The scatter plots
drawn for the conventional FRQR and customised FRQR show
how a feature gene is being influenced by another feature gene
and is depicted in Figs. 2 and 3, respectively.

The execution time is computed for all the four datasets under
study. The execution time for leukemia, CNS, lung, and ovarian
cancer datasets are 100, 90, 224.9 and 39.6 s respectively. To val-
idate the results, additional measures such as Kappa (ka), mean
absolute error (MAE), and root mean squared error (RMSE) are per-
formed for the conventional FRQR and the proposed customised
fuzzy t-norm FRQR methods. The Kappa metric is used to make
a comparison of observed accuracy against expected accuracy.
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Higher the value, better the result and hence better the performance
of the proposed method. MAE measures the average of absolute
differences between the actual and predicted observations where
all individual differences have equal weightage. RMSE measures
the average magnitude of the error by taking the squared difference
between predicted and actual observations. Lower their values,
better the result. The values of kappa, MAE, and RMSE are tabu-
lated in Table 2.

CA is one of the parameters in the field of clinical medicine to
evaluate the proposed method. The efficiency of the proposed
method is also evaluated using other statistical parameters
namely, Matthew’s correlation coefficient (MCC), McNemar’s
test and chi-squared test. MCC is a measure used in machine learn-
ing approaches in order to determine the quality of binary classifi-
cation. It is generally considered as a balanced measure, regardless
of the number of instances in each class [24]. The formula to
compute MCC is given as

MCC = ((TP∗TN) − (FP∗FN))																																																			(TP+ FP)∗(TP+ FN)∗(TN+ FP)∗(TN+ FN)√ . (27)

McNemar and chi-squared tests are used to find the statistical sig-
nificance for paired and un-paired nominal data ,respectively. The
values of these metrics are represented in Table 3

MCC returns a value in the range −1 to +1. A coefficient value
of +1 indicates better prediction, 0 indicates random prediction and
−1 indicates total disagreement between the observed and the
predicted values. The value of the MCC is higher for the proposed
approach for all our datasets under study and hence indicates better
prediction over conventional FRQR. McNemar test is performed
on disconcordant (lack of agreement in decision class) pairs with
1-degree of freedom. It can be observed that the McNemar test pro-
duces McNemar chi-squared values <3.84 (critical value threshold)
for all the datasets on pairs of classifiers used for McNemar test
and 1-tailed chi-squared test attains statistical significance since it
produces ‘p’ value less than 0.005. After a suitable analysis of
the above parameters, it can be concluded that the proposed
Healthcare Technology Letters, 2019, Vol. 6, Iss. 1, pp. 13–18
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Table 3 MCC, McNemar, chi-squared metrics for conventional FRQR versus proposed customised FRQR

Dataset Conventional FRQR Proposed method

MCC McNemar chi-squared
value (p-value)

Chi-squared test
value (p-value)

MCC McNemar chi-squared
value (p-value)

Chi-squared test
value (p-value)

leukemia 0.752 0.08 (0.386) 51.93 (<0.0001) 0.897 0.00 (0.500) 74.51 (<0.0001)
CNS 0.387 3.80 (0.109) 10.56 (0.0006) 0.540 2.89 (0.213) 21.44 (<0.0001)
lung cancer 0.920 0.04 (0.500) 174.96 (<0.0001) 0.954 0.02 (0.614) 188.41 (<0.0001)
ovarian cancer 0.925 2.14 (0.096) 290.71 (<0.0001) 0.983 1.33 (0.248) 328.22 (<0.0001)

Table 4 TPR, FPR for conventional FRQR versus proposed customised
FRQR

Dataset Conventional FRQR Proposed method

TPR FPR TPR FPR

leukemia 0.880 0.128 0.957 0.060
CNS 0.691 0.318 0.881 0.243
lung cancer 0.987 0.081 0.993 0.048
ovarian cancer 0.981 0.055 0.981 0.001

Table 5 Comparison with state-of-the-art attribute selection methods

Attribute selection method CA,% Number of genes
in the reduced

subset

independent component subspace [3] 83.00 10
neighbourhood approximation [4] 84.64 3
scalable feature selection [5] 84.64 4
CFS-improved binary particle swarm
optimisation [6]

84.53 7

max dependency, relevance [7] 82.83 2
CFS-PSO-FRQR [13] 90.19 10
BDE-SVMrankf (binary differential
evolution – support vector machine
(SVMrankf)) [21]

91.80 4

proposed customised FRQR 92.16 3
approach using customised fuzzy t-norm operator performs better
than the available methods in the literature. The false positive rate
(FPR), true positive rate (TPR) are computed and tabulated in
Table 4.
The TPR for all the datasets under study is higher and FPR is

lower for our proposed method compared to conventional FRQR.
The receiver operating characteristic area for leukemia, CNS, lung
cancer, and ovarian cancer datasets used for our study is 0.910,
0.743, 0.953 and 0.997, respectively, for the proposed customised
fuzzy t-norm FRQR method. The proposed method is compared
with state-of-the-art attribute selection methods with respect to
two aspects, namely, CA, and the number of genes in the reduced
subset. The CA and number of genes are presented as the average
value obtained across the different datasets under study. They are
represented in Table 5.
In the case of all our datasets under study, the proposed

customised fuzzy t-norm FRQR method finds a lesser number of
informative feature genes and comparatively higher CA compared
to many of the available feature selection methods in the literature.

5. Conclusion: This Letter proposes an efficient method for
predicting cancer using fuzzy rough machine learning approaches.
The proposed method customises the Lukasiewicz fuzzy t-norm
operator of FRQR for attribute subset selection. This new
Healthcare Technology Letters, 2019, Vol. 6, Iss. 1, pp. 13–18
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technique has reduced the dimensionality of the datasets by using
a Pearson’s correlation coefficient and the redundant genes are
removed by using the customised function for Lukasiewicz
fuzzy t-norm operator on the FRQR algorithm. The classification
algorithm produces CA of 94.85, 76.54, 98.11 and 99.13% on
leukemia, CNS, lung, and ovarian datasets by selecting 2, 3, 2
and 3, feature genes, respectively, for the proposed method. It is
evident that the proposed method produces much better accuracy
than the other methods available in the literature. The proposed
customised fuzzy t-norm operator works well for binary cancer
microarray gene expression datasets. Future research is on the
way to apply the proposed customised FRQR method that uses
the customised fuzzy t-norm operator to multi-class cancer
microarray gene expression datasets.
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