
TYPE Original Research

PUBLISHED 14 October 2022

DOI 10.3389/fneur.2022.1005885

OPEN ACCESS

EDITED BY

Cheng-Yang Hsieh,

Sin-Lau Christian Hospital, Taiwan

REVIEWED BY

Jesus M. Juega,

Vall d’Hebron University

Hospital, Spain

Seyed Ehsan Sa�ari,

Duke-NUS Medical School, Singapore

Chen-Chih Chung,

Taipei Medical University, Taiwan

Soledad Pérez-Sánchez,

Virgen Macarena University

Hospital, Spain

*CORRESPONDENCE

Lina Hao

penyll123@163.com

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

RECEIVED 05 August 2022

ACCEPTED 03 October 2022

PUBLISHED 14 October 2022

CITATION

Pang M, Li Z, Sun L, Zhao N and Hao L

(2022) A nomogram for predicting

atrial fibrillation detected after acute

ischemic stroke.

Front. Neurol. 13:1005885.

doi: 10.3389/fneur.2022.1005885

COPYRIGHT

© 2022 Pang, Li, Sun, Zhao and Hao.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

A nomogram for predicting
atrial fibrillation detected after
acute ischemic stroke

Ming Pang1†, Zhuanyun Li2†, Lin Sun1, Na Zhao3 and Lina Hao1*

1Neuroelectrophysiology Room, Function Department, Cangzhou Hospital of Integrated Traditional

Chinese Medicine and Western Medicine, Cangzhou, China, 2Department of Emergency Medicine,

Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan,

China, 3Department of Neurology, Cangzhou Hospital of Integrated Traditional Chinese Medicine

and Western Medicine, Cangzhou, China

Background: Atrial fibrillation detected after stroke (AFDAS) is associated with

an increased risk of ischemic stroke (IS) recurrence and death. Early diagnosis

can help identify strategies for secondary prevention and improve prognosis.

However, there are no validated predictive tools to assess the population at

risk for AFDAS. Therefore, this study aimed to develop and validate a predictive

model for assessing the incidence of AFDAS after acute ischemic stroke (AIS).

Methods: This study was a multicenter retrospective study. We collected

clinical data from 5332 patients with AIS at two hospitals between 2014.01

and 2021.12 and divided the development and validation of clinical prediction

models into a training cohort (n = 3173) and a validation cohort (n =

2159). Characteristic variables were selected from the training cohort using

the least absolute shrinkage and selection operator (LASSO) algorithm and

multivariable logistic regression analysis. A nomogram model was developed,

and its performance was evaluated regarding calibration, discrimination, and

clinical utility.

Results: We found the best subset of risk factors based on clinical

characteristics and laboratory variables, including age, congestive heart failure

(CHF), previous AIS/transient ischemia attack (TIA), national institutes of health

stroke scale (NIHSS) score, C-reactive protein (CRP), and B-type natriuretic

peptide (BNP). A predictive model was developed. The model showed good

calibration and discrimination, with calibration values of Hosmer-Lemeshow

χ2 = 4.813, P = 0.732 and Hosmer-Lemeshow χ2 = 4.248, P = 0.834 in the

training and validation cohorts, respectively. The area under the ROC curve

(AUC) was 0.815, 95% CI (0.777–0.853) and 0.808, 95% CI (0.770–0.847). The

inclusion of neuroimaging variables significantly improved the performance of

the integrated model in both the training cohort (AUC. 0.846 (0.811–0.882) vs.

0.815 (0.777–0.853), P = 0.001) and the validation cohort (AUC: 0.841 (0.804–

0.877) vs. 0.808 (0.770–0.847), P= 0.001). The decision curves showed that the

integratedmodel addedmore net benefit in predicting the incidence of AFDAS.

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.1005885
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.1005885&domain=pdf&date_stamp=2022-10-14
mailto:penyll123@163.com
https://doi.org/10.3389/fneur.2022.1005885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.1005885/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Pang et al. 10.3389/fneur.2022.1005885

Conclusion: Predictive models based on clinical characteristics, laboratory

variables, and neuroimaging variables showed good calibration and high net

clinical benefit, informing clinical decision-making in diagnosing and treating

patients with AFDAS.

KEYWORDS

acute ischemic stroke, atrial fibrillation, risk factors, prediction model, nomogram

Introduction

Atrial fibrillation (AF) is more likely to lead to the

occurrence and recurrence of stroke and other adverse events

(1). The risk of stroke recurrence in patients with AFDAS

is similar to that in patients with AF known before stroke

(2). Therefore, early diagnosis of AFDAS and administration

of anticoagulation therapy is effective in reducing stroke

recurrence rates and mortality (3–5). Currently, up to a quarter

of patients have AFDAS (3) and most AFDAS is paroxysmal

and asymptomatic. More than 50% of AFDAS last <30 s, which

may increase the risk of cryptogenic stroke (CS) (6). The

detection rate of AF in patients with CS remains relatively

low in large-scale population studies (7). Current guidelines

recommend extending the duration of ECG monitoring by

1 week and beyond to improve AF detection (8). Due to

limited healthcare resources at all levels, it is impossible to

sequentially use all cardiac monitoring techniques for real-time

follow-up of patients during hospitalization and after discharge.

Therefore, developing a targeted selection strategy is essential

for identifying patients at risk for AFDAS, implementing tighter

cardiac monitoring, and improving prognosis.

Current research on this topic is continuously updated,

many potential markers are summarized (9), and AF risk

prediction models are developed. The study by Seo et al.

(10) was based on logistic regression to construct a post-

stroke AF prediction model. They only evaluated the model

by the receiver operator characteristic (ROC) curves without

assigning and visualizing risk variables, which was inconvenient

for clinicians. Similarly, some scholars combined CHADS2 or

CHA2DS2-VASC score and neuroimaging features to build a

prediction model in AIS patients with newly detected AF. Only

the C-statistic was used to test the clinical prediction model.

The C statistics after the combination were 0.74 and 0.75,

respectively (11), with limited predictive performance. In a study

to estimate the incidence of AFDAS by electronic medical record

algorithms, the AFDAS predictive performance of different

scoring systems was validated. Several validation methods

were used, including C-index, decision curve analysis (DCA),

net reclassification index (NRI), and integrated discrimination

improvement (IDI). However, the highest C-index for CHASE-

LESS score was 0.741 (12), and the predictive performance was

limited by the lack of imaging variables. To date, specific and

practical prediction methods are still lacking.

Therefore, developing and validating simple and easy-to-use

nomogram models is crucial. The development of prediction

models facilitates clinicians in identifying patients at high

risk for AFDAS, adjusting cardiac monitoring protocols, and

providing information for patient treatment decisions.

Materials and methods

Study design and procedure

This retrospective study reviewed 4222 patients diagnosed

with AIS at Cangzhou Hospital of Integrated Traditional

Chinese Medicine and Western Medicine from 2014.01 to

2021.12. Inclusion criteria: (i) patients with AIS need to be

diagnosed by specialist neurological and imaging examinations,

and they should also have symptoms of acute focal neurological

dysfunction lastingmore than 24 h (13–15); (ii) ECGmonitoring

by three modalities: conventional ECG, ambulatory ECG, and

continuous cardiac telemetry after admission. In order not to

affect the modeling and outcome, some patients were ruled

out: (i) previous AF or atrial flutter; (ii) heart valve disease;

(iii) congenital heart disease; (iv) cases with incomplete studies;

(v) cerebral hemorrhage; (vi) pregnancy; (vii) patients under

18 years of age. Ultimately, 3173 patients entered the training

cohort. In the same way, 2159 patients were selected for

inclusion in the validation cohort in the Union Hospital of

Tongji Medical College, Huazhong University of Science and

Technology. All patients were followed up by telephone at

28-day and 90-day after stroke. The flow chart of the study

was shown in Figure 1. The study protocol was approved

by the ethics committee of Cangzhou Hospital of Integrated

Traditional Chinese Medicine and Western Medicine, and

written informed consent was waived (No. 2022-0197-01).

We retrieved information on patients with AIS, including

essential admission characteristics such as age, sex, history,

NIHSS score, 12-lead body surface ECG, continuous cardiac

telemetry/bedside ECG monitoring, ambulatory ECG, brain CT

and MRI scans (including T1-weighted imaging, T2-weighted

imaging, fluid-attenuated inversion recovery imaging, diffusion-

weighted imaging (DWI) and apparent diffusion coefficient

sequences), and blood analysis. AFDAS was determined based

on 12-lead ECG and ambulatory ECG reports and nursing

records from the case data, and the results were diagnosed by
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FIGURE 1

The flow chart of developing and validating the nomogram.

neurologists and cardiologists. AFDAS was defined as AF that

did not occur before admission and was only newly detected

after AIS during admission, including persistent episodes of

AF>30 seconds (16). Non-AFDAS, on the other hand, was no

AF detected before and during admission. All laboratory data

were selected for results within 24 h of admission. If multiple

values were reported for a variable within 24 h of admission, the

worst one was selected for analysis.

Neuroimaging (CT orMRI) presentations were evaluated by

specialized imaging physicians. Acute lesions appear as cerebral

hypodensity with cytotoxic edema on CT. Acute lesions on

MRI are identified by restricted diffusion on DWI sequences

and low signal on apparent diffusion coefficient sequences.

Chronic cerebral infarction is defined on brain CT as a

hypointense lesion without associated cytotoxic edema type.

MRI of chronic cerebral infarction shows inversion recovery of

fluid attenuation or increased signal on T2-weighted sequences

but no signs of diffusion restriction on DWI sequences (11, 15).

We documented lesion location (cortical infarction, subcortical

infarction, brainstem infarction, cerebellar infarction) and

multiple lesions (≥1 primary lesion [left and right carotid

arteries and vertebrobasilar artery] vessel regions) (11).

Outcomes

The primary outcome was the incidence of AFDAS

during hospitalization. Secondary outcomes were days

of hospitalization, 28-day and 90-day mortality, and

in-hospital mortality.

Predictors acquisition and development
of prediction models

We used the LASSO and multivariable logistic regression

analysis to screen the training cohort for relevant factors and

obtain the seven risk factors. We developed a prediction model

based on clinical characteristics and laboratory variables, Model

1. A new prediction model based on Model 1 was developed in

conjunction with neuroimaging variables, Model 2. To evaluate

the performance of both models, we performed calibration,

discrimination, and clinical utility.

Statistical analysis

Statistical analysis was conducted with SPSS (IBM SPSS

Statistics 26.0, SPSS Inc., Chicago, IL) and R language (version

4.1.3, www.R-project.org/). The R packages used in our study

were displayed in Supplementary Table 1. In univariate analysis

with and without AFDAS, continuous variables conformed to a

normal distribution were subjected to Student’s t-test, expressed

as mean ± standard deviation. Continuous variables that did

not conform to a normal distribution were subjected to the

non-parametric test (Wilcoxon rank sum test), described as
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TABLE 1 Baseline characteristics of patients with non-AFDAS and AFDAS in training cohort.

Variables All patients (n = 3173) non-AFDAS (n = 2948) AFDAS (n = 225) P

Gender, n (%) 0.688

Male§ 2048 (64.5) 1900 (64.5) 148 (65.8)

Female§ 1125 (35.5) 1048 (35.5) 77 (34.2)

Age (years)† 63.14± 12.83 62.64± 12.72 69.69± 12.46 <0.001

Physiological data on admission

Heart rates (beats/min)† 104.87± 10.10 104.85± 10.10 105.20± 10.16 0.617

MAP (mm Hg)† 94.44± 6.08 94.41± 5.92 94.76± 8.01 0.409

BMI (kg/m2)† 21.08± 1.95 21.07± 1.95 21.24± 2.01 0.211

Comorbidity, n (%)

Hypertension§ 560 (17.6) 507 (17.2) 53 (23.6) 0.016

Coronary artery disease§ 192 (6.1) 174 (5.9) 18 (8.0) 0.203

CHF§ 258 (8.1) 217 (7.4) 41 (18.2) <0.001

Diabetes mellitus§ 442 (13.9) 405 (13.7) 37 (16.4) 0.258

COPD§ 279 (8.8) 258 (8.8) 21 (9.3) 0.767

Hyperlipidemia§ 692 (21.8) 631 (21.4) 61 (27.1) 0.046

Previous AIS/TIA§ 421 (13.3) 372 (12.6) 49 (21.8) <0.001

Hepatic insufficiency§ 250 (7.9) 235 (8.0) 15 (6.7) 0.484

Renal insufficiency§ 331 (10.4) 310 (10.5) 21 (9.3) 0.576

Neuroimaging, n (%)

Cortical infarction§ 1031 (32.5) 905 (30.7) 126 (56.0) <0.001

Subcortical infarction§ 1680 (52.9) 1563 (53.0) 117 (52.0) 0.768

Brainstem infarction§ 542 (17.1) 507 (17.2) 35 (15.6) 0.528

Cerebellar infarction§ 401 (12.6) 366 (12.4) 35 (15.6) 0.172

Multiple lesions of arterial territory§ 986 (31.1) 905 (30.7) 81 (36.0) 0.098

Stroke location, n (%) 0.258

Left-sided§ 1682 (53.0) 1558 (52.8) 124 (55.1)

Right-sided§ 1213 (38.2) 1125 (38.2) 88 (39.1)

Bilateral§ 278 (8.8) 265 (9.0) 13 (5.8)

Subtype of stroke, n (%) 0.381

Large-artery atherosclerosis§ 2492 (78.5) 2306 (78.2) 186 (82.7)

Cardioembolism§ 279 (8.8) 266 (9.0) 13 (5.8)

Small-artery occlusion§ 134 (4.2) 123 (4.2) 11 (4.9)

Other determined etiology§ 124 (3.9) 117 (4.0) 7 (3.1)

Undetermined etiology§ 144 (4.5) 136 (4.6) 8 (3.6)

Severity on admission

NIHSS score* 8.00 (5.00, 10.00) 8.00 (5.00, 10.00) 10.00 (8.00, 16.00) <0.001

GCS score* 9.00 (7.00, 11.00) 9.00 (7.00, 11.00) 10.00 (7.00, 11.00) 0.190

Laboratory tests

White blood cell count (×109/L)* 6.74 (5.80, 8.55) 6.74 (5.74, 8.55) 7.10 (6.06, 8.64) 0.180

Hemoglobin (g/L)* 114.00 (110.00, 117.00) 114.00 (110.00, 117.00) 113.00 (110.00, 116.50) 0.175

Platelet count (×109/L)* 156.00 (99.00, 165.00) 156.00 (99.00, 165.00) 156.00 (98.00, 164.00) 0.881

Red blood cell (×1012/L)* 4.05 (3.47, 4.49) 4.05 (3.49, 4.48) 4.03 (3.25, 4.59) 0.790

Serum creatinine (µmol/L)* 80.44 (72.91, 86.72) 80.28 (72.82, 86.72) 81.73 (74.12, 86.81) 0.161

Blood urea nitrogen (mmol/L)* 5.70 (4.30, 6.90) 5.70 (4.30, 6.80) 6.00 (4.50, 8.05) 0.047

ALT (U/L)* 35.00 (24.00, 46.00) 35.00 (24.00, 46.00) 32.00 (16.00, 43.00) <0.001

Bilirubin (µmol/L)* 11.70 (8.30, 16.50) 11.70 (8.20, 16.60) 11.50 (8.35, 15.74) 0.453

Albumin (g/L)* 40.50 (37.30, 41.60) 40.50 (37.30, 41.60) 40.50 (37.40, 42.15) 0.776

(Continued)
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TABLE 1 (Continued)

Variables All patients (n = 3173) non-AFDAS (n = 2948) AFDAS (n = 225) P

Cardiac troponin I (ng/mL)* 0.010 (0.001, 0.149) 0.010 (0.001, 0.150) 0.012 (0.001, 0.135) 0.260

Creatine kinase (U/L)* 65.00 (42.00, 104.00) 65.00 (42.00, 102.75) 74.00 (45.00, 127.00) 0.014

Triglyceride (mmol/L)* 1.28 (0.93, 1.82) 1.28 (0.93, 1.81) 1.36 (0.91, 2.07) 0.103

Total cholesterol (mmol/L)* 3.93 (3.25, 4.75) 3.92 (3.25, 4.72) 4.02 (3.24, 5.05) 0.117

HDL-C (mmol/L)* 1.10 (0.90, 1.30) 1.10 (0.90, 1.30) 1.10 (0.90, 1.40) 0.343

LDL-C (mmol/L)* 2.18 (1.69, 2.78) 2.18 (1.70, 2.76) 2.22 (1.53, 2.97) 0.766

BNP (pg/mL)* 94.89 (80.46, 110.05) 94.60 (80.94, 108.49) 119.60 (66.25, 238.70) <0.001

Fibrinogen (g/L)* 3.65 (2.94, 4.71) 3.64 (2.94, 4.72) 3.70 (2.98, 4.69) 0.479

APTT (s)* 36.80 (33.80, 40.70) 36.70 (33.80, 40.70) 38.3 (34.70, 42.55) 0.001

PT (s)* 13.50 (12.90, 14.70) 13.60 (12.90, 14.78) 13.40 (12.70, 14.70) 0.172

INR* 1.05 (0.98, 1.17) 1.05 (0.98, 1.17) 1.05 (0.98, 1.23) 0.761

D-dimer (mg/L)* 1.14 (0.45, 2.69) 1.09 (0.45, 2.61) 1.51 (0.57, 4.74) <0.001

Lactic acid(mmol/L)* 4.40 (3.70, 5.10) 4.40 (3.70, 5.10) 4.40 (3.70, 5.10) 0.682

Procalcitonin (µg/L)* 0.17 (0.13, 0.77) 0.17 (0.13, 0.77) 0.17 (0.13, 0.79) 0.596

CRP (mg/L)* 21.80 (4.09, 58.60) 18.10 (3.65, 53.43) 49.50 (23.20, 92.50) <0.001

†Normally distributed continuous variables are presented as means with standard deviations and analyzed by Student’s t-test.
*Non-normally distributed continuous variables are presented as medians with interquartile ranges and analyzed by non-parametric test.
§Categorical variables are presented as frequencies with percentages and analyzed by Chi-square test or Fisher’ s exact test.

AFDAS, Atrial Fibrillation Detected After Stroke; MAP, mean arterial pressure; BMI, body mass index; CHF, Congestive heart failure; COPD, chronic obstructive pulmonary disease;

AIS, acute ischemic stroke; TIA, transient ischemic attack; NIHSS, national institute of health stroke scale; GCS, glasgow coma scale; ALT, alanine aminotransferase; HDL-C, high-

density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; BNP, B-type natriuretic peptide; APTT, activeated partial thromboplasting time; PT, prothrombin time; INR,

international normalized ratio; CRP, C-reaction protein.

median and interquartile (25th to 75th percentile) range (IQR).

Categorical variables were subjected to the Chi-square test or

Fisher’s exact test, expressed as frequencies and percentages.

All statistical tests were two-sided, and statistical significance

was set at 0.05. The study data from Cangzhou Hospital of

Integrated Traditional Chinese Medicine andWesternMedicine

was used as the training cohort and the dataset from Wuhan

Union Hospital was used as the validation cohort. Characteristic

variables were selected from the training cohort using the

LASSO algorithm and multivariable logistic regression analysis.

To build the predictive model for AFDAS, we weighted

the coefficients of the variables screened out of the training

cohort above to construct the nomogram model for AFDAS.

The predictive performance of the model is assessed by

means of ROC curves, which compare the area under the

curve. In addition, validation of the model is performed in

the validation cohort. The calibration curve is achieved by

depicting a smooth non-parametric calibration curve and a

fitted logistic calibration curve for the validation cohort. For

the assessment of clinical utility, decision curve analysis is one

of the most appropriate assessment methods. By quantifying

the clinical utility of the model, decision curves can show

the net benefit and risk threshold probabilities. In addition,

we used the median and interquartile (25th−75th percentile)

range (IQR) and chi-square tests to analyse outcome variables

such as length of stay in hospital and in-hospital mortality in

stroke patients.

Results

Clinical characteristics

A total of 5332 patients were eligible for this study, of which

3480 (65.3%) were male and 1852 (34.7%) were female, with a

mean age of 62.93 ± 12.55 years. Among these patients, 384

(7.2%) developed AFDAS during hospitalization. All clinical

variables were not significantly different between the training

cohort (n = 3173) and the validation cohort (n = 2159) (P >

0.05). The incidence of AFDAS was similar in both cohorts,

with 225 (7.1%) in the training cohort and 159 (7.4%) in

the validation cohort (Supplementary Table 2). In the training

cohort, 2948 (92.9%) had non-AFDAS and 225 (7.1%) had

AFDAS. Baseline characteristics were shown in Table 1. Among

the different subtypes of TOAST typology, 317 (5.95%) patients

with large-artery atherosclerosis had AF, of which 313 (81.5%)

had received anticoagulation. Undetermined etiology had 14

(0.26%) patients with AF, and all had received anticoagulation

(Supplementary Table 3).

Feature selection of independent
predictors

We used the LASSO regression model to build predictor

classifiers in the training cohort. Finally, 10 non-zero
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FIGURE 2

Predictor selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model. (A) Identification of the optimal

penalization coe�cient lambda (λ) in the LASSO model. The dotted vertical line was plotted at the value selected using 10-fold cross-validation,

for which the optimal λ resulted in 10 non-zero coe�cients. (B) LASSO coe�cient profiles of the 45 predictors. A coe�cient profile plot was

produced against the log (λ) sequence.

characteristic variables were selected among 45 variables

(Figures 2A,B), including age, mean artery pressure (MAP),

CHF, previous AIS/TIA, cortical infarction, NIHSS score,

low-density lipoprotein cholesterol (LDL-C), international

normalized ratio (INR), CRP, and BNP (Table 2). To screen

out the strongest predictors and construct a clinical prediction

model, we used a multivariable logistic regression analysis

(forest plot). The analysis revealed that age (1.044 [1.031–

1.058]; P < 0.001), CHF (2.521 [1.579–3.938]; P < 0.001),

previous AIS/TIA (2.165 [1.446–3.192]; P < 0.001), NIHSS

score (1.228 [1.184–1.273]; P < 0.001), CRP (1.008 [1.005–

1.011]; P < 0.001), BNP (1.016 [1.012–1.020]; P < 0.001)

and cortical infarction (2.559 [1.860–3.528]; P < 0.001) were

significantly associated with AFDAS in the training cohort

(Figure 3).

Prediction model based on simplified
clinical characteristics and laboratory
variables

The prediction model consisted of six predictors,

including age, CHF, previous AIS/TIA, NIHSS score, CRP

and BNP, through the screening of variables by LASSO

and multivariable logistic regression analysis described

above (Table 3). We obtained regression coefficients for

the variables by multivariable logistic regression analysis

and proposed a risk score formula: risk score = – 9.139

+ 0.046 (age) + 0.902 (if congestive heart failure was

positive) + 0.774 (if previous AIS/TIA was true) + 0.208

TABLE 2 LASSO regression coe�cients and lambda.1-SE values in the

training cohort.

Variables Coefficients Lambda.1-

SE

log (Lambda)

Age (years) 0.026 0.010 – 4.611

Physiological data on admission

MAP (mm Hg) 0.003

Comorbidity

CHF 0.337

Previous AIS/TIA 0.089

Neuroimaging

Cortical infarction 0.674

Severity on admission

NIHSS score 0.164

Laboratory tests

LDL-C (mmol/L) 0.002

INR 0.020

CRP (mg/L) 0.005

BNP (pg/mL) 0.011

MAP, mean arterial pressure; CHF,Congestive heart failure; AIS, acute ischemic stroke;

TIA, transient ischemic attack; NIHSS, national institute of health stroke scale; LDL-C,

low-density lipoprotein cholesterol; INR, international normalized ratio; CRP, C-reaction

protein; BNP, B-type natriuretic peptide.

(NIHSS score) + 0.008 (CRP) + 0.017 (BNP). Predicted

risk =1/(1 + e−riskscore). The model containing the above

predictors was developed and presented as a nomogram

(Figure 4A).
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Validation of prediction models

In the training cohort, there was a well-calibrated between

prediction and observation (Hosmer-Lemeshowχ2 = 4.813, P=

0.732) (Figure 5A). The AUC for the training cohort was 0.815,

95% CI (0.777–0.853) (Figure 6A). The validation cohort also

showed a good calibration (Hosmer-Lemeshow χ2 = 4.248, P

= 0.834) (Figure 5B). The AUC was 0.808, 95% CI (0.770–0.847)

(Figure 6B).

Incremental prediction of the above
model by neuroimaging variables

Imaging variables were analyzed by imaging physicians

in stroke patients and Cortical infarction was significantly

associated with the development of atrial fibrillation after

univariate group comparisons and multivariable logistic

FIGURE 3

Forest plot of risk predictors in AFDAS with AIS.

regression analysis. To evaluate the incremental predictive value

of neuroimaging variables, the AFDAS prediction model was

developed using neuroimaging variables combined with Model

1, i.e., Model 2. Finally, 7 optimal predictors were selected,

including age, CHF, previous AIS/TIA, cortical infarction,

NIHSS score, CRP, and BNP (Table 3). The risk score equation

for Model 2 was: risk score = – 8.428 + 0.043 (age) + 0.915

(if congestive heart failure was positive) + 0.778 (if previous

AIS/TIA was true) + 0.207 (NIHSS score) + 0.008 (CRP)

+ 0.016 (BNP) + 0.966 (if cortical infarction was positive).

Predicted risk = 1/(1 + e−riskscore). A model combining the

above predictors was developed and presented as a nomogram

(Figure 4B).

The training cohort (Hosmer-Lemeshow χ2 = 4.956, P =

0.713) and the validation cohort (Hosmer-Lemeshow χ2 =

4.311, P = 0.828) showed well-calibrated between prediction

and observation (Figures 5C,D). After the addition of cortical

infarction variables, Model 2 showed significantly higher

discrimination between the training cohort (AUC: 0.846, 95%

CI (0.811–0.882) vs. 0.815, 95% CI (0.777–0.853), P = 0.001)

(Figure 6A) and the validation cohort (AUC: 0.841, 95% CI

(0.804–0.877) vs. 0.808, 95% CI (0.770–0.847), P = 0.001)

(Figure 6B, Supplementary Table 4).

Clinical utility and improvement capacity
of the model

DCA is one of the methods to assess the clinical utility

of prediction models. More significant net clinical benefit was

obtained formodel 2 thanmodel 1 in the training cohort. Similar

results were observed in the validation cohort (Figures 7A,D).

The clinical impact curves also showed that the number

of patients predicted to develop AF converged with those

who developed AF within this risk threshold, indicating the

TABLE 3 Risk factors and development of predictive models for AFDAS in training cohort.

Variables Model 1 Model 2

β OR(95% CI) P β OR(95% CI) P

Intercept – 9.139 <0.001 – 8.428 <0.001

Age (years) 0.046 1.045(1.032–1.058) <0.001 0.043 1.044(1.031–1.058) <0.001

CHF 0.902 2.465(1.582–3.842) <0.001 0.915 2.498(1.453–3.822) <0.001

Previous AIS/TIA 0.774 2.168(1.463–3.164) <0.001 0.778 2.179(1.460–3.204) <0.001

NIHSS score 0.208 1.232(1.189–1.276) <0.001 0.207 1.230(1.187–1.275) <0.001

CRP (mg/L) 0.008 1.008(1.006–1.011) <0.001 0.008 1.008(1.006–1.011) <0.001

BNP (pg/mL) 0.017 1.017(1.014–1.021) <0.001 0.016 1.016(1.013–1.020) <0.001

Cortical infarction NA NA NA 0.966 2.628(1.914–3.617) <0.001

model 1: based on simplified Clinical features and laboratory variables alone.

model 2: based on simplified Clinical features, laboratory variables and neuroimaging variables.

OR, odds ratio; CHF, Congestive heart failure; AIS, acute ischemic stroke; TIA, transient ischemic attack; NIHSS, national institute of health stroke scale; CRP, C-reaction protein; BNP,

B-type natriuretic peptide.
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FIGURE 4

The nomograms to predict the probability of AFDAS after AIS patients from the training cohort. The patient was 60 years old with a history of

stroke and no history of heart failure. During hospitalization the NIHSS score was 18, the C-reactive protein was 30.4 mg/L and the BNP was 84.3

pg/mL. The patient had a total score of 222 and a probability of atrial fibrillation of 25.9% (model 1) (A). When the neuroimaging variable (Cortical

infarction) was added, the patient had a total score of 262 and a 38.4% probability of atrial fibrillation (model 2) (B).

model’s significant predictive power and good clinical utility

(Figures 7B,C,E,F). To compare the improvement ability of the

twomodels, NRI and IDI were used.Model 2 was compared with

Model 1, with NRI of 0.105 (0.025–0.185) in the training cohort

and 0.086 (0.026–0.147) in the validation cohort. IDI was 0.106

(0.074–0.139) in the training cohort and 0.031 (0.016–0.047)

in the validation cohort (Figures 8A,B and Table 4). Therefore,

Model 2 had better predictive performance for AFDAS incidence

compared with Model 1.

Outcomes

Of the 5332 patients, 384 (7.2%) developed AFDAS after

AIS. By univariate analysis, patients with AFDAS had a poor

prognosis with 11 (8–18) days of hospitalization, significantly

higher than the non-AFDAS group. One hundred (1.9%)

patients died during hospitalization in the study population,

including 15 (3.9%) in the AFDAS group. In addition, both 28-

day and 90-day mortality were statistically significantly higher

in the AFDAS group than in the non-AFDAS group (Table 5).

The study population’s 90-day mortality rate was 4.2%, and

the mortality rate increased significantly early in the onset

(Figure 9A). Furthermore, the AFDAS group had a significant

increase in early mortality rate and a higher 90-day mortality

rate than the non-AFDAS group (Figure 9B).

Discussion

In this study, age, BNP, CRP, CHF, NIHSS score, previous

AIS/TIA, and cortical infarction were independent risk factors

for AFDAS. We developed and validated a nomogram model

for the incidence of AFDAS after AIS based on the above risk

factors. After validation, the prediction model showed good

calibration, discrimination, and clinical utility.

AF is one of the major risk factors for stroke. Left atrial

remodeling characterized by endothelial dysfunction during

the first 24 h of an AF episode predisposes to thrombosis

(17), which in turn increased the incidence of stroke. One

study noted that the risk of stroke was 5 times higher in

patients with AFDAS than in those without AFDAS (18),

and oral anticoagulation reduced the risk of recurrence in

patients with IS who were first diagnosed with AFDAS (19).

However, up to 95% of episodes in patients with AFDAS are

paroxysmal and asymptomatic (9). Patients with AFDAS are

more difficult to be diagnosed and be treated promptly. There

is still no consensus on screening strategies and diagnosis of

AFDAS, and its prevalence remains uncertain. In our study,

the diagnosis rate of AFDAS during hospitalization was 7.2%,

similar to previous reports (20, 21). Among the different

subtypes of TOAST typology, 317 (5.95%) patients with large-

artery atherosclerosis had AF, of which 313 (81.5%) patients with

AF were treated with anticoagulation. In addition, some of these

patients failed to receive anticoagulation because of the cerebral

hemorrhage event that occurred after the stroke. A systematic

review and meta-analysis summarized cardiac monitoring

methods chronologically into four phases. The detection rate

of AFDAS could be improved by extended monitoring mean in

phases III and IV, including ambulatory Holter, mobile cardiac

outpatient telemetry, external loop recording, and implantable

loop recording (21). However, the high cost may not achieve a

satisfactory diagnostic yield, depending mainly on appropriate
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FIGURE 5

Calibration curves of the prediction models in each cohort. Calibration curves depict the calibration of prediction models in terms of the

agreement between the predicted risks of AFDAS and observed outcomes of AFDAS. The x-axis represents the predicted AFDAS risk and the

y-axis represents the actual AFDAS rate. The diagonal dotted line represents a perfect prediction by an ideal model. The red solid line represents

the performance of our prediction models. A closer fit to the diagonal dotted line represents a better prediction. (A,B) represents the calibration

curve of Model 1 in the training cohort and validation cohort; (C,D) represents the calibration curve of Model 2 in the training cohort and

validation cohort.

patient selection (22). Therefore, many studies are addressing

this area. There is methodological diversity (1, 11, 12, 15, 22–26),

different study sample sizes (6, 10, 27), differences in the analysis

of multiple factors in the development of AF (28–31), and

heterogeneity in its pathophysiological mechanisms (2, 9, 32) in

the study process. These caused differences in the findings of

AFDAS. Predictive models for AFDAS have been investigated,

but there are problems with missing neuroimaging variables,

failure to visualize the model and limited predictive power

(10–12). In this context, we successfully constructed a new

model to predict the occurrence of AFDAS and provide clinical

decisions for the treatment of stroke patients. The models could

be applied to patients’ risk stratification. Patients with a positive

prediction of AFDAS may require more sophisticated cardiac

exams in the hospital setting.

The occurrence of AFDAS is associated with complex

pathophysiological mechanisms, such as neurogenic

mechanisms. Autonomic regulation of cardiac rhythm is
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FIGURE 6

Receiver operating characteristic (ROC) curve of the prediction models in each cohort. The blue line and red line represent Model 1 and Model

2, respectively. (A) Represents ROC curve of our prediction models in the training cohort; (B) Represents the ROC curve of models in the

validation cohort.

FIGURE 7

(A,D) Decision curve analysis for the Model 1 and Model 2 nomogram in the training and validation cohort. The y and x axis means the true and

false positive rate of the risk prediction of AFDAS patients, respectively. The blue line represents the Model 1 nomogram. The red line represents

the Model 2 nomogram. (B,C) Clinical impact curve in the training cohort; (E,F) Clinical impact curve in the validation cohort.
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FIGURE 8

Model 1 and Model 2 comparison based on NRI in training cohort (A) and validation cohort (B). Model 2 is 0.105 better than Model 1 in training

cohort. Model 2 is 0.086 better than Model 1 in validation cohort.

TABLE 4 Comparison of the prediction ability between Model 1 and

Model 2 through NRI and IDI.

Variables Value 95% CI P

Training Cohort

NRI 0.105 0.025–0.185 0.010

IDI 0.106 0.074–0.139 <0.001

Validation Cohort

NRI 0.086 0.026–0.147 0.005

IDI 0.031 0.016–0.047 <0.001

NRI, net reclassification index; IDI, integrated discrimination index.

influenced by the cerebral cortex, and cortical infarction leads

to dysregulation of autonomic regulation, which triggers the

development of AFDAS (9). In a study of unexplained AFDAS

in patients with IS, any imaging manifestation of cortical

infarction was associated with AFDAS as an independent

predictor (10, 11, 15). In the univariate regression analysis

of this study, the number of AFDAS patients with cortical

involvement was significantly higher than that of non-AFDAS

patients. This result suggested that neurogenic mechanisms

may play a role in some AFDAS patients. Likewise, the IS-

induced inflammatory response leads to intrinsic autonomic

nervous system dysfunction through inflammatory mediator

stimulation, causing partial discharges in the cardiac ganglion

plexus and reduced heart rate variability, leading to episodes

of AF (33). In our cohort, CRP was significantly elevated in

patients in the AFDAS group. However, we did not further

refine whether the duration of persistently elevated CRP led

to a prolonged period of a single AF episode or an increased

frequency of seizures, as a sustained inflammatory response

can also lead to an increased risk of AF persistence and

TABLE 5 Outcomes in patients with and without AFDAS.

Outcome All

patients

(n= 5332)

non-

AFDAS

(n = 4948)

AFDAS

(n = 384)

χ
2/Z P

Hospital stay

(days)

11.00 (8.00,

15.00)

11.00(8.00,

14.00)

11.00 (8.00,

18.00)

3.763 <0.001

28-day

mortality,

n (%)

151 (2.8) 132(2.7) 19 (4.9) 6.733 0.009

90-day

mortality,

n (%)

224 (4.2) 199 (4.0) 25 (6.5) 5.484 0.019

In-hospital

mortality,

n (%)

100 (1.9) 85 (1.7) 15 (3.9) 9.273 0.002

embolism (33, 34). Furthermore, in our study, NIHSS scores

were significantly associated with AFDAS with a median of 10,

similar to NIHSS scores (11–13.4) in previous studies (30, 35).

One study found that patients with higher NIHSS scores also

had more elevated CRP and a poorer prognosis for stroke (36).

Studies have shown that the incidence of AF in patients

with IS increases with age (37). In the present study, the

age of patients with AF was 69.69 ± 12.46, similar to

previous studies (10, 11). We also found that AFDAS was

significantly associated with CHF, which was the same as the

results of previous studies (38, 39). Age and CHF severity

increase the incidence of AFDAS (10, 38). A possible reason

for this finding is that heart failure leads to increased atrial

afterload, sustained atrial myocyte stretch, and arterial wall

stress, resulting in electrical propagation abnormalities that
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FIGURE 9

Kaplan-Meier curves showing the cumulative mortality of all the patients of AFDAS (A), and the comparison of cumulative mortality in patients

with and without AFDAS (B).

promote the development and maintenance of AF (40). As a

result, the risk of AF and recurrence rates are relatively high in

this group of patients.

It is well known that BNP is an essential biomarker of

heart failure and atrial disease. It is synthesized and released by

the ventricular and atrial myocardium in states of myocardial

strain or by the brain after IS. Its inclusion in our model is

helpful. A study of AFDAS with 10-day, 3-month, and 6-month

ECG monitoring of IS patients found that IS patients with

elevated BNP ≥100 pg/mL could benefit more from extended

outpatient ECG monitoring (41). In our study, BNP in the

AFDAS group was 119.60 (66.25–238.70) pg/ml. However, there

were some differences with other studies (42, 43), which may

be related to differences in population, the severity of comorbid

cardiovascular disease, and sample size. It is also possible

that BNP levels are relatively low in patients with AF with

short episode duration or low episode frequency compared to

those with high-load AF (27). Interestingly, in a study of 300

AFDAS with a mean number of days of ECG monitoring of

6.78 days, BNP levels ≤131 pg/mL were considered to exclude

delayed AF in stroke survivors (44), which may have led to

a missed diagnosis. Therefore, further understanding of the

relationship between AFDAS and BNP levels is necessary to give

individualized prevention strategies.

Our study has several limitations. Firstly, this study

was a retrospective collection of patients with AIS during

hospitalization. The duration of ECG monitoring may have

been limited, which may have underestimated the incidence

of AFDAS during hospitalization. In our analysis, patients

underwent 2–3 monitoring methods, and the incidence of

AFDAS was close to that previously reported (21). Secondly,

the higher mortality rate in the AFDAS group compared to the

non-AFDAS group may be related to the combination of more

factors, such as CHF, higher age, and previous AIS. These factors,

in themselves, increase the risk of death. Whether AFDAS

additionally increases the risk of adverse events in patients

with IS needs further exploration. Thirdly, echocardiographic

measurements were not recorded for the entire cohort. Some

studies have suggested that left atrial size was associated with

AF after stroke (10, 45). Fourthly, a test cohort is lacking in

this study and testing of the model will be carried out in a

subsequent prospective study. Finally, although our prediction

model has a high predictive power, it needs to be combined with

ECG in the comprehensive assessment of stroke patients during

clinical application.

Conclusion

The newly developed nomogram prediction model can help

clinicians identify patients at high risk for AFDAS and help

them prioritize longer and more intensive cardiac monitoring

of patients in clinical practice.
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