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Cellular heterogeneity in gene expression is driven by cellular processes, such as cell cycle and cell-type identity, and cellular

environment such as spatial location. The cell cycle, in particular, is thought to be a key driver of cell-to-cell heterogeneity in

gene expression, even in otherwise homogeneous cell populations. Recent advances in single-cell RNA-sequencing (scRNA-

seq) facilitate detailed characterization of gene expression heterogeneity and can thus shed new light on the processes driv-

ing heterogeneity. Here, we combined fluorescence imaging with scRNA-seq to measure cell cycle phase and gene expres-

sion levels in human induced pluripotent stem cells (iPSCs). By using these data, we developed a novel approach to

characterize cell cycle progression. Although standard methods assign cells to discrete cell cycle stages, our method goes

beyond this and quantifies cell cycle progression on a continuum. We found that, on average, scRNA-seq data from

only five genes predicted a cell’s position on the cell cycle continuum to within 14% of the entire cycle and that using

more genes did not improve this accuracy. Our data and predictor of cell cycle phase can directly help future studies to

account for cell cycle–related heterogeneity in iPSCs. Our results and methods also provide a foundation for future

work to characterize the effects of the cell cycle on expression heterogeneity in other cell types.

[Supplemental material is available for this article.]

Single-cell RNA-sequencing (scRNA-seq) can help characterize cel-
lular heterogeneity in gene expression at unprecedented resolu-
tion (Kelsey et al. 2017; Macaulay et al. 2017; Tanay and Regev
2017; Papalexi and Satija 2018). By using scRNA-seq, one can study
not only the mean expression level of genes across an entire cell
population but also the variation in gene expression levels among
cells (Kowalczyk et al. 2015; Lu et al. 2016; Stubbington et al. 2017;
Velten et al. 2017; Nguyen et al. 2018; Skelly et al. 2018).

There are many reasons for differences in gene expression
among cells, with arguably the most obvious candidates being dif-
ferences in regulation among cell types and differences in cell cycle
phase among cells (Sanchez and Golding 2013; Keren et al. 2015;
Soltani and Singh 2016). Cell type and cell cycle phase, although
interesting to study directly, are often considered confounders in
single-cell studies that focus on other factors influencing gene ex-
pression (Buettner et al. 2015; Barron and Li 2016; Chen and Zhou
2017), such as genotype, treatment (Kolodziejczyk et al. 2015), or
developmental time (Kowalczyk et al. 2015; Lauridsen et al. 2018).
The ability to characterize, correctly classify, and correct for cell
type and cell cycle phase are therefore important, even in studies
that do not specifically aim to study either of these factors.

For these reasons, many studies have used single cell data to
characterize the gene regulatory signatures of individual cells of
different types and of cells at different cell cycle phases (e.g.,
Buettner et al. 2015; Leng et al. 2015; Povinelli et al. 2018).
Often the ultimate goal of such studies is to be able to develop

an effective approach to account for the variation associated
with cell cycle or cell type. To characterize cell cycle phase, a com-
mon strategy in scRNA-seq studies is to first use flow cytometry to
sort and pool cells that are in the same phase, followed by single-
cell sequencing of the different pools (Buettner et al. 2015; Leng
et al. 2015). In this common study design, cell cycle phase is
completely confounded with the technical batch used to process
single-cell RNA. This design flaw can inflate expression differences
between the pools of cells in different cell cycle phases, resulting in
inaccurate estimates of multigene signatures of cell cycle phase.
When cells are not sorted before sequencing, cell cycle phase is
typically accounted for by classifying the cells into discrete states
based on the expression level of a few known markers (Butler
et al. 2018).

Regardless of whether or not cells are sorted, all single-cell
studies to date have accounted for cell cycle by using the standard
classification of cell cycle phases, which is based on the notion
that a cell passes through a consecutive series of distinct phases
(G1, S, G2, M, and G0) marked by irreversible abrupt transitions.
This standard definition of cell phases, however, is based on phys-
iological observations and low-resolution data.

The traditional approach to classify and sort cells into distinct
cell cycle states relies on a few known markers and quite arbitrary
gating cutoffs.Most cells of any given nonsynchronized culture do
not, in fact, show an unambiguous signature of being in one of the
standard discrete cell cycle phases (Ingolia and Murray 2004;
Pauklin and Vallier 2013; Kowalczyk et al. 2015). This makes intu-
itive sense: Although from a physiological perspective, transitions
between cell cycle states can be clearly defined (the DNA is either5These authors contributed equally to this work.
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being replicated or not; the cell is either dividing or not), this is not
the case when we try to define the cell states using molecular data.
Indeed, we do not expect the gene expression signature of cell state
transitions to occur in abrupt steps but rather to be a continuous
process. High-resolution single-cell data can provide a quantitative
description of cell cycle progression and thus can allow us tomove
beyond the arbitrary classification of cells into discrete states.

From an analysis perspective, the ability to assign cells to a
more precise point on the cell cycle continuum could capture
fine-scale differences in the transcriptional profiles of single cells
—differences that would be masked by grouping cells into discrete
categories. Our goal here is therefore to study the relationship be-
tween cell cycle progression and gene expression at high resolu-
tion in single cells, without confounding cell cycle with batch
effects as previously performed (Buettner et al. 2015; Leng et al.
2015). To do so, we used fluorescent ubiquitination cell cycle indi-
cators (FUCCI) (Sakaue-Sawano et al. 2008) to measure cell cycle
progression, and scRNA-seq to measure gene expression in in-
duced pluripotent stem cells (iPSCs) from six Yoruba individuals
from Ibadan, Nigeria (YRI). To avoid the confounding of cell cycle
with batch, we did not sort the cells by cell cycle phase before we
collected the RNA-seq data. Instead, we measured FUCCI fluores-
cence intensities on intact single cells that were sorted into the
C1 Fluidigm plate before the preparation of the sequencing librar-
ies.We also used a balanced incomplete block design to avoid con-
founding individual effects with batch effects. By using these data,
we developed an analysis approach to characterize cell cycle pro-
gression on a continuous scale. We also developed a predictor of
cell cycle progression in the iPSCs based
on the scRNA-seq data. Our experimental
and analytical strategies can help future
scRNA-seq studies to explore the com-
plex interplay between cell cycle progres-
sion, transcriptional heterogeneity, and
other cellular phenotypes.

Results

Study design and data collection

We generated FUCCI-iPSCs using six
YRI iPSC lines (for details, see Methods)
that we had characterized previously
(Banovich et al. 2018). FUCCI-expressing
iPSCs constitutively express two fluores-
cent reporter constructs transcribed
from a shared promoter (Sakaue-Sawano
et al. 2008, 2017). Reporters consist
of either EGFP or mCherry fused to
the degron domain of GMNN (geminin
DNA replication inhibitor) or CDT1
(chromatin licensing and DNA replica-
tion factor 1). Because of their precisely
timed and specific regulation by the
ubiquitin ligases APC/C and SCF,
GMNN and CDT1 are expressed in an in-
verse pattern throughout the cell cycle.
Specifically, GMNN accumulates during
S/G2/M and declines as the cell enters
G1, whereas CDT1 accumulates during
G1 and declines after the onset of S
phase. Thus, FUCCI reporters provide a

way to assign cell cycle phase by tracking the degradation of
EGFP-GMNN and mCherry-CDT1 through the enzymatic activity
of their corresponding regulators, APC/C and SCF.

We collected FUCCI fluorescence images (EGFP-GMNN and
mCherry-CDT1) and scRNA-seq data from the same single cells us-
ing an automated system designed for the Fluidigm C1 platform
(see Methods) (Fig. 1). After image capture, we prepared scRNA-
seq libraries for sequencing using a SMARTer protocol adapted
for iPSCs (Tung et al. 2017). To minimize bias caused by batch ef-
fects (Tung et al. 2017; Hicks et al. 2018), we used a balanced in-
complete block design in which cells from unique pairs of iPSC
lines were distributed across 15 96-well plates on the C1 platform
(for our C1 study design, see Supplemental Fig. S1).We also includ-
ed data from one additional plate (containing individuals
NA18855 and NA18511), which we collected as part of a pilot
study in which we optimized our protocols. In total, we collected
data from 1536 scRNA-seq samples distributed across 16 C1 plates.

scRNA-seq

We applied quality metrics previously described by Tung et al.
2017 to determine criteria for including high-quality scRNA-seq
samples (for details, see Supplemental Fig. S2 andMethods). In ad-
dition, we used DAPI staining to help determine the number of
single cells captured in each C1 well. This approach excludes any
scRNA-seq samples containing cells undergoing mitosis, broken
cells, or more than one cell. After quality control, we retained
RNA-seq data from 888 single-cell samples, with a range of 103

Figure 1. Overview of study design. We collected two types of data from the same single cells using
FUCCI-expressing iPSCs: in situ fluorescence images and scRNA-seq. After quality control, we obtained
888 single cells for which we had high-quality RNA-seq data. We computed two FUCCI scores for
each cell by individually summing the EGFP (green) and mCherry (red) intensities in a fixed cell area
(100 ×100 pixels), correcting for background noise outside the defined cell area, and then taking the
log10 transformation of the sum of corrected intensities. In the bottom right scatter plot, we show the
FUCCI scores for the 888 high-quality single-cell samples, namely, mCherry and EGFP log10 sum inten-
sities after background noise correction. Finally, we standardized the molecule counts to counts per mil-
lion (CPM) and transformed the data per gene to a standard normal distribution.
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to 206 cells from eachof the six individuals (see Supplemental Figs.
S3, S4).We standardized themolecule counts to counts permillion
(CPM) and retained 11,040 genes with CPM 1 or higher in order
to evaluate as many genes as possible. This resulted in a mean
gene detection rate of 70% across cells (standard deviation of
25%, no significant difference between the six cell lines) (see
Supplemental Fig. S3). Finally, we quantile-normalized the expres-
sion levels across all single-cell samples to a standard normal distri-
bution for each gene.

We used principal components analysis (PCA) to assess the
global influence of technical factors on expression, including
plate, individual, and read depth (see Supplemental Fig. S5). The
primary source of sample variation in our data was the proportion
of genes detected (>1 log2 CPM; adj. R-squared=0.39 for PC1; 0.25
for PC2), consistent with results from previous studies (Hicks et al.
2018).We found that the proportion of genes detected in our sam-
ples showed a stronger correlation with the number of reads
mapped (adj. R-squared=0.32) than with plate (adj. R-squared=
0.01) or individual (adj. R-squared=0.09). Thus, we confirmed
that further statistical adjustment to account for batch effects
will not yield noticeably different results. This shows that our
use of a balanced incomplete block designwas an effective strategy
to minimize the effects of confounding technical variables.

Quantifying continuous cell cycle phase using FUCCI intensities

Proceedingwith the 888 single cells for whichwehad high-quality
RNA-seq data, we turned our attention to the corresponding
FUCCI data. For each cell, we defined a fixed cell area (100×100
pixels) for the EGFP-GMNN and mCherry-CDT1 images. This al-
lowed us to account for differences in cell size. We computed
two FUCCI scores for each cell to assign cell cycle phase. These
scores sum up the EGFP/mCherry intensities in the fixed cell
area after correcting for background noise outside the defined
cell area (for more details, see Methods).

Because images were captured one plate at a time, we scanned
the data for evidence of batch effects. We found mean FUCCI
scores to be significantly different between plates (F-test P-value
<2 ×10−16 for both EGFP andmCherry) (for comparisons between
C1 plates, see Supplemental Fig. S6; for comparisons between the
six cell lines, see Supplemental Fig. S7). We hence applied a linear
model to account for plate effects on FUCCI scores without remov-
ing individual effects (FUCCI score∼plate+ individual). Figure 1C
shows the relationship between EGFP and mCherry scores after
batch effect correction.

FUCCI intensities are commonly used to sort cells into dis-
crete cell cycle phases. For example, cells expressing EGFP-
Geminin in the absence of mCherry-CDT1 would traditionally
be assigned to G2/M, cells with the opposite pattern of expression
would be assigned to G1, and cells expressing equal amounts of
EGFP-GMNN and mCherry-CDT1 would be assigned to the S/G2
transition (Sakaue-Sawano et al. 2008). As a representative of this
approach, we applied partition around medoids (PAM) (Kaufman
and Rousseeuw 1990) to FUCCI scores to assign single-cell samples
to G1, S, and G2/M phase (G1, 384 cells; S, 172 cells; G2/M, 332
cells) (see Supplemental Fig. S8). Henceforth, the classification ob-
tained from PAM is referred to as PAM-based classification.

However, FUCCI intensities are known to be continuously
distributed within each phase (Sakaue-Sawano et al. 2008), sug-
gesting that they could also be used to quantify cell cycle progres-
sion through a continuum (conventionally represented using
radians in the range [0, 2π]).With this inmind, we ordered the cor-

rected FUCCI scores by phase and plotted themon a unit circle, us-
ing the co-oscillation of mCherry-CDT1 and EGFP-GMNN to infer
an angle, or “FUCCI phase,” for each cell (see Methods) (Fig. 2A).
For example, Figure 2B shows that as a cell progresses through
π/2 to π radians, mCherry-CDT1 intensity decreases from its
maximum,whereas EGFP-GMNN intensity changes fromnegative
to positive, suggesting progression through G1/S transition.
Overall, FUCCI phase explains 87% of variation inmCherry inten-
sity and 70% of variation in EGFP intensity.

We next sought to identify genes whose expression levels
vary in a cyclic way through the cell cycle, as captured by
FUCCI phase. Specifically, we used a nonparametric smoothing
method, trend filtering (Tibshirani 2014), to estimate the change
in expression for each gene through the cell cycle. We refer to
these estimates as the “cyclic trend” for each gene. We used a per-
mutation-based test (see Methods) to assess the significance of
each inferred cyclic trend and ranked the genes by statistical sig-
nificance. Results showed that genes with a significant cyclic trend
were strongly enriched for known cell cycle genes. By using a
curated set of 622 cell cycle genes used by Macosko et al. (2015),
a subset of genes annotated by Whitfield et al. (2002; see
Supplemental File S1), we found odds ratio = 25.79 for the 101 sig-
nificant cyclic genes, 31 for the top five significant cyclic genes, 30
for the top 50 genes, and 27 for the top 100 genes (Fisher’s exact
test P-value<0.001) (for the gene list, see Supplemental File S2; for
cyclic trends of known cell cycle genes, see Supplemental Fig. S9).
These results provide strong independent support that the in-
ferred FUCCI phase is indeed meaningfully capturing cell cycle
progression.

For illustration, Figure 2C shows the cyclic trends for the top
five significant cyclic genes: CDK1, UBE2C, TOP2A, H4C5, and
H4C3. These genes have all been previously identified as cell cycle
genes in synchronization experiments of HeLa cells (Whitfield
et al. 2002) and in scRNA-seq studies of FUCCI-sorted cells (Leng
et al. 2015). Cyclin dependent kinase 1 (CDK1; previously known
as CDC2) promotes the transition to mitosis. DNA topoisomerase
II alpha (TOP2A) controls the topological state of DNA during
cell state transitions. Ubiquitin conjugating enzyme E2 C
(UBE2C) is required for the degradation of mitotic cyclins and
the transition to G2 stage. Finally, the Histone gene cluster 1, H4
histone family (H4C3 and H4C5) are replication-dependent his-
tone genes expressed mainly during S phase.

Predicting FUCCI phase from gene expression data

Our supervised approach

Building on these results, we developed a statistical method for
predicting continuous cell cycle phase from gene expression
data. The intuition behind our approach is that given a set of la-
beled training data—cells for which we have both FUCCI phase
(Y) and scRNA-seq data (X), our trend-filtering approach learns
the cyclic trend for each gene (i.e., p(X|Y)). We combine this
with a prior for the phase (p(Y)) using the idea of a “naive
Bayes” predictor to predict FUCCI phase from gene expression
(i.e., p(Y |X)). Given scRNA-seqdata,X, on any additional cell with-
out FUCCI data, we can then apply this method to predict its
FUCCI phase, Y (for more details, see Methods). Henceforth, our
continuous predictor is referred to as peco.

To assess the performance of our predictor, we applied sixfold
cross-validation. In each fold, we trained our predictor on cells
from five individuals and tested its performance on cells from
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the remaining individual. This allowed us to assess the ability of
our predictor to generalize to individuals not seen in training.
We measured the prediction error as the difference between the
predicted phase and the measured FUCCI phase (as a percentage
of the entire cycle, 2π). Note that because phases lie on a circle,
the maximum possible error is 50% of the circle, and the expected
error from random guessing would be 25% of the circle. By using
our approach, on average, we were able to predict a cell’s position
on the cell cycle continuum to within 14% of the entire cycle (i.e.,
0.28π between inferred phase and FUCCI phase).

Figure 3A shows the performance of predictors built using be-
tween two and 50 genes. The genes were ranked and included in
the predictors according to the significance of their cyclic trend.
We observed that the mean prediction error was robust to the
number of genes included in the predictor and that the simplest
predictor using only the top five genes (CDK1, UBE2C, TOP2A,
H4C5, H4C3) performed just as well as the predictors with more
genes.

We also checked the robustness of our predictors for datawith
lower effective sequencing depth compared with the C1 platform
(e.g., Drop-seq and 10x Genomics). Specifically, we repeated the
analysis above after thinning the test data (samplemolecule count
in the unthinned data was 56,724±12,762) by a factor of 2.2 (sam-

ple molecule count 25,581±15,220) and 4.4 (sample molecule
count 13,651±13,577). Results in Supplemental Figure S10, C
and D, show that the predictors based on fewer genes (e.g., five
to 15) were relatively robust to this thinning; predictors based on
more genes showed worse performance in the lower-count data.
These results were somewhat expected, as we showed in the
unthinned data (Supplemental Fig. S10A) that adding genes with
weak signals increased prediction error.

Comparisons with existing methods on our data

Several methods exist for making inferences on cell cycle from
RNA-seq data. Here we consider twomethods that attempt to infer
a “cyclic ordering” of cells from RNA-seq data in an unsupervised
way (Oscope by Leng et al. [2015], reCAT by Liu et al. [2017]) and
twomethods that assign cells to discrete cell cycle states (Seurat by
Butler et al. [2018], Cyclone by Scialdone et al. [2015]). Coming to
concrete conclusions that one analytic method is better than an-
other is difficult in most settings and is particularly difficult
in settings in which, as here, gold standard data are hard to
come by. It is further complicated here by the fact that the meth-
ods differ in their precise goals (e.g., discrete vs. continuous assign-
ments, supervised vs. unsupervised assignments). Nonetheless, we

A

C

B

Figure 2. Characterizing cell cycle phase using FUCCI fluorescence intensities. (A) We inferred FUCCI phase (angles in a circle) based on EGFP and
mCherry scores. The points in center correspond to the 888 quality single-cell samples. The circle histogram shows the FUCCI phase distribution corre-
sponding to the EGFP (y-axis) and mCherry (x-axis) scores. For example, we inferred θ1 based on the cell’s FUCCI scores, namely, inverse tangent function
of (EGFP/mCherry). (B) We ordered FUCCI scores of EGFP and mCherry by FUCCI phase to visualize the co-oscillation of EGFP and mCherry along the cell
cycle. Red and green points correspond to EGFP andmCherry scores, respectively. The vertical lines correspond to phase boundaries derived from the PAM-
based classification (G1, 384 cells; S, 172 cells; G2/M, 332 cells). (C) Given the FUCCI phase, we ordered cells along the cell cycle to estimate the cyclic trend
of gene expression levels for each gene. We identified these five genes as the top five cyclic genes in the data: CDK1, UBE2C, TOP2A, H4C5, and H4C3. Each
plot shows the expression levels of 888 single-cell samples and the estimated cyclic trend (orange line). All five genes were previously identified as related to
cell cycle regulation. The vertical lines correspond to phase boundaries derived from the PAM-based classification.
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compared the methods on both our data and on other data sets in
an effort to provide some indication of their differences and
commonalities.

First, we ran the four other methods on our RNA-seq data
from all 888 single cells and compared their results with our
FUCCI data on the same cells.

For the unsupervisedmethods Oscope and reCAT, we first ap-
plied each method to infer an ordering of cells from the RNA-seq
data and then assessed whether the inferred orderings produced
cyclic patterns in the FUCCI scores (which one would expect if
the inferred orderings accurately represented cell cycle). In both
cases, the ordering explained only very little variation in the
FUCCI scores, with Oscope slightly higher than reCAT (Oscope:
13% EGFP, 16% mCherry; reCAT: 4% EGFP, 9% mCherry) (see
Supplemental Fig. S11B,D). In contrast, the inferred phase from
peco explained an average 29% of the variation in EGFP score

and an average of 24% of the variation in mCherry score across
six cell lines (see Supplemental Fig. S12).

For Seurat and Cyclone, we compared the discrete classifica-
tions (G1 vs. S vs. G2/M) they produced from RNA-seq data with
the corresponding classifications obtained from FUCCI data using
the PAM-based method from Kaufman and Rousseeuw (1990).
Neither the Seurat nor Cyclone classifications agreed well with
the FUCCI data (see Supplemental Fig. S14). Treating the FUCCI re-
sults as a gold standard, Seurat misclassification rates were 78%
(G1), 74% (S), and 43% (G2/M); Cyclone misclassification rates
were 34% (G1), 88% (S), and 31% (G2/M) (Supplemental Fig.
S13A,B).

To directly compare existing methods with our method re-
quires translating results from existing methods into a continuous
predictor of cell cycle phase that is comparable with our continu-
ous predictor. For Oscope/reCAT, we did this by using their cyclic

A

C

B

Figure 3. Inferring cell cycle phase from scRNA-seq data. (A) We applied sixfold cross-validation to test the performance of our predictor. In each fold, we
trained our predictor on cells from five individuals and tested its performance on cells from the remaining individual. The y-axis corresponds to prediction
error (between 0% to 25%, or π/4), and x-axis corresponds to the number of top cyclic genes used in the predictor. The six colored lines correspond to
performances in the six folds, specifically average prediction error among cells in the test samples. Error bars, SEs. (B) Performance comparison of peco built
from the top five cyclic genes (CDK1,UBE2C, TOP2A,H4C5, andH4C3) withOscope (Leng et al. 2015) and recAT (Liu et al. 2017). (C ) Estimated cyclic trend
of top five cyclic genes for samples from cell line NA18511. The rows correspond to prediction results from peco of five genes, Oscope and reCAT. For the
Oscope/reCAT results, we ordered the single-cell samples from NA18511 using the Oscope/reCAT-based predicted phase (based on 888 samples in the
data) and used trendfilter to estimate cyclic trend of gene expression. For the peco results, we ordered the samples according to the predicted phase and
used trendfilter to estimate cyclic trend of gene expression. The colored line corresponds to the estimated cyclic expression level along the predicted phase.
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ordering to assign cells to equidistant points on the unit circle. For
Seurat/Cyclone, we built a continuous predictor based on the
Seurat/Cyclone phase-specific scores. Specifically, we applied the
same approach used to derive FUCCI phase to transform the two
Seurat scores and the three Cyclone scores to cell cycle angles
(for an example of Seurat score transformation, see Supplemental
Fig. S14).

This comparison will likely favor our predictor because exist-
ingmethods were not optimized for continuous phase predictions
(indeed, no method other than ours has been so optimized). Also
our predictor was trained on the same cell types that are being used
for assessment. With these caveats in mind, on these data our pre-
dictor outperformed predictors built from existing methods (Fig.
3B), with lower prediction error than all the other methods on
all cell lines (and in most cases significantly lower at P-value<
0.05) (see Supplemental Figs. S15, S16). Overall, the mean predic-
tion error of our predictor across the six cell lines was ∼60% of the
Seurat/Oscope/reCAT-based predictors and 80% of the Cyclone-
based predictor.

Visual comparisons of the results from the different methods
on the top five cyclic genes used by peco (see Fig. 3C;
Supplemental Fig. S17) suggest that on these data Oscope agrees
most closely with peco than other methods; in particular, results
frompeco andOscope show a clearer cyclic trend in the expression
levels of H4C5 and H4C3 than do other methods.

Comparisons on data from Leng et al.

Leng et al. (2015) collected scRNA-seq and FUCCI data on human
embryonic cells (hESCs). The cells were transfected with the same
FUCCI reporters used in our study (in fact, coauthor Dr. Chris
Barry generously gifted us their plasmid). However, in contrast
to our study, cells were first sorted into discrete cell cycle phases
based on the FUCCI data (G1, S, and G2/M, henceforth referred
to as “gating-based classification”), and then cells in each phase
were prepared on different 96-well C1 plates before RNA-seq. In
contrast to our data, this design means that plate effects are con-
founded with cell cycle phase, which is far from ideal. In addi-
tion, the sorted cells are not a random sample of all cells across
all cell cycle states but rather represent cells whose FUCCI data
place them confidently into one of three discretely defined cell
cycle states. These issues were major motivations for our own
data collection efforts. However, because this is one of the very
few available single-cell data sets with RNA-seq and FUCCI
data on the same cells, we nonetheless compared methods on
these data.

We analyzed the 247 FUCCI-expressing hESC single-cell sam-
ples from Leng et al. (2015) that passed quality control: 91 G1
phase, 80 S phase, and 76 G2/M phase. Figure 4A shows the aver-
age gene expression levels of top four cyclic genes inG1, S, andG2/
M phase. We applied peco and the four existing methods to these
data (for pecowe used only the top four cyclic genes becauseH4C5
was not mapped in these data).

By comparing results from the three continuous assignment
methods (peco, Oscope, and reCAT), we found that the orderings
from reCAT agree most closely with the gating-based classification
(Fig. 4B). Results from peco also show strong agreement with gat-
ing-based classification, but the S-phase cells are spread out on ei-
ther side of the G2/M cells, rather than only preceding them as in
the reCAT results. In contrast, the ordering fromOscope shows less
agreementwith the gating-based classification. (Quantifying these
qualitative statements is not straightforward because it is not obvi-

ous how to quantitatively compare a continuous cyclic ordering
with a discrete classification; nonetheless, we believe the qualita-
tive patterns are clear in Fig. 4B.)

Turning to the discrete classification methods (Seurat and
Cyclone), in these data the Cyclone discrete assignments show
much better agreement with the gating-based patterns than
Seurat (Cyclone misclassification rates: 0% G1, 2.5% S, and 0%
G2/M; Seurat misclassification rates: 89% G1, 25% S, and 21%
G2/M) (see Fig. 4C).

Overall, our results suggest the need for more research and
better data to quantify the accuracy and relative performance of
the different available methods, including ours.

Discussion

In this study, we sought to characterize the effects of cell cycle pro-
gression on gene expression data from single cells (iPSCs), by joint-
ly measuring both cell cycle phase (via FUCCI) and expression (via
scRNA-seq) from the same cells. Our study differs in two key ways
fromprevious similar studies. First, unlike themost commonly cit-
ed previous studies (Buettner et al. 2015; Leng et al. 2015), our ex-
perimental design avoided confounding batch/plate effects with
cell cycle phase. In these previous studies, cells were sorted by fluo-
rescence activated cell sorting (FACS) by discrete cell cycle phase
and loaded onto different C1 plates,making it difficult to decouple
batch effects from cell cycle effects (Hicks et al. 2018). Second, our
study focused on characterizing cell cycle progression in a contin-
uum rather than as abrupt transitions between discrete cell cycle
phases.

We found that a simple predictor, based on five genes with a
cyclic expression pattern (CDK1, UBE2C, TOP2A, H4C3, H4C5),
was sufficient to predict cell cycle progression in our data and
that adding information from other genes did not improve pre-
diction accuracy. That these particular genes should be helpful
predictors of cell cycle is somewhat expected, as they have
been reported as potential markers in previous studies, including
synchronization experiments in HeLa cells (Whitfield et al. 2002)
and yeast (Spellman et al. 1998), and in previous scRNA-seq stud-
ies of FUCCI-sorted hESCs (Leng et al. 2015). However, our find-
ing that additional genes did not further improve prediction
accuracy is unexpected and contrasts with the common use of
dozens of genes for cell cycle prediction (e.g., Seurat by Butler
et al. 2018). Of course, our results do not imply that only these
five genes are associated with cell cycle progression in iPSCs,
only that additional genes provide redundant information in
our data.

As noted in the Introduction, one reason to estimate cell cycle
from RNA-seq data is to control for it when performing other
downstream tasks. Although our methods provide a way to esti-
mate cell cycle information, they do not dictate a specific way to
control for cell cycle in downstream analyses. Indeed, how best
to do this remains an interesting and open question, and the
easewithwhich it can be achievedwill depend on the downstream
analyses being performed.

For example, if the downstream analyses rely on Gaussian
models for transformed single-cell data (e.g., Ji and Ji 2016;
Kiselev et al. 2017), then itmay suffice to first regress out the effects
of cell cycle from the transformed data (e.g., using a nonparametric
regressionmethod such as trend filtering to allow for the nonlinear
trends that must occur in any cyclic phenomenon) before apply-
ing downstream analyses to the residuals. On the other hand, if
the downstream methods rely on explicit models for count data
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(e.g., Dey et al. 2017), then controlling for cell cycle may be more
complicated and require further methodological development.
However, we note that these issues are not unique to our approach:
Controlling for cell cycle within count-based analyses poses addi-
tional methodological challenges for whatever method is used to
estimate cell cycle.

One important question is how well our methods will gener-
alize beyond the data collected here. We believe that our methods
should be useful in other iPSC studies because we were able to ef-
fectively predict cell cycle progression in cells from one individual
using scRNA-seq data from five other individuals (i.e., our ap-
proach worked well in out-of-sample prediction assessment).

Figure 4. Applying peco and existing tools to data from Leng et al. (2015). The single-cell samples in this datawere sorted into G1, S, andG2Mphase. (A)
We plot the distribution of gene expression for the top four cyclic genes per cell cycle phase. (B) We compare predicted phases based on peco, Oscope, and
reCAT. Rows correspond to prediction results based on the three methods. Specifically, we sort the single-cell samples according to the predicted phase,
and we color the sample points according to the gated phase. For example, in the first row, we show that the peak expression profile of peco prediction is
consistent with results based on gating. The orange line corresponds to the cyclic trend of expression levels. (C) We compare the phase assignment based
on gating with Seurat/Cyclone-based classification.

Continuous cell cycle phase and scRNA-seq
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However, further data are required to assess howwell our methods
generalize to studies involving different cell types than the iPSCs
studied here.

Single-cell omics technology allows us to characterize cellular
heterogeneity at an ever-increasing scale and high resolution. We
argue that the standard way of classifying biological states in gene-
ral, and cell cycle in particular, to discrete types is no longer suffi-
cient for capturing the complexities of expression variation at the
cellular level. Our study provides a foundation for future work to
characterize the effect of the cell cycle at single-cell resolution
and to study cellular heterogeneity in single-cell expression
studies.

Methods

FUCCI-iPSC cell lines and cell culture

Six previously characterized YRI iPSCs (Banovich et al. 2018), in-
cluding three females (NA18855, NA18511, and NA18870) and
three males (NA19098, NA19101, and NA19160), were used to
generate FUCCI iPSC lines by the PiggyBAC insertion of a cassette
encoding an EEF1A1 promoter-driven mCherryCDT1-IRES-
EgfpGMNN double transgene (the plasmid was generously gifted
by Dr. Chris Barry) (Sakaue-Sawano et al. 2008; Leng et al. 2015).
Transfection of these iPSCs with the plasmid and Super PiggyBac
transposase mRNA (Transposagen) was performed using the hu-
man stem cell nucleofector kit 1 (VAPH-5012) by Nucleofector
2b device (AAB-1001, Lonza) according to the manual. Single-
cell suspension for the transfection was freshly prepared each
time using TrypLETM select enzyme (1X) with no phenol red
(Thermo Fisher Scientific) to maintain cell viability. For standard
maintenance, cells were split every 3–4 d using cell release solution
(0.5 mM EDTA and NaCl in PBS) at the confluence of ∼80%.

After two regular passages on the six-wells, the transfected
cells were submitted to FACS for the selection of double-positive
(EGFP and mCherry) single cells. To increase the cell survival after
FACS, Y27632 ROCK inhibitor (Sigma-Aldrich) was included in E8
medium (Life Technologies) for the first day. FACS was performed
on the FACSAria IIIu instrument at University of Chicago Flow
Cytometry Facility. Up to 12 individual clones from each of the
six iPSC lines were maintained in E8 medium on Matrigel-coated
tissue culture plates with daily media feeding at 37°C with 5%
(vol/vol) CO2, same as regular iPSCs. After another 10 passages
of the FUCCI-iPSCs, a second round of FACSwas performed to con-
firm the activation of the FUCCI transgene before single-cell col-
lection on the C1 platform.

Single-cell capture and image acquisition

Single-cell loading, capture, and library preparations were per-
formed following the Fluidigm protocol (PN 100-7168) and as de-
scribed by Tung et al. (2017). Specifically, the reverse transcription
primer and the 1:50,000 Ambion ERCC RNA spike-in mix 1
(Thermo Fisher Scientific) were added to the lysis buffer, and the
template-switching RNA oligos that contain the UMI (6-bp ran-
dom sequence) were included in the reverse transcription mix. A
cell mixture of two different YRI FUCCI-iPSC lines was freshly pre-
pared using TrypLE for 3 min at 37°C. Cell viability and cell num-
ber were measured to have an equal number of live cells from the
two FUCCI-iPSC lines. In addition, single-cell suspensions were
stained with 5 µM Vybrant DyeCycle violet stain (Thermo Fisher
Scientific) for 5min at 37°C right before adding the C1 suspension
buffer.

After the cell sorting step on the C1 machine, the C1 IFC
microfluidic chip was immediately transferred to JuLI stage

(NanoEnTek) for imaging. The JuLI stage was specifically designed
as an automated single-cell observation system for C1 IFC vessel.
For each cell capture site, four images were captured, including
bright field, DAPI, EGFP, andmCherry. The total imaging time, to-
gether with the setup time, was ∼45 min for one 96-well C1 IFC.
The JuLI stage runs a series of standardized steps for each C1 IFC
and for each fluorescence channel, separately. First, the camera
scans the four corners of the C1 IFC and sets the exposure setting
accordingly. Then, the camera proceeds to capture images of each
C1 well.

Library preparation and read mapping

For sequencing library preparation, tagmentation and isolation of
50 fragments were performed as described in our previous work
(Tung et al. 2017). The sequencing libraries generated from the
96 single-cell samples of each C1 chip were pooled and then se-
quenced in two lanes on an IlluminaHiSeq 2500 instrument using
TruSeq SBS kit v3-HS (FC-401-3002).

We mapped the reads with Subjunc (Liao et al. 2013) to a
combined genome that included human genome GRCh37,
ERCC RNA spike-in mix 1 (Thermo Fisher Scientific), and the
mCherry and EGFP open reading frames from the FUCCI plasmid
(we included the latter to ensure that the transgenewas being tran-
scribed). Next, we extracted the UMIs from the 5′ end of each read
(premapping) and deduplicated the UMIs (postmapping) with
UMI-tools (Smith et al. 2017). We counted the molecules per pro-
tein-coding gene (Ensembl 75, February 2014) with featureCounts
(Liao et al. 2014). Note that we observed quantitatively similar re-
sults when using genome build GRCh38 and gene annotations
from Ensembl 96 (April 2019) (Supplemental Fig. S18). Last, we
matched each single cell to its individual of origin with
verifyBamID (Jun et al. 2012) by comparing the genetic variation
present in the RNA-seq reads to the known genotypes.

Image analysis and FUCCI phase quantification

We analyzed images captured for each C1 well in the EGFP,
mCherry, and DAPI channels. We used the DAPI images to identi-
fy individual nuclei location. This allowed us to identify the num-
ber of cells captured in each C1 well and to align the EGFP and
mCherry cell images based on the nucleus location. EBImage pack-
age in R/Bioconductor (Pau et al. 2010) was used for image process-
ing and analysis. First, we normalized pixel intensities in each
DAPI image and applied a 10-pixel median filter. Next, we gener-
ated a nuclearmask using the EBImage adaptive thresholding algo-
rithm.We filled holes in the resulting binary image and smoothed
borders with a single round of erosion and dilation. Finally, we
identified individual nuclei using the EBImage bwlabel function.
The code that implements these methods is available at GitHub
(https://raw.githubusercontent.com/jdblischak/fucci-seq/master/
code/create_mask.R).

To score the fluorescence intensity signals in each channel,
we defined a 100-by-100-pixel cell area for all channel images cen-
tered on the nucleus centroid location. We estimated the back-
ground florescence in each channel image by taking the median
intensity value of all pixels outside the defined cell area. We
then subtracted this background intensity from intensity values
of pixels located within the defined cell area. Finally, we summed
and log-transformed the background-removed fluorescence inten-
sities in the defined cell area. For each cell, this yielded aDAPI score
and two FUCCI scores (mCherry and EGFP scores) summarizing
fluorescence intensities of mCherry-CDT1 and EGFP-GMNN.

We tested batch effects on FUCCI andDAPI scores using anal-
ysis of variance (score∼plate + individual). Type III sum of squares
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were computed to test for C1 plate effect while controlling for in-
dividual effect and vice versa. To adjust for C1 plate effect, we sub-
tracted the marginal means of plate effect from FUCCI and DAPI
scores, controlling for individual effect. Supplemental Figure S19
shows the relationship between the corrected FUCCI and DAPI
scores in the 888 single-cell samples.

For FUCCI phase quantification, we used the corrected EGFP
and mCherry scores—log10 sum of fluorescence intensity in the
100×100 defined cell area after background and C1 plate effect
correction—to infer an angle for each cell on a unit circle, where
the angle is the inverse tangent function of (EGFP/mCherry). We
refer to these angles as FUCCI phase, namely, the estimated cell cy-
cle phase based on FUCCI intensities.

Finally, we applied PAM from Kaufman and Rousseeuw
(1990) to FUCCI scores to assign single-cell samples to G1, S, and
G2/M phases. DAPI is also commonly used to sort single cells
into discrete cell cycle phases based on their relative quantification
of cellular DNA content (Krishan 1975; Roukos et al. 2015). In our
data, we observed substantial plate-to-plate variability in the range
of DAPI scores both before and after batch correction (see
Supplemental Fig. S20). To avoid batch bias in assigning discrete
cell cycle phases, the DAPI results were not used in the cell cycle
analysis in our data.

Filtering and normalization of gene expression data

We used DAPI staining results to inform our RNA-seq quality con-
trol analysis in two steps. First, we used DAPI staining results to
classify each C1 well into empty or nonempty wells. We then
used data from the empty wells to determine filtering criteria for
the nonemptywells (see Supplemental Fig. S2): numberofmapped
reads, percentage of unmapped reads, percentage of ERCC reads,
and percentage of genes detected to have at least one read.
Second, we determined the number of cells captured in each C1
well using linear discriminant analysis (LDA) (for our previous
work for the rationale, see Tung et al. 2017). We fitted two LDA
models: (1) number of cells per well∼ gene molecule count + con-
centration of cDNA amplicons, and (2) number of cells per well∼
read-to-molecule conversion efficiency of ERCC spike-in controls
+ read-to-molecule conversion efficiency of endogenous genes.
We used DAPI staining results to determine the number of cells
captured in each well. Supplemental Figure S21 shows the results
of our LDA analysis. These scRNA-seq sample quality control steps
have been described in details by Tung et al. (2017).

In summary, we included single-cell samples that satisfy the
following criteria:

• Only one cell was observed per well.
• At least one molecule mapped to EGFP (to ensure the transgene
is transcribed).

• The individual assigned by verifyBamIDwas included on the C1
chip.

• At least 1,309,921 reads mapped to the genome.
• There were <44% unmapped reads.
• There were <18% ERCC reads.
• There were at least 6292 genes with at least one read.

After sample filtering, we excluded genes based on the follow-
ing criteria.

• Overexpressed genes with more than 64 molecules across the
samples.

• Lowly expressed genes with sample average of CPM less than
two.

In total, we collected 20,327 genes from 1536 scRNA-seq samples
after read mapping. After the quality filtering steps described

above, we were left with 888 samples and 11,040 genes. We stan-
dardized the molecule counts to CPM using per-sample total mol-
ecule count prefiltering from the 20,327 genes.

Estimating cyclic trends in gene expression data

To estimate the cyclic trend of gene expression, we ordered the sin-
gle-cell samples by the measured FUCCI phase and applied non-
parametric trend filtering. We quantile-normalized CPM values
of each gene to a standard normal distribution. This way, the sam-
ples with zero molecule count were assigned the lowest level of
gene expression. We applied quadratic (second order) trend filter-
ing using the trendfilter function in the genlasso package
(Tibshirani 2014). The trendfilter function implements a nonpara-
metric smoothing method that chooses the smoothing parameter
by cross-validation and fits a piecewise polynomial regression. In
more specifics, the trendfilter method determines the folds in
cross-validation in a nonrandom manner. Every kth data point
in the ordered sample is placed in the kth fold, so the folds contain
ordered subsamples. We applied fivefold cross-validation and
chose the smoothing penalty using the option lambda.1se: among
all possible values of the penalty term, the largest value such that
the cross-validation standard error is within one standard error of
the minimum. Furthermore, we desired that the estimated expres-
sion trend be cyclical. To encourage this, we concatenated the or-
dered gene expression data three times, with one added after
another. The quadratic trend filtering was applied to the concate-
nated data series of each gene. The estimates from themiddle series
were extracted and taken as the estimated cyclic trend of each
gene. By using this approach, we ensured that the estimated trend
be continuous at the boundaries of the ordered data: The estimates
at the beginning always meet the estimates at the end of the or-
dered data series.

We used a permutation-based test to assess the significance of
each inferred cyclic trend. For each gene, we computed the propor-
tion of variance explained (PVE) by the inferred cyclic trend in the
expression levels. Then, we constructed an empirical null distribu-
tion of PVE. We randomly chose a gene with <10% of the cells ob-
served as undetected (CPM≥1) and permuted the expression
levels in the selected gene 1000 times. Each time, we fit trendfilter
and computed PVE of the cyclic trend. We found that the signifi-
cance (P-value) of the inferred cyclic trend was more conservative
when the empirical null was based on a gene with low proportion
of undetected cells compared with when the empirical null was
based on a gene with high proportion of detected cells (>80%).
By using these empirical P-values, we were able to assess signifi-
cance of the cyclic trends for each gene.

Predicting quantitative cell cycle phase of single cells: a supervised

learning approach

Our goal was to build a statistical method to predict continuous
cell cycle phase from gene expression data. We implemented the
method in a two-step algorithm. In the first step, we trained our
predictor on data from five individuals and learned the cyclic trend
for each gene using trendfilter. In the second step, we applied the
predictor and used the gene-specific trends to compute the likeli-
hood of gene expression levels in the test data for each cell. We
evaluated the likelihood on grid points selected along a circle (de-
fault to 100 equally spaced cell cycle phases). Finally, we assigned
each cell in the test data to a grid point (phase) at which its likeli-
hood reaches the maximum. Because we independently assigned
each cell based on its gene expression levels, prediction accuracy
does not depend on the number of cells in the test data.

Continuous cell cycle phase and scRNA-seq
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Notations

• (Ytrain
n , û train

n )n=1, ...,N : For each individual cell n in the training
sample, we denote Ytrain

n = (Ytrain
1n , . . . , Ytrain

Gn )′ as the quantile-
normalized gene expression vector, and (û train

n )n=1, ...,N as
the corresponding FUCCI-based cell cycle phases. The
single-cell samples are ordered in FUCCI time, where
0 ≤ û train

1 , · · · û train
n , 2p.

• (Ytest
m , û test

m )m=1, ...,M : For each cell m in the test data,
(Ytest

1m , . . . , Ytest
Gm )′ denotes the log2 normalized gene expression

vector. The method estimates û test
m the cell cycle phase for each

single-cell sample m.
• (f̂ g , ŝg )g=1, ...,G: By using the training data, we estimate a function
f̂g for each gene describing the cyclic trend of gene expression
levels in FUCCI phase. f is a cyclic function assumed to be con-
tinuous at zero and 2π.

Our approach to predicting quantitative cell cycle phase is re-
lated tomethods that use gene expression data to predict circadian
time in humans (e.g., Hughey et al. 2016; Braun et al. 2018).
Among these methods, that of Hughey et al. (2016) is perhaps
the most similar to ours, but it uses smoothing splines instead of
trend filtering to estimate cyclic trends and uses a more complex
method to combine information across genes.

Methods

1. Estimate (f̂g , ŝg ) using the quantile-normalized expression vec-
tor of gene g.
a. Sort the expression vector Y train

g = (Ytrain
g1 , . . . , Ytrain

gN ) of gene
g in ascending order according to the FUCCI phase
(û train

n )n=1, ...,N .
b. For each gene g, fit a piecewise polynomial function f̂g using

trendfilter. (This function uses internal fivefold cross-valida-
tion to determine an appropriate amount of smoothing for
each g).

c. Compute the gene-specific standard error

ŝg =
������������������������������

∑N
n=1 (Ytrain

gn − f̂g (û train
n ))2

√

.

2. Predict (utestm )m=1, ...,M using the test data (Ytest
m )m=1, ...,M .

a. ChooseK discrete and equally spaced cell times between zero
and 2π. For now, we choose K=100, which is pretty large
considering the size of 155 cells in the test sample.

b. Compute the likelihood of Ytest
m at each cell time k:

Lm(k) = L(um = k|Ytest
m , (f̂g (um = k), ŝg )g=1,...,G)

=
∏G

g=1
P(Ytest

gm |f̂g (um = k), ŝg ),

where P(Ytest
gm |f̂g (um = k), ŝg ) � N(f̂g (um = k), ŝg ).

c. Maximize Lm (k) over k=1, …, 100:

û test
m = argmaxk=1,...,100Lm(k).

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) (Edgar et al. 2002) under ac-
cession number GSE121265. We also make the processed data
available at GitHub (https://github.com/jhsiao999/peco-paper)
and https://giladlab.uchicago.edu/wp-content/uploads/2019/02/
Hsiao_et_al_2019.tar.gz. All analysis results, scripts, and data re-
quired to reproduce this work are available at https://gilad.com/
jhsiao999/peco-paper as well as in the Supplemental Code
(Supplemental File S3). The source code is available in an R/

Bioconductor package peco (the development version of peco is
available at https://github.com/jhsiao999/peco).
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