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Abstract 

Microsatellite instability (MSI) has been approved as a pan-cancer biomarker for immune checkpoint blockade 
(ICB) therapy. However, current MSI identification methods are not available for all patients. We proposed an 
ensemble multiple instance deep learning model to predict microsatellite status based on histopathology images, 
and interpreted the pathomics-based model with multi-omics correlation. 
Methods: Two cohorts of patients were collected, including 429 from The Cancer Genome Atlas 
(TCGA-COAD) and 785 from an Asian colorectal cancer (CRC) cohort (Asian-CRC). We established the 
pathomics model, named Ensembled Patch Likelihood Aggregation (EPLA), based on two consecutive stages: 
patch-level prediction and WSI-level prediction. The initial model was developed and validated in 
TCGA-COAD, and then generalized in Asian-CRC through transfer learning. The pathological signatures 
extracted from the model were analyzed with genomic and transcriptomic profiles for model interpretation. 
Results: The EPLA model achieved an area-under-the-curve (AUC) of 0.8848 (95% CI: 0.8185-0.9512) in the 
TCGA-COAD test set and an AUC of 0.8504 (95% CI: 0.7591-0.9323) in the external validation set Asian-CRC 
after transfer learning. Notably, EPLA captured the relationship between pathological phenotype of poor 
differentiation and MSI (P < 0.001). Furthermore, the five pathological imaging signatures identified from the 
EPLA model were associated with mutation burden and DNA damage repair related genotype in the genomic 
profiles, and antitumor immunity activated pathway in the transcriptomic profiles. 
Conclusions: Our pathomics-based deep learning model can effectively predict MSI from histopathology 
images and is transferable to a new patient cohort. The interpretability of our model by association with 
pathological, genomic and transcriptomic phenotypes lays the foundation for prospective clinical trials of the 
application of this artificial intelligence (AI) platform in ICB therapy. 

Key words: microsatellite instability, colorectal cancer, pathomics, multi-omics, ensembled patch likelihood 
aggregation (EPLA)  
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Introduction 
Microsatellite instability (MSI) is a hypermutator 

phenotype that occurs in tumors with DNA mismatch 
repair deficiency (dMMR) [1], which is reported as a 
hallmark of hereditary Lynch syndrome (LS)- 
associated cancers [2] and observed in about 15% of 
colorectal cancer (CRC) [3]. MSI has been identified as 
a favorable prognostic factor but a negative predictor 
for adjuvant chemotherapy in stage II CRC [4]. More 
importantly, recent studies have demonstrated MSI or 
dMMR is correlated to an increased neoantigen 
burden that sensitizes the tumor to immune 
checkpoint blockade (ICB) treatment [5]. Further 
investigations have suggested that the benefit of ICB 
treatment for patients with MSI is not limited to 
specific tumor types but to all solid tumors [6], which 
established the crucial role of MSI in predicting the 
efficacy of immunotherapy for advanced solid 
tumors, especially CRC. 

MSI or dMMR testing has traditionally been 
performed in patients with CRC and endometrial 
cancer to screen for LS–associated cancer 
predisposition [7]. Recently, with the U.S. Food and 
Drug Administration (FDA) designation of MSI/ 
dMMR as a favorable predictor of anti-programmed 
death-1 (PD-1) therapy [8], the clinical demand for 
MSI/dMMR testing has increased dramatically. 
However, in clinical practice, not every patient is 
tested for MSI, especially in those cancers with lower 
occurrences of MSI or in patients in developing 
countries, because it requires additional genetic or 
immunohistochemical tests which are costly and 
time-consuming. Additionally, various existing MSI 
testing methods show different sensitivities and 
specificities, leading to the disunity of results [9, 10]. 
Therefore, there are both opportunities and challenges 
that lie ahead in developing an MSI testing method 
that is available for all cancer patients. 

The emergence of computational pathology have 
provided an opportunity for the detection of MSI 
because pathology slides are produced for almost 
every patient diagnosed with cancer; these slides can 
be digitized into whole slide images (WSIs) [11]. WSI 
not only reveals the tissue spatial arrangement of 
tumor cells at low magnification, but also the cell 
structure at high magnification [12]. Furthermore, 
histopathology images also show the immunologic 
microenvironment of tumors [13]. The cell level 
phenotypes presented in WSI are affected by 
genotypes such as MSI at the molecular scale. With 
the continuous penetration of artificial intelligence 
(AI) into the field of medical imaging, researchers 
have sought solutions based on deep learning, a 
research area in AI, in a wide range of medical 

problems, such as prediction of gene mutations [14] 
and tumor-infiltrating lymphocytes [12], and cancer 
screening [15, 16]. Whereas traditional machine 
learning depends largely on human-selected features 
[17], deep learning can learn features from the data, 
which makes it possible for researchers to discover 
untapped information [18, 19]. Previous studies have 
suggested that deep learning can discover regions that 
contribute to microsatellite (MS) status with special 
pathomorphological characteristics [20], but the 
applicability of the model in the Asian population 
remains in question because of the great variation in 
demographics and data preparation. The inability to 
interpret the extracted signatures and the predictions 
made by the model is considered to be one of the 
major issues that limit the acceptance of AI models in 
medicine [21]. 

In this study, we developed a multiple-instance- 
learning (MIL)-based deep learning model to predict 
MS status from histopathology images. The model, for 
which we proposed as Ensemble Patch Likelihood 
Aggregation (EPLA), combined both deep learning 
and traditional machine learning techniques. It was 
trained using the TCGA-COAD data set, and then 
transfer learning was implemented to fine tune the 
model using an Asian-CRC cohort curated locally, 
which enhanced the generalizability of this model. 
More importantly, we also demonstrated the 
interpretability of the model by identifying the crucial 
pathological signatures generated by the MIL model 
and linking them with MSI genomic and 
transcriptomic profiles. 

Materials and Methods 
Patient cohorts and dataset partition 

In this study, whole slide images (WSIs) of two 
large cohorts were collected, and an MS label was 
assigned to each WSI based on the patient’s 
microsatellite measurement. The first cohort (TCGA- 
COAD), retrieved from The Cancer Genome Atlas, 
comprised 429 frozen tissue slides diagnosed as colon 
adenocarcinoma (COAD) with stage I to IV. MSI score 
of each sample within the cohort was measured using 
the MSIsensor algorithm based on tumor-normal 
paired genome sequencing data [22]; tumors with 
MSIsensor scores of ≥ 10 were defined as MSI, 
whereas those with MSIsensor scores of < 10 were 
defined as microsatellite stability (MSS) [23]. In this 
cohort, 358 cases were labeled as MSS and 71 cases 
were labeled as MSI. The second cohort (Asian-CRC), 
collected from Tongshu Biotechnology Co., Ltd, 
consisted of 785 formalin-fixed paraffin-embedded 
(FFPE) sections diagnosed with CRC of all stages, 
which were provided from three medical centers in 
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China. Patients in the Asian-CRC group were 
analyzed by an MSI detection kit (Shanghai Tongshu 
Biotechnology Co., Ltd.) that detects five 
microsatellite loci (BAT-25, BAT-26, D5S346, D2S123 
and D17S250) based on multiplex PCR-capillary 
electrophoresis [24]; tumors with instability in ≥ 2 out 
of five microsatellite loci were classified into the 
MSI-high (MSI-H) group, and the rest were assigned 
into the MSI-low (MSI-L)/MSS group, following the 
recommendations and guidelines on MSI testing for 
CRC [24, 25]. Thus, 164 cases were identified as 
MSI-H, and 621 cases were identified as MSI-L/MSS. 
The details of the two cohorts are summarized in 
Table S1. This study was approved by the 
Institutional Ethical Review Boards of Nanfang 
Hospital (NFEC-2020-055), and patient consents were 
obtained. 

The TCGA-COAD cohort was split into separate 
training and test sets at a 7:3 ratio using stratified 
sampling, in order to maintain the same ratio of 
positive to negative samples in the training set and 
test set. The training set was used for hyper- 
parameter tuning based on cross-validation, whereas 
the test set was used for the evaluation of 
generalization performance, and the independent 
Asian-CRC cohort for external validation. 

ROI delineation, tiling, and data preprocessing 
All WSIs were digitalized at 20× objective lens 

with a predefined pixel resolution (~0.5μm/pixel). In 
order to reduce the influence of unrelated areas and 
alleviate the workload of the classification method, 
regions of carcinoma (ROIs) on WSIs were manually 
annotated by expert pathologists, according to the 
following rules: (1) the tumor cells should occupy 
more than 80% of a ROI, i.e., the interstitial 
component is less than 20%; and (2), obvious 
interfering factors, including creases, bleeding, 
necrosis and blurred areas, should be excluded. The 
annotation was performed using Aperio ImageScope 
(Aperio Technologies, Inc.). 

Given the extremely large image size (typically 
100,000 × 50,000 pixels) of a WSI, the WSIs were 
subsequently tiled into 512×512 patches. Only patches 
having a greater than 80% overlap with the carcinoma 
ROI were used for the following analysis. The number 
of patches per WSI in TCGA-COAD ranges from 22 to 
2357 (average 224), whereas the Asian-CRC ranges 
from 5 to 3718 (average 338) (Table S1). 

Data augmentation and normalization were 
applied for training patches, whereas only 
normalization was employed for test patches. Data 
augmentations used in our work included random 
horizontal flipping and random affine transformation 
of the patches (keeping the center invariant). Finally, 

the augmented patches were center cropped to 224 
pixels × 224 pixels similar to Campanella’s study [26], 
following a z-score normalization on RGB channels. 

Multiple Instance Learning (MIL)-based deep 
learning pipeline 

Our MIL-based deep learning pipeline presented 
two predictions: patch-level and WSI-level. Due to the 
large image size and heterogeneity in tumors, the WSI 
was first divided into small patches, and then the 
patch likelihoods were aggregated in an ensemble 
classifier to obtain the WSI-level prediction. 
Therefore, our method was termed Ensemble Patch 
Likelihood Aggregation (EPLA). 

During the patch-level prediction, a residual 
convolutional neural network (ResNet-18) was 
trained to compute the patch likelihood in a MIL 
paradigm where the patches were assigned with the 
WSI’s label. Binary cross-entropy (BCE) loss was 
utilized to optimize the network using a mini-batch 
gradient descent method. 

We developed two independent MIL methods to 
aggregate the patch likelihoods: Patch Likelihood 
Histogram (PALHI) pipeline and Bag of Words (BoW) 
pipeline, which were inspired by the histogram-based 
method and the vocabulary-based method, 
respectively. In PALHI, a histogram of the occurrence 
of the patch likelihood was applied to represent the 
WSI, whereas in BoW, each patch was mapped to a 
TF-IDF floating-point variable, and a TF-IDF feature 
vector was computed to represent the WSI. 
Traditional machine learning classifiers were then 
further trained using these feature vectors to predict 
the MS status for each WSI. Here, Extreme Gradient 
Boosting (xgboost), a kind of gradient boosted 
decision tree, was employed in the PALHI pipeline. 
Naïve Bayes (NB) was used in the BoW pipeline. 
During the training of the WSI-level classifier, the 
hyperparameters were determined based on the 
cross-validation on the training set, using WSI-level 
ROCAUC as the performance metric. During 
WSI-level prediction, the results of PALHI and BoW 
classifiers were then ensembled to obtain the final 
prediction [27]. 

The initial parameters of the model were trained 
in the training set of TCGA-COAD, and the transfer 
learning technique was implemented using the 
Asian-CRC data to generalize the model across 
cohorts with a high degree of heterogeneity. The 
transfer learning was conducted by reusing the model 
weights in the patch-level discriminators and then 
fine-tuning the weights using a small amount of 
labeled Asian-CRC data. In addition, we gradually 
added more Asian-CRC data for model fine-tuning to 
explore the impact on model performance. All codes 
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were implemented in Python 3.6.5 and run on a 
workstation with Nvidia GPUs (P40). As for the 
minimal requirement, a desktop with CPUs and the 
above dependencies can run our algorithm for 
inference, which is widely available and easy-to-use 
for physicians and biologists. The average time for the 
completion of a single patient test is 0.5118s on a P40 
workstation and 20.9291s on a regular CPU machine 
(i5-9500, 3.00GHz, 16GB). 

Multi-omics correlation analysis of 
pathological signatures 

Identification of pathological signatures of importance 
The occurrence histograms in the PALHI and the 

TF-IDF feature vector in BoW were the pathological 
signatures generated by our model. The importance of 
each signature was measured by its contribution 
weight to the final WSI-level prediction for 
discovering top pathological signatures. The top 
pathological signatures were evaluated by Wilcoxon 
Rank Sum tests for significance and then sent for 
genomic and transcriptomic correlation analysis. 

Genomic correlation analysis 
The DNA mutation profile of TCGA-COAD was 

retrieved from cBioPortal [28]. The synonymous 
mutations were excluded from the following 
correlation analysis. For a particular gene set, as long 
as there was a non-synonymous mutation in any of its 
gene members, it would be defined as deficient. 

The relationship between MSI and some 
mutation indexes has been reported in previous 
literature, including INDEL and tumor mutation 
burden (TMB) [29]. INDEL mutations refer to a 
variant type caused by sequence insertion (INS) or 
deletion (DEL) and can be calculated as the frequency 
of DEL and INS mutations. As the mutation data was 
profiled by the whole exome sequencing, TMB is 
defined and calculated as the total number of somatic 
nonsynonymous mutations divided by size of the 
exonic region of the entire genome [30]. To explore the 
relationship between the pathological signatures and 
these known genomic biomarkers, they were first 
normalized to a range of 0 to 1 and then visualized in 
a heat map using the R package pheatmap, during 
which unsupervised clustering was applied using 
Ward's minimum variance method. 

Transcriptomic correlation analysis 
The mRNA expression profile of TCGA-COAD, 

retrieved from cBioPortal, was normalized using the 
RSEM method [31]. Gene co-expression network 
analysis (WGCNA) is a bioinformatics method based 
on expression data and is typically used to identify 
gene modules with highly synergistic changes [32]. 

We first constructed a gene co-expression network for 
the mRNA expression profile using the R package 
WGCNA, during which the soft threshold for the 
network was set to the recommended value selected 
by the function pickSoftThreshold (Figure S1). Setting 
the minimum module size to 100 and other 
parameters to default, we identified 24 transcriptomic 
modules (Figure S2). The biological functions of the 
modules were annotated by the Gene Ontology (GO) 
over-representation test using the R package 
clusterProfiler [33], during which the Benjamini- 
Hochberg method was used to adjust P value for 
controlling false discover rate. Only those GO terms 
with adjusted P values lower than 0.05 were 
considered significantly enriched in a particular 
module. After that, we calculated Spearman's rank 
correlation coefficients for each pair of modules and 
pathological signatures to recognize the modules of 
interest. 

An immune cytolytic activity (CYT) score, 
defined as the geometric mean of transcript levels of 
GZMA and PRF1 [34], as well as a CD8+ T-effector 
gene set (CD8A, IFNG, GZMA, PRF1, CXCL9, 
CXCL10, TBX21, GZMB) [35] was quantified from the 
RNA-seq data, and subsequently associated with 
pathological signatures to characterize the correlation 
with anti-tumor immunity. 

Statistical analysis 
The ROC curves were drawn using pROC and 

ggplot2 in R (version 3.6.1). The area under the ROC 
curve and confidence intervals were calculated in 
pROC. The significance of AUC differences was tested 
using the Wald test statistic [36]. The optimal cutoff 
points of the ROC curves were estimated using the 
Youden Index [37]. The Wilcoxon Rank Sum test was 
used to compare two paired groups and visualized as 
a boxplot using R package ggpubr. Spearman's rank 
correlation coefficients were used for correlation 
analysis. 

Results 
Development and performance evaluation of 
EPLA model 

The pathomics-based model named EPLA was 
developed in the training set of the TCGA-COAD 
cohort (7:3 for training and test), which consisted of 
two consecutive stages: patch-level prediction and 
WSI-level prediction (Figure 1). Briefly, a WSI was 
annotated to delineate the region of carcinoma (ROI). 
The ROI was tiled into patches, which were 
subsequently fed to a residual convolutional neural 
network (ResNet-18) to obtain the patch-level MSI 
prediction. Then, we trained two independent MIL 
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pipelines to integrate multiple patch-level predictions 
into an MSI score at the WSI level: the PAtch 
Likelihood HIstogram (PALHI) pipeline and the Bag 
of Words (BoW) pipeline. To obtain the optimal 
convex combination of the two MIL methods, we 
employed ensemble learning to eventually obtain the 
predicted MS status of the patient (Figure 1). 

The performance of the EPLA model was 
measured in the TCGA-COAD test set. Two 
representative heat maps providing the patch level 
prediction, for an MSI case and an MSS case 
respectively, are shown in Figure 2A. The EPLA 
model achieved an AUC of 0.8848 (95% CI: 
0.8185-0.9512) at the WSI level (Figure 2B) and 
outperformed the state-of-the-art Deep-Learning 
based Majority Voting method (denoted as DL-based 
MV) in Kather’s study [20], which trained a ResNet 
for patch-level predictions and then took the majority 
of these predictions as the final MS status of the 
patient (Figure 2C). To directly compare our method 
with the DL-based MV in the same test set, we 
implemented DL-based MV method in the TCGA- 
COAD cohort, and achieved an AUC of 0.8457 (95% 
CI: 0.7591-0.9323) consistent with the result in 
Kather’s study (Figure 2C). 

We further compared the specificity and 
sensitivity of the two components of the EPLA (i.e., 
PALHI and BoW) to that of DL-based MV (Table S2). 
We found that BoW achieved higher specificity (89.5% 
vs 75.2%) and PALHI was superior in terms of 
sensitivity (86.4% vs 81.8%). The ensembled EPLA 
classifier combined the advantage of its two 
components and thus obtained both superior 
specificity and sensitivity compared to the DL-based 

MV (Table S2). Representative heat maps of the 
discrepant cases are shown in Figure S3. These cases 
were correctly predicted by EPLA but mistakenly 
classified by DL-based MV. 

Additionally, an exploratory analysis was 
undertaken to identify the pathological phenotype 
recognized by EPLA. Of note, EPLA captured the 
relationship between the degree of differentiation 
(poor, middle or high differentiation) and MS status. 
Tumors with higher MSIsensor score or were 
predicted as MSI by EPLA model showed high 
proportion of poor differentiation, while lower 
MSIsensor score or predicted MSS tumors were 
demonstrated increasing proportion of high and 
middle differentiation (P < 0.001), which supports the 
inner relationship between EPLA model and 
pathological morphology (Figure 2D). 

External validation of EPLA in an Asian-CRC 
cohort 

We further measured the generalizability of our 
model in an Asian-CRC cohort. It was noteworthy 
that there existed great differences between the 
Asian-CRC cohort and the TCGA-COAD cohort, not 
only in patient race but also in the slide preparation 
techniques (Table S1). As a consequence, the EPLA 
model trained on TCGA-COAD only achieved an 
AUC of 0.6497 (95% CI: 0.6061-0.6933) on the external 
validation data set Asian-CRC (Figure 3A). 
Considering the wide variations in medical practice, 
we therefore applied transfer learning to generalize 
the EPLA model by fine-tuning our model using only 
10% of cases from Asian-CRC, and thus achieved an 
AUC of 0.8504 (95% CI: 0.8158-0.885) in the remaining 

 

 
Figure 1. Overview of the Ensemble Patch Likelihood Aggregation (EPLA) model. A whole slide image (WSI) of each patient was obtained and annotated to highlight the 
regions of carcinoma (ROIs). Then, patches were tiled from ROIs, and the MSI likelihood of each patch was predicted by ResNet-18, during which a heat map was shown to visualize 
the patch-level prediction. Then, PALHI and BoW pipelines integrated the multiple patch-level MSI likelihoods into a WSI-level MSI prediction, respectively. Finally, ensemble learning 
combined the results of the two pipelines and made the final prediction of the MS status. 



Theranostics 2020, Vol. 10, Issue 24 
 

 
http://www.thno.org 

11085 

data set (Figure 3A-B). Moreover, we analyzed the 
performance of the EPLA model for MS status 
prediction across tumor stages; the EPLA model 
achieved high prediction performance in both 
non-metastatic and metastatic CRC cases, with an 
AUC of 0.8768 (95% CI: 0.8427-0.9110) in the stage I-III 
subgroup and an AUC of 0.8242 (95% CI: 
0.7460-0.9023) in the stage IV subgroup, indicating the 
robustness of the model in predicting MS status of 
CRC (Figure S4). 

We subsequently evaluated the amount of data 

needed for transfer learning by increasing the 
proportion of cases from Asian-CRC for model fine 
tuning. The performance of the fine-tuned model 
steadily improved, resulting in 0.8627 (95% CI: 
0.8208-0.9045), 0.8967 (95% CI: 0.8596-0.9338), 0.9028 
(95% CI: 0.8534-0.9522) and 0.9264 (95% CI: 
0.8806-0.9722) AUCs in the ratios of 30%, 40%, 60% 
and 70%, respectively, implying that transfer learning 
was an effective measure to overcome the 
heterogeneity between different cohorts (Figure 3C). 

 

 
Figure 2. Validation of the EPLA and comparison with DL-based MV in the TCGA cohort. (A) Representative heat maps of MSI and MSS cases at the patch-level 
prediction stage. Color bars show the MSI likelihood of each patch. (B) Receiver operating characteristic (ROC) curve of EPLA. The P value was calculated by the Wald test. (C) 
Summary of EPLA and DL-based MV. DL-based MV was re-implemented from a voting-based model in Ref.20. The last line of the table summarizes the performance of the original 
DL-based MV model. (D) Correlation of the degree of differentiation with EPLA-predicted MS status and MSIsensor score. DL-based MV, deep-learning based majority voting; 
EPLA, Ensemble Patch Likelihood Aggregation. Significance values: *** P < 0.001. 
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Figure 3. Generalization performance of the EPLA in an Asian cohort. (A) Summary of the performance of EPLA in Asian-CRC with or without transfer learning. 
When using transfer learning, 10% of cases from Asian-CRC were used for model fine-tuning. (B) The Receiver operating characteristic (ROC) curve of EPLA in the Asian-CRC 
after transfer learning. (C) ROCAUCs of the model in Asian-CRC with increasing proportions of cases for transfer learning. EPLA, Ensemble Patch Likelihood Aggregation; CRC, 
colorectal cancer. 

 

Identification of top pathological signatures 
from the EPLA model 

To gain insight into the MSI prediction 
mechanism of the model, we explored the 
contribution of the pathological signatures extracted 
from the EPLA model to the prediction of MSI in 
TCGA-COAD. The ranking of significance of the top 
ten pathological signatures is shown in Figure 4A. 
Given that the top five pathological signatures 
(FEA#197, FEA#198, FEA#001, FEA#188 and 
FEA#200) were significantly more important than the 
others, they were selected for subsequent analysis. 
Among them, FEA#001 had a significantly higher 
value (P < 0.0001) for patients in the MSS group, while 
the other four (FEA#188/197/198/200) had 
significantly higher values (P < 0.0001) in the MSI 
group (Figure 4B). Then we employed molecular-level 
association analysis to link the pathological signatures 
and the genetic alterations, which enhanced the 
clinical interpretation and application value of our AI 
method. 

Association of the EPLA related pathological 
signatures and genomic landscape 

Cluster analysis in Figure 4C shows that patients 
with a high value of FEA#001 were mainly MSS with 

normal function in DNA repair-related pathways 
consisting of mismatch repair (MMR), DNA damage 
response and repair (DDR), and homologous 
recombination deficiency (HRD). On the contrary, 
patients with high levels of FEA#188/197/198/200 
were mainly due to MSI with deficient DNA repair 
related pathways, namely deficient-MMR (dMMR), 
deficient-DDR (dDDR) and deficient-HRD (dHRD). In 
addition, mutations of several representative genes in 
these pathways, including POLE, BRCA1, and BRCA2, 
also demonstrated a consistent finding. Moreover, 
since recent evidence suggested MSI was significantly 
related to TMB, especially INDEL mutation load [29], 
we assessed the relation between the pathological 
signatures and these known biomarkers and found 
that high TMB and INDEL mutation load were often 
accompanied by low FEA#001 and high 
FEA#188/197/198/200 (Figure 4C). 

Association of the EPLA related pathological 
signatures and transcriptomic pathway 

We applied weighted gene co-expression 
network analysis (WGCNA) and identified 24 
modules (Figure 5A). Gene ontology (GO) enrichment 
analyses were performed to annotate the modules 
(Table S3), among which 18 modules with biological 
function are retained for further analyses (Figure 5A). 
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Figure 4. Identification and genomic correlation analysis of top pathological signatures. (A) Importance ranking of the top ten pathological signatures extracted 
from EPLA. (B) Boxplots of the five pathological signatures between MSI and MSS groups. Significance values: **** P < 0.0001. (C) Heat map with unsupervised clustering showing 
the correlation between genomic landscape and top pathological signatures in each patient. Each column corresponds to a patient in the TCGA-COAD cohort. All continuous 
variables are normalized to a range of 0 to 1. EPLA, Ensemble Patch Likelihood Aggregation; FEA, feature; INDEL: insertion-deletion, TMB: tumor mutation burden, MMR: 
mismatch repair, DDR: DNA damage response and repair, and HRD: homologous recombination deficiency. 

 
Spearman's rank correlation between the 18 

annotated WGCNA modules and the top five 
pathological signatures showed that 7 out of 18 
modules are of significance, including ME12, ME8, 
ME21, ME14, ME13, ME18, and ME16, which were 
positively correlated to FEA#188/197/198/200, but 
negatively correlated to FEA#001 (Figure 5B). By 
referring to the significantly enriched GO terms of the 
correlated modules, we found that those molecules 
enriched in ME13 and ME8 were mainly related to the 
biological processes of immune activation, such as T 
cell activation and regulation of leukocyte activation 
(Figure 5C). As for ME12, some biological processes 
related to the signaling of inflammatory cytokines 
were significantly enriched, where the most notable 

was the interferon-gamma (IFN-γ) mediated 
pathway, namely the core IFN-γ-JAK-STAT1 
signaling, which might contribute to the combination 
function of increased antigen processing and 
presentation (Figure 5C). Representative GO terms 
enriched in other correlated modules are shown in 
Figure S5. 

Further investigation into the transcriptomic 
association of pathological signatures was conducted 
from the perspective of anti-tumor immunity. A 
strong correlation of pathological signatures with 
cytolytic activity (CYT) was demonstrated, which was 
in line with the result observed between CYT and MS 
status (Figure 5D). Moreover, a high degree of 
relevance also existed between the pathological 
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signatures and CD8+ T-effector genes, consistent with 
the finding regarding MS status (Figure 5E). 
Collectively, these results indicate that the 
pathological signatures of the model could, to some 
extent, reflect the anti-tumor activity of MSI, which 
potentiates the efficacy of immune checkpoint 
inhibitors [29]. 

Discussion 
MSI testing can provide important information 

for clinical decision-making in a variety of cancers. 
However, the requirement of additional genetic or 
immunohistochemical tests limits its access to the 
general population. In this study, we developed a 

pathomics-based deep learning model which we term 
Ensemble Patch Likelihood Aggregation (EPLA) to 
predict MS status of CRC directly from 
histopathology images that are ubiquitously available 
in clinical practice, making it possible for every 
patient with a pathological diagnosis to receive an 
MSI evaluation. Furthermore, we proposed the use of 
transfer learning for model fine-tuning in a different 
population, improving its generalizability. We also 
explored the model interpretability from the 
perspective of genome and transcriptome association, 
giving a molecular biological explanation of our 
model. 

 

 
Figure 5. Correlation of top pathological signatures with WGCNA-identified modules and anti-tumor immunity. (A) Weighted gene co-expression network 
analysis (WGCNA) based on gene expression data identified gene modules with highly synergistic changes. The biological functions of these modules were annotated using Gene 
Ontology (GO) analyses. (B) Heat map of correlation coefficients (corresponding P values in brackets) for each pair of annotated modules and top pathological signatures. (C) 
Significantly-enriched GO terms of ME8, ME12 and ME13. The dotted line indicates the level with an adjusted P value of 0.05. Correlation of cytolytic activity (CYT) (D) and CD8+ 
T-effector genes (E) with MS status and top pathological signatures. The heat maps show Spearman's rank correlation coefficients, where a transition from red to blue represents 
positive to negative correlations. Significance values in boxplots: **** P < 0.0001. 
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In the development of a state-of-the-art method, 
Kather et al. proposed a deep-learning based majority 
voting method to predict MSI from histology under 
the assumption that all patches contribute equally to 
the prediction of MS status. Such assumptions might 
not be valid and could limit the prediction accuracy. 
In practice, although hundreds of patches are tiled 
from each WSI, most of them do not contribute much 
to the final prediction. In contrast, only a few key 
patches make the majority contribution. Our model 
based on multiple instance deep learning has the 
ability to automatically adjust the contribution of each 
patch to the overall WSI-level prediction in a learnable 
way by giving key patches higher weights, resulting 
in higher performances over the DL-based MV 
method in terms of AUC, sensitivity, and specificity. 
The superiority of multiple instance deep learning 
over DL-based MV method was also confirmed in a 
cohort of stomach adenocarcinoma collected from 
TCGA, implying the feasibility of EPLA in predicting 
microsatellite status across tumor types (Figure S6). 
Moreover, the influence of the magnification on the 
performance of the EPLA model was analyzed in the 
TCGA-COAD cohort. Notably, there was a 
performance degradation of our model using 5× 
magnification or 10× magnification, indicating that 
WSIs at 20× magnification better preserved the 
information of the microenvironment in tumors 
(Table S4). Therefore, we recommend this model 
being applied on WSIs at 20× magnification, which is 
also the commonly used magnification at clinical 
practice. 

In clinical practice, different data sets could be 
vastly different due to the disparities between patient 
populations and data acquisition processes, resulting 
in a large performance gap for AI algorithms [38]. For 
example, in Kather’s study, an MSI classifier trained 
on TCGA, which was mainly made up of Western 
populations, and only achieved an AUC less than 0.70 
in the KCCH cohort, a Japanese cohort [20]. 
Furthermore, the histology slides in TCGA-COAD 
were flash-frozen slides that utilize water 
crystallization during the freezing process, often 
resulting in an altered appearance of the tissue 
structure as compared to the FFPE slides used in 
Asian-CRC which provided more tissue structure 
clarity. This data difference could not be effectively 
eliminated by only color normalization (data not 
shown), indicating that more advanced techniques, 
such as transfer learning, are necessary. As expected, 
EPLA showed performance degradation in Asian- 
CRC by simply applying the model trained on 
TCGA-COAD, but the results improved significantly 
after transfer learning. It is of clinical significance that 
using only a minority of the new domain data for 

model fine-tuning can already improve the AUC to a 
satisfactory level and further improvement can be 
expected if even more data are included, which 
proves that our model can be easily generalized to the 
complicated clinical environment, regardless of race, 
preparation techniques, and data acquisition 
techniques. 

Deep learning models are often criticized for 
their poor interpretability, especially in mission- 
critical applications, such as healthcare [38]. Only 
those models with certain interpretability can be 
understood, verified, and trusted by clinicians in 
clinical practice [21]. To solve this problem, the 
pathological signatures, defining stable or unstable of 
a cancer specimen, were built during the training of 
the MIL model. We visualized the patches 
corresponding to these signatures and connected 
them into contours, which in turn guided us to 
discover the morphological features that are critical 
for MS status. In this way, the correlation between 
morphological features and the predicted MS status 
was investigated, through which we found that EPLA 
captured the information of poor differentiation in 
MSI tumors, in accordance with the previous finding 
[39]. More importantly, we proposed a 
comprehensive molecular-level analysis including 
genomic and transcriptomic association analysis with 
pathological signatures found by AI for clinical 
interpretation, which could also be easily applied on 
other gene mutation prediction tasks. In terms of our 
task, the genomic association between DNA repair 
pathways and MSI cancers, which is exquisitely 
sensitive to ICB, has been verified previously [40]. 
Moreover, MSI and its resultant TMB have been 
reported to underlie the response to PD-1 blockade 
immunotherapy [41, 42], and the INDEL mutation 
load is particularly associated with the extent of the 
response [29]. Inspired by these discoveries, we 
confirmed the strong correlation between the 
pathological signatures identified by the model and 
these genomic biomarkers of MSI (Figure 4C and 
Figure S7). Despite advances in understanding of MSI 
at the genomic level, the process and mechanisms at 
the transcriptomic level remain relatively 
understudied. Researches on the anti-tumor effects of 
MSI have suggested an increased activation and 
infiltration of immune cells, together with an 
enhanced cytolytic activity as well as an up-regulation 
of CD8+ T-effector genes [29, 43]. Remarkably, by 
analyzing the WGCNA-identified modules, the 
pathological signatures were demonstrated with high 
relevance to the expression level of IFN-γ-JAK-STAT1 
signaling pathway, whose pivotal role in immune 
activation and response to immunotherapy has been 
supported by extensive evidence [44]. Although IFN-γ 
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at the same time induces feedback of up-regulation of 
PD-L1 on both tumor and immune cells, anti-PD-L1 
therapy pertinently blocks the suppressive 
mechanisms, and thus inclines the balance of immune 
microenvironment to the inflamed phenotype [45]. 
Furthermore, we provided evidence of a tight 
connection of the pathological signatures with anti- 
tumor activity from the perspective of transcriptomic 
profiles, consistent with the relationship between MS 
status and immunity. 

The nature of AI models has limitations in our 
model. The performance of deep learning models 
largely depends on the size and quality of the training 
set. We still need to expand the training data to 
improve the accuracy and generalizability of the 
model. Although the model has been verified in 
TCGA and an Asian cohort respectively, a large 
prospective clinical trial is necessary before we can 
deploy it as a routine MSI testing method in clinical 
practice. 

Conclusions 
In this study, we developed a pathomics-based 

model for MSI prediction directly from pathological 
images without the need for genetic or immuno-
histochemical tests. Using these images allows the 
evaluation of MS status in many more patients than 
was previously possible. Through the model, we 
identified five pathohistological imaging signatures to 
predict the MS status. The reliability of the model was 
verified in two independent cohorts and the 
interpretability of the model was illustrated by 
exploring the correlation between the pathological 
signatures and multi-omics characterizations. 
Ongoing work is attempting to further validate our 
model in large-cohort, prospective clinical trials. 
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