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Abstract
Objectives  To validate the performances of two prediction 
models (Brock and Lee models) for the differentiation of 
minimally invasive adenocarcinoma (MIA) and invasive 
pulmonary adenocarcinoma (IPA) from preinvasive lesions 
among subsolid nodules (SSNs).
Design  A retrospective cohort study.
Setting  A tertiary university hospital in South Korea.
Participants  410 patients with 410 incidentally detected 
SSNs who underwent surgical resection for the pulmonary 
adenocarcinoma spectrum between 2011 and 2015.
Primary and secondary outcome measures  Using 
clinical and radiological variables, the predicted probability 
of MIA/IPA was calculated from pre-existing logistic 
models (Brock and Lee models). Areas under the receiver 
operating characteristic curve (AUCs) were calculated and 
compared between models. Performance metrics including 
sensitivity, specificity, accuracy, positive predictive value 
(PPV) and negative predictive value (NPV) were also 
obtained.
Results  For pure ground-glass nodules (n=101), the AUC 
of the Brock model in differentiating MIA/IPA (59/101) 
from preinvasive lesions (42/101) was 0.671. Sensitivity, 
specificity, accuracy, PPV and NPV based on the optimal 
cut-off value were 64.4%, 64.3%, 64.4%, 71.7% and 
56.3%, respectively. Sensitivity, specificity, accuracy, 
PPV and NPV according to the Lee criteria were 76.3%, 
42.9%, 62.4%, 65.2% and 56.3%, respectively. AUC 
was not obtained for the Lee model as a single cut-off of 
nodule size (≥10 mm) was suggested by this model for the 
assessment of pure ground-glass nodules. For part-solid 
nodules (n=309; 26 preinvasive lesions and 283 MIA/IPAs), 
the AUC was 0.746 for the Brock model and 0.771 for the 
Lee model (p=0.574). Sensitivity, specificity, accuracy, PPV 
and NPV were 82.3%, 53.8%, 79.9%, 95.1% and 21.9%, 
respectively, for the Brock model and 77.0%, 69.2%, 
76.4%, 96.5% and 21.7%, respectively, for the Lee model.
Conclusions  The performance of prediction models for 
the incidentally detected SSNs in differentiating MIA/
IPA from preinvasive lesions might be suboptimal. Thus, 
an alternative risk calculation model is required for the 
incidentally detected SSNs.

Introduction 
Pulmonary subsolid nodules (SSNs) repre-
sent a histological spectrum of adenocar-
cinoma, and its preinvasive precursors, 
including atypical adenomatous hyperplasia 
(AAH) and adenocarcinoma-in-situ (AIS).1 
SSNs are common findings at chest CT 
which have been increasingly detected in 
CT screening studies.2 3 Indeed, according 
to one prospective screening study, 4.2% of 
the participants had at least one pure ground-
glass nodule (pGGN) and 5.0% had at least 
one part-solid nodule (PSN) at baseline 
rounds of screening.2 

With this prevalence in mind, numerous 
studies have justifiably focused on the differ-
entiation of invasive adenocarcinomas from 
preinvasive lesions4–13 as invasive adeno-
carcinoma requires surgical resection with 
conventional lobectomy and lymph node 
dissection14 whereas preinvasive lesions can 
be followed  up conservatively with annual 
CT surveillance or resected at a lesser extent 

Strengths and limitations of this study

►► This is the first study to externally validate the per-
formance of pre-existing risk prediction models 
for the incidentally detected pulmonary subsolid 
nodules.

►► This study performed head-to-head comparisons 
between the prediction models for the risk stratifi-
cation of subsolid nodules.

►► The main limitation of this study is that it only anal-
ysed surgically resected lung nodules, thus inducing 
selection bias.

►► Study population was small to conduct separate 
analyses for the pure ground-glass nodules and 
part-solid nodules.

http://bmjopen.bmj.com/
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(sublobar resection).15 Thus, the discrimination of inva-
sive adenocarcinoma has been a major topic of interest 
for many radiologists and clinicians to date.

In a quest to obtain quantitative risk-prediction tools 
for pulmonary nodules, McWilliams et al16 developed a 
prediction model (Brock model) using various clinical 
and radiological features. The Brock model demon-
strated higher accuracy in determining the likelihood of 
malignancy in pulmonary nodules compared with other 
existing models17 and was also externally validated in three 
independent screening populations.18–20 Nevertheless, in 
the context that a substantial percentage of persistent 
SSNs may belong to the adenocarcinoma spectrum, the 
performance of the established model in differentiating 
invasive adenocarcinoma should also be validated in 
order to encourage the use of the model in routine prac-
tice, as suggested by the British Thoracic Society (BTS).21

Lee et al7 also developed a prediction model (Lee 
model) using simple size metrics and morphological 
features for the differentiation of invasive adenocar-
cinomas appearing as SSNs. The model accuracy was 
reported to be excellent for the identification of invasive 
adenocarcinomas. However, it has also not been tested or 
validated.

Therefore, we aimed to validate the performances of 
the two prediction models (Brock and Lee models) for the 
differentiation of minimally invasive adenocarcinomas 
(MIAs) and invasive pulmonary adenocarcinomas (IPAs) 
from preinvasive lesions among SSNs. The purpose of our 
study was to evaluate the feasibility of the two models in 
the risk stratification of persistent SSNs.

Methods
Study population
We retrospectively reviewed the electronic medical 
records of our hospital and found 1915 patients who had 
undergone surgical resection for lung cancer between 
2011 and 2015. Among the 1915 patients, we identified 
1073 patients whose pathological diagnoses belonged 
to the pulmonary adenocarcinoma spectrum including 
AAH, AIS, MIA and IPA.1 22 Thereafter, we reviewed the 
thin-section CT images of the patients to include only 
those with SSNs (reviewers: JSK, JHL, SYA, REY, HL and 
HK); 548 patients whose lung cancers appeared as solid 
nodules on CT scans were excluded. We also excluded 76 
patients with nodules smaller than 5 mm or larger than 
3 cm and 39 patients in whom data regarding the family 
history of lung cancer were not available. Consequently, 
410 patients were included in this study. Among these 
patients, 18 patients had two nodules and one patient had 
three nodules. A single nodule was selected randomly 
for these 19 patients in order to remove within-subject 
correlation. Therefore, a total of 410 nodules from 410 
patients were analysed in the present study (figure  1). 
There were 174 men and 236 women (median, 61 years; 
IQR: 54–69 years). As for the nodule type, there were 101 
pGGNs and 309 PSNs. IPAs were found in 290 nodules 

followed by MIA in 52 nodules, AIS in 51 nodules and 
AAH in 17 nodules. Median nodule size was 15.8 mm 
(IQR: 11.8–20.9 mm) (table 1).

Data collection
Patient characteristics including demographic data were 
collected from the electronic medical records of Seoul 
National University Hospital. Patient age, sex, patho-
logical diagnosis, family history of lung cancer and 
nodule location (lobe) were recorded. The thin-section 
CT images were also reviewed to obtain radiological 
information of nodules (nodule type, nodule size, solid 
portion size, solid proportion, lobulation, spiculation 
and nodule count per scan) and the background lung 
parenchyma (presence of visually detected emphysema). 
These features were used as input variables for logistic 
regression analysis at the Brock model16 and Lee model.7 
Nodule size and solid portion size were measured as the 
maximum transverse diameter (mm) using an electronic 
calliper. Solid proportion (%) was calculated as the solid 
portion size divided by the nodule size. Nodule count was 
defined as the total number of non-calcified nodules at 
least 1 mm in diameter.16 Image review was conducted by 
three radiologists (JP, WHL and HK), and each nodule 
was analysed once by one of these radiologists. Details 
regarding the CT scanning protocols are described in the 
online supplementary material.

Figure 1  Flow chart of patient inclusion and exclusion. 
pGGN, pure ground-glass nodule; PSN, part-solid nodule; 
SSN, subsolid nodule.

https://dx.doi.org/10.1136/bmjopen-2017-019996
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Measurement variability
We previously analysed and reported the measurement 
variability of SSNs and solid portion size using two 
same-day repeat CT scans.23 Measurement variability 
range for the maximum transverse diameter of SSNs 
on lung window CT images was  ±2.2 mm. For the solid 
portion, it was  ±3.7 mm. Inter-reader agreement (κ) of 
nodule type ranged from 0.80 to 0.96. Therefore, we 
did not re-evaluate the measurement variability or inter-
reader agreement of nodule type in this study.

Statistical analysis
To investigate whether the variables incorporated in the 
established models (Brock and Lee models) were signifi-
cantly different between preinvasive (AAH and AIS) 
and invasive lesions (MIA and IPA), we first performed 
a univariate analysis. Categorical variables were analysed 
using the Pearson χ2 test or Fisher’s exact test, and contin-
uous variables were analysed using the independent t-test 
or Mann-Whitney U test, as appropriate.

We then calculated the predicted probability from each 
logistic regression model. For the Brock model, a full 
model with spiculation was used with input variables of 
age, sex, family history of lung cancer, emphysema, nodule 
size, nodule type, nodule location, nodule count per scan 
and spiculation.16 Regression coefficients and the model 
constant were available from the original paper.16 Nodule 
size was subjected to power transformation prior to entry 
as described previously.16 Age and nodule count were 
centred at a mean of 62 years and 4, respectively.16 We 
recorded the predicted probability of each nodule which 
was a continuous value from 0 to 1 (0 to 100%). For the 
Lee model, two different methods were used for analysis. 
For pGGNs, a single cut-off of nodule size (≥10 mm) was 
used to discriminate invasive lesions as stated by Lee et 
al.7 In the case of PSNs, four variables (nodule size, solid 
proportion, lobulation and spiculation) were substituted 
into the following regression formula.7

	 ‍

Logit (Probability) = 0.396 − 0.200 × [nodule size (mm)] − 0.048

× [solid proportion (%)] + 1.049 × (nonlobulation)

+ 3.288 × (nonspiculation) ‍�

This logistic regression formula was originally made to 
predict a preinvasive lesion. Therefore, predicted prob-
ability for an invasive lesion was calculated as '1 - proba-
bility of being a preinvasive lesion'. Predicted probability 
was obtained only for PSNs in terms of the Lee model. No 
preprocessing of variables was performed.

With the predicted probability obtained through each 
model, receiver operating characteristic curve (ROC) 
analysis was performed to investigate the discriminative 
performance of the prediction models in diagnosing 
invasive lesions. Areas under the ROC curve (AUCs) 
were obtained and an optimal cut-off value based on the 
Youden Index was recorded. We calculated the sensi-
tivity, specificity, accuracy, positive predictive value (PPV) 
and negative predictive value (NPV) of each model with 
the optimal cut-off. For the Brock model, two different 
cut-offs were applied to the calculation: (1) a threshold of 
10% risk of malignancy as suggested by the BTS21 and (2) 
an optimal cut-off based on the Youden Index. ROC anal-
ysis was performed for each nodule type separately and 
then for the entire SSNs in the case of the Brock model. 
In terms of the Lee model, ROC analysis was performed 
only for PSNs.

AUCs were compared between the models based 
on DeLong’s method.24 As the predicted probability 
of pGGNs was not available for the Lee model, AUC 
comparison was conducted only for PSNs. Diagnostic 

Table 1  Demographic data of the entire study population

Characteristics Value

Age (year)* 61 (54–69)

Sex 

 � Male 174 (42.4)

 � Female 236 (57.6)

Pathology 

 � AAH 17 (4.1)

 � AIS 51 (12.4)

 � MIA 52 (12.7)

 � IPA 290 (70.7)

Nodule type 

 � Pure GGN 101 (24.6)

 � Part-solid nodule 309 (75.4)

Family history of lung cancer 

 � Yes 16 (3.9)

 � No 394 (96.1)

Emphysema 

 � Yes 44 (10.7)

 � No 366 (89.3)

Nodule size (mm)* 15.8 (11.8–20.9)

Solid portion size (mm)* 5.7 (1.6–11.2)

Solid proportion (%)* 41.0 (11.4–62.0)

Location 

 � Upper lobe 249 (60.7)

 � Other lobes 161 (39.3)

Lobulation 

 � Yes 138 (33.7)

 � No 272 (66.3)

Spiculation 

 � Yes 134 (32.6)

 � No 276 (67.3)

Nodule count per scan* 3 (1–5)

Unless otherwise specified, data are numbers of patients (with 
percentages in parentheses).
*Data are median (with IQR in parentheses).
AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma-
in-situ; GGN, ground-glass nodule; IPA, invasive pulmonary 
adenocarcinoma; MIA, minimally invasive adenocarcinoma.
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accuracy was also compared between the models using 
the McNemar test.

Lastly, calibration of the models was assessed using the 
Hosmer-Lemeshow test for the 10 probability groups 
(deciles). All statistical analyses were performed using 
two commercial software programs (MedCalc V.12.3.0; 
MedCalc Software, Mariakerke, Belgium and SPSS V.19.0; 
IBM SPSS Statistics) and R software V.3.1.0 (http://www.​
R-​project.​org; PredictABEL package). A p value <0.05 was 
considered to indicate statistical significance.

Patient and public involvement
Patients or public were not involved in the development 
of the research question and outcome measures. No 
patients were involved in the study design or conduct of 
the study. Dissemination of the study results to the study 
participants was not practical given the retrospective 
nature of our study. Lastly, there were no patient advisers.

Results
Pathological diagnoses of pGGNs and PSNs
Among 101 pGGNs, 42 were preinvasive and 59 were inva-
sive lesions. As for the 309 PSNs, 26 were preinvasive and 
283 were invasive lesions.

Comparisons between preinvasive and invasive lesions
For pGGNs, a family history of lung cancer was more 
frequently observed in patients with invasive lesions 
(6/59) than in those with preinvasive lesions (0/42; 
p=0.040). Invasive lesions (14.2±5.4 mm) were also signifi-
cantly larger than preinvasive lesions (11.1±4.1 mm; 
p=0.002). In addition, patients with invasive lesions had 
a smaller nodule count per scan (invasive vs preinvasive 
lesions: median, 2 vs 4 nodules per scan; p=0.006). There 
were no significant differences in age, sex, presence of 
emphysema, nodule location, lobulation and spiculation 
(table 2).

For PSNs, nodule size, solid portion size and solid 
proportion were significantly larger in invasive lesions 
(invasive vs preinvasive lesions: median nodule size, 
17.6 mm vs 13.6 mm, p<0.001; median solid portion size, 
8.4 mm vs 4.6 mm, p<0.001; median solid proportion, 
52.8% vs 36.8%, p=0.032). Lobulation and spiculation 
were more frequently observed in invasive lesions (inva-
sive vs preinvasive lesions: lobulation, 118/283 vs 5/26, 
p=0.025; spiculation, 122/283 vs 4/26, p=0.006). There 
were no significant differences in age, sex, family history 
of lung cancer, presence of emphysema, nodule location 
and nodule count per scan (table 3).

SSN risk stratification using the Brock and Lee models
For pGGNs, the AUC of the Brock model’s predicted 
probability for differentiating invasive lesions from prein-
vasive lesions was 0.671 (95% CI: 0.571 to 0.762) (table 4). 
A cut-off of 10%, suggested by the BTS, yielded a sensi-
tivity, specificity, accuracy, PPV and NPV of 32.2%, 90.5%, 
56.4%, 82.6% and 48.7%, respectively. Another cut-off of 

4.29%, an optimal threshold based on the Youden Index, 
provided a sensitivity, specificity, accuracy, PPV and 
NPV of 64.4%, 64.3%, 64.4%, 71.7% and 56.3%, respec-
tively. Brock model for pGGNs showed poor calibration 
(p<0.001). A nodule size cut-off (10 mm) suggested by 
Lee et al7 was also applied to our study population. The 
resultant sensitivity, specificity, accuracy, PPV and NPV 
were 76.3%, 42.9%, 62.4%, 65.2% and 56.3%, respec-
tively. There were no significant differences in diagnostic 
accuracy between the Brock model and Lee criteria 
(Brock model cut-off 10% vs nodule size cut-off 10 mm, 
p=0.461; Brock model cut-off 4.29% vs nodule size cut-off 
10 mm, p=0.832).

As for PSNs, the AUC of the Brock model was 0.746 
(95% CI: 0.694 to 0.794) for the discrimination of invasive 
lesions from preinvasive lesions (table 5). A cut-off of 10% 
yielded a sensitivity, specificity, accuracy, PPV and NPV of 
82.3%, 53.8%, 79.9%, 95.1% and 21.9%, respectively. The 

Table 2  Comparison of clinical and radiological 
characteristics between differing pathological diagnoses in 
patients with pure GGNs

Characteristics 

AAH and 
AIS
(n=42)

MIA and IPA
(n=59) P values

Age (year)* 57±10 57±10 0.839

Sex 

 � Male 16 (38.1) 29 (49.2) 0.270

 � Female 26 (61.9) 30 (50.8)

Family history of lung cancer

 � Yes 0 (0) 6 (10.2) 0.040

 � No 42 (100) 53 (89.8)

Emphysema 

 � Yes 5 (11.9) 5 (8.5) 0.738

 � No 37 (88.1) 54 (91.5)

Nodule size (mm)* 11.1±4.1 14.2±5.4 0.002

Location 

 � Upper lobe 25 (59.5) 31 (52.5) 0.487

 � Other lobes 17 (40.5) 28 (47.5)

Lobulation 

 � Yes 3 (7.1) 12 (20.3) 0.090

 � No 39 (92.9) 47 (79.7)

Spiculation 

 � Yes 1 (2.4) 7 (11.9) 0.135

 � No 41 (97.6) 52 (88.1)

Nodule count per 
scan† 

4 (2–6) 2 (1–3) 0.006

Unless otherwise specified, data are numbers of patients (with 
percentages in parentheses).
*Data are mean±SD.
†Data are median (with IQR in parentheses).
AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma-
in-situ; GGN, ground-glass nodule; IPA, invasive pulmonary 
adenocarcinoma; MIA, minimally invasive adenocarcinoma.

http://www.R-project.org
http://www.R-project.org
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optimal cut-off based on the Youden Index was 10.11% 
which was very close to the suggested threshold by the 
BTS. Therefore, performance metrics were not calcu-
lated separately. AUC of the Lee model was 0.771 (95% 
CI: 0.720  to 0.817), and an optimal cut-off of 66.68% 

provided a sensitivity, specificity, accuracy, PPV and NPV 
of 77.0%, 69.2%, 76.4%, 96.5% and 21.7%, respectively. 
AUCs and diagnostic accuracies were not significantly 
different between the two models (p=0.574 and p=0.169, 
respectively). In addition, both models exhibited poor 
calibration (p<0.001).

With respect to the pooled analysis for the entire SSNs, 
the AUC of Brock model was 0.810 (95% CI: 0.769  to 
0.846). Calibration was also poor in this model (p<0.001).

Discussion
In this study, we revealed that AUCs for the differentia-
tion of invasive lesions among PSNs using the established 
risk prediction models ranged from 0.746 to 0.771 with 
no significant differences between the two models. Diag-
nostic accuracies based on the optimal cut-offs were 
79.9% for the Brock model and 76.4% for the Lee model. 
For pGGNs, the diagnostic accuracy was 56.4%–64.4% for 
the Brock model depending on the cut-off values used 
and 62.4% for the Lee criteria. For the entire SSNs, the 
Brock model showed AUC of 0.810.

McWilliams et al16 originally developed a lung cancer 
prediction model (Brock model) using participants 
enrolled in a lung cancer screening study. Thus, the Brock 
model initially targeted pulmonary nodules detected on 
first screening CT. Incidentally detected nodules and 
surgical candidates were not the original target lesions 
of this model. However, at present, the BTS recommends 
using the same diagnostic approach for nodules detected 
incidentally as those detected through screening.21 BTS 
also recommends using the Brock model for the risk 
calculation of both solid nodules and SSNs.21 A cut-off of 
10% predicted probability for malignancy is suggested in 
order to differentiate high-risk SSNs for the performance 
of biopsy or surgical resection.21 This quantitative diag-
nostic approach is to discern malignant SSNs with an 
appropriate false-positive rate. However, it must be noted 
that most persistent SSNs belong to one of the four cate-
gories of the adenocarcinoma spectrum: AAH, AIS, MIA 
and IPA. Therefore, the potential of the risk-prediction 
model in discriminating lesions with invasive components 
(MIA and IPA) should also be tested using pathological 

Table 3  Comparison of clinical and radiological 
characteristics between differing pathological diagnoses in 
patients with part-solid nodules

Characteristics 
AAH and AIS
(n=26)

MIA and IPA
(n=283) P values

Age (year)* 62 (54–68) 63 (56–70) 0.257

Sex 

 � Male 7 (26.9) 122 (43.1) 0.109

 � Female 19 (73.1) 161 (56.9)

Family history of lung cancer

 � Yes 1 (3.8) 9 (3.2) 0.590

 � No 25 (96.2) 274 (96.8)

Emphysema 

 � Yes 2 (7.7) 32 (11.3) 0.752

 � No 24 (92.3) 251 (88.7)

Nodule size (mm)* 13.6 (9.8–16.6) 17.6 (13.3–22.4) <0.001

Solid portion size 
(mm)* 

4.6 (3.4–5.8) 8.4 (5.2–13.6) <0.001

Solid proportion 
(%)* 

36.8 (25.1–63.2) 52.8 (33.4–66.0) 0.032

Location 

 � Upper lobe 12 (46.2) 181 (64.0) 0.073

 � Other lobes 14 (53.8) 102 (36.0)

Lobulation 

 � Yes 5 (19.2) 118 (41.7) 0.025

 � No 21 (80.8) 165 (58.3)

Spiculation 

 � Yes 4 (15.4) 122 (43.1) 0.006

 � No 22 (84.6) 161 (56.9)

Nodule count per 
scan* 

3 (2–8) 3 (1–4) 0.132

Unless otherwise specified, data are numbers of patients (with percentages 
in parentheses).
*Data are median (with IQR in parentheses).
AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma-in-
situ; IPA, invasive pulmonary adenocarcinoma; MIA, minimally invasive 
adenocarcinoma.

Table 4  Performance of each prediction model in diagnosing minimally invasive adenocarcinoma and invasive 
adenocarcinoma for pure ground-glass nodules

Sensitivity Specificity Accuracy PPV NPV AUC

Brock model 1* 32.2 90.5 56.4 82.6 48.7 0.671 (0.571–0.762)

Brock model 2† 64.4 64.3 64.4 71.7 56.3

Lee model
(nodule size‡)

76.3 42.9 62.4 65.2 56.3 –

Data are in percentages except for AUC. There were 42 preinvasive lesions and 59 invasive lesions (minimally invasive adenocarcinomas and 
invasive adenocarcinomas).
*A cut-off of 10% predicted probability was used as suggested by the British Thoracic Society.
†A cut-off of 4.29% predicted probability, the optimal threshold based on the Youden Index, was used.
‡A cut-off of 10 mm nodule size was used.
AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value.
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diagnosis as a reference standard. Indeed, as clinical 
management strategies differ substantially between prein-
vasive and invasive lesions, if it can be feasible to predict 
the invasiveness of SSNs, clinical planning whether to 
perform annual CT surveillance, limited resection or 
conventional lobectomy can be facilitated.

The performance of the prediction models for the risk 
stratification of SSNs was not optimal according to our 
study results. For PSNs, AUCs of the two models ranged 
between 0.746 and 0.771 with diagnostic accuracies close 
to 80%. The performance of the prediction model for 
PSNs in the original paper by Lee et al7 was 0.905 (AUC). 
The study population of the present study was similar to 
that of the study by Lee et al.7 An important reason for the 
performance drop would be the spectrum effect which 
is a common cause of model performance heteroge-
neity.25 A variation in the assessment of CT morphological 
features (lobulation and spiculation) would be another 
potential cause. Past research on distinguishing invasive 
adenocarcinomas appearing as SSNs have reported that 
logistic regression models built with size metrics, morpho-
logical features or texture features showed AUCs ranging 
from 0.79 to 0.98.4–6 9 11 13 However, these models were not 
tested for an independent cohort or validated externally.

Another important finding of our study was that the PPV 
for the differentiation of invasive lesions among PSNs was 
very high for both models, over 95%. In other words, the 
probability of being an invasive lesion was over 95% for 
nodules predicted as being invasive through these models. 
A concern, however, is the high false-negative rate of these 
models. PSNs predicted as preinvasive lesions, which have 
a low calculated risk, should be managed according to 
their solid portion size, if they are persistent lesions.26 A 
few studies have shown that the solid portions in PSNs 
are well correlated to the pathological invasive compo-
nent.12 27 28 Fleischner Society guideline recommends that 
PSNs with solid components ≥6 mm should be monitored 
with CT scans at 3–6 months interval.26 PSNs with solid 
portions larger than 8 mm should be biopsied or surgi-
cally resected in consideration of invasive adenocarci-
nomas.26 BTS also recommends that the solid component 
size should be considered to further refine the estimate of 
malignancy risk.21 In addition, growing solid component 
is also a sign of an invasive adenocarcinoma as described 
in both guidelines.21 26

The diagnostic accuracies of both the Brock model 
and Lee criteria were even lower for pGGNs. Among 
multiple clinical and radiological characteristics inves-
tigated in our study, only three variables (family history 
of lung cancer, nodule size and nodule count per scan) 
were significantly different between preinvasive and 
invasive lesions. This implies the need for other useful 
features for the development of new better predic-
tion models. Features such as nodule volume, mass or 
radiomic features may provide additional clues for their 
differentiation.4 29 In addition, changes in nodule char-
acteristics at follow-up CT scans, such as an increase 
in nodule size, attenuation or new development of a 
solid portion, may also be valuable for the discrimina-
tion.14 Alternatively, computational classification anal-
ysis, including deep learning algorithms, which do not 
require hand-crafted features and can be self-trained 
directly from raw image pixels, may be another solution 
for the diagnosis of pGGNs.30

The Brock model has been externally validated for 
the cohorts of the Danish Lung Cancer Screening 
Trial19 and National Lung Screening Trial18; AUCs for 
the discrimination of malignant from benign nodules 
ranged from 0.834 for the former and 0.963 for the latter. 
AUCs for the validation cohort of the original paper, 
the British Columbia Cancer Agency chemoprevention 
trial cohort was 0.970.16 In addition, for an Australian l 
ung cancer screening cohort, Zhao et al20 tested the utility 
of the Brock model for the baseline evaluation of 52 
SSNs and demonstrated that the AUC was 0.89. To the 
contrary, however, the model performance evaluated 
in our study was lower than those reported in the liter-
ature. The main reason for such a discrepancy may be 
that we included patients who underwent surgical resec-
tion of SSNs unlike previous studies. Thus, the propor-
tion of preinvasive lesions was small (16.6%), and a major 
portion of our study population consisted of invasive 
lesions (83.4%). Such high prevalence of invasive lesions 
would have affected our study results. Nevertheless, SSNs 
of interest in daily clinical practice may be closer to those 
in our study. In routine practice, transient SSNs, which 
are definitely benign, do not require risk calculation as 
they are easily confirmed through follow-up CT scans at 
short-term intervals.26 In addition, small SSNs <6 mm are 
usually preinvasive and do not require CT surveillance. 

Table 5  Performance of each prediction model in diagnosing minimally invasive adenocarcinoma and invasive 
adenocarcinoma for part-solid nodules

Sensitivity Specificity Accuracy PPV NPV AUC

Brock model* 82.3 53.8 79.9 95.1 21.9 0.746 (0.694–0.794)
Lee model† 77.0 69.2 76.4 96.5 21.7 0.771 (0.720–0.817)

Data are in percentages except for AUC. There were 26 preinvasive lesions and 283 invasive lesions (minimally invasive adenocarcinomas 
and invasive adenocarcinomas).
*A cut-off of 10% predicted probability was used which was suggested by the British Thoracic Society and was optimal at the same time.
†An optimal cut-off of 66.68% was adopted based on the Youden Index.
AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value.
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On the other hand, particular concern should be given 
to persistent SSNs ≥6 mm, especially to those with solid 
components. As the role of biopsy or positron emission 
tomography is limited for SSNs,15 we supposed that risk 
prediction models may provide value for more appro-
priate management planning. In this context, we applied 
prediction models to surgically resected SSNs for the vali-
dation of their clinical utility.

There were several limitations to our study. First, 
our study was not conducted for a screening cohort as 
described earlier in this manuscript. The prevalence of 
preinvasive lesions was low compared with that of the 
screening setting. Thus, the performance measures in 
this study should be carefully interpreted with respect 
to the target population which were the incidentally 
detected surgical candidates. Second, our retrospective 
study included a small number of patients, and anal-
yses were conducted separately for pGGNs and PSNs. 
Separate analysis of pGGNs and PSNs has resulted in 
a slight underestimation of the performance of Brock 
model. Third, optimal cut-offs for the models were not 
obtained from ROC analyses of the original study popu-
lations from which the models were derived. Fourth, 
radiological nodule information was extracted from 
our heterogeneous CT dataset, in which CT acquisition 
parameters such as radiation dosage, slice thickness 
or contrast-enhancement were not uniform across the 
study population. However, these factors would have had 
little effect on the variables we used. In addition, all CT 
scans had thin-section images (slice thickness ≤1.5 mm). 
Fifth, nodule size and solid portion size were measured 
as the longest transverse diameter in accordance with 
the definition of lesion size and solid proportion in the 
original papers. However, recent analyses have revealed 
that the usage of average diameter as an input variable 
may enhance the model performance.31

In conclusion, the performance of the Brock model 
and Lee model for the differentiation of invasive lesions 
among SSNs was suboptimal. In particular, both models 
showed lower performance for pGGNs compared with 
that for PSNs. Thus, an alternative approach such as 
computer-aided classification should be developed for 
the preoperative diagnosis of invasive lesions among 
SSNs.
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