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Objectives: Patients with anterior circulation large vessel occlusion are at high risk of

acute ischemic stroke, which could be disabling or fatal. In this study, we appliedmachine

learning to develop and validate two prediction models for acute ischemic stroke (Model

1) and severity of neurological impairment (Model 2), both caused by anterior circulation

large vessel occlusion (AC-LVO), based on medical history and neuroimaging data of

patients on admission.

Methods: A total of 1,100 patients with AC- LVO from the Second Hospital of Hebei

Medical University in North China were enrolled, of which 713 patients presented

with acute ischemic stroke (AIS) related to AC- LVO and 387 presented with the

non-acute ischemic cerebrovascular event. Among patients with the non-acute ischemic

cerebrovascular events, 173 with prior stroke or TIA were excluded. Finally, 927

patients with AC-LVO were entered into the derivation cohort. In the external validation

cohort, 150 patients with AC-LVO from the Hebei Province People’s Hospital, including

99 patients with AIS related to AC- LVO and 51 asymptomatic AC-LVO patients,

were retrospectively reviewed. We developed four machine learning models [logistic

regression (LR), regularized LR (RLR), support vector machine (SVM), and random forest

(RF)], whose performance was internally validated using 5-fold cross-validation. The

performance of each machine learning model for the area under the receiver operating

characteristic curve (ROC-AUC) was compared and the variables of each algorithm

were ranked.

Results: In model 1, among the included patients with AC-LVO, 713 (76.9%) and 99

(66%) suffered an acute ischemic stroke in the derivation and external validation cohorts,

respectively. The ROC-AUC of LR, RLR and SVM were significantly higher than that of

the RF in the external validation cohorts [0.66 (95% CI 0.57–0.74) for LR, 0.66 (95%

CI 0.57–0.74) for RLR, 0.55 (95% CI 0.45–0.64) for RF and 0.67 (95% CI 0.58–0.76) for

SVM]. In model 2, 254 (53.9%) and 31 (37.8%) patients suffered disabling ischemic stroke
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in the derivation and external validation cohorts, respectively. There was no difference in

AUC among the four machine learning algorithms in the external validation cohorts.

Conclusions: Machine learning methods with multiple clinical variables have the ability

to predict acute ischemic stroke and the severity of neurological impairment in patients

with AC-LVO.

Keywords: anterior circulation large vessel occlusion, acute ischemic stroke, machine learning, prediction model,

neurological impairment

INTRODUCTION

Acute ischemic stroke caused by large vessel occlusion accounts
for more than 40% of cases, ∼80% of which occurs in
the anterior circulation (1). Compared to non-large vessel
occlusion (LVO) acute ischemic stroke (AIS), patients with
anterior circulation large vessel occlusion (AC-LVO) stroke are
considered to be at greater risk of mortality or disability before
endovascular treatment (2). They tend to improve significantly
after mechanical thrombectomy (3, 4). Previously reported
prediction models for AC-LVO stroke such as prehospital
scales (Prehospital Acute Stroke Severity scale, PASS; Cincinnati
Prehospital Stroke Severity Scale, CPSSS; stroke Vision Aphasia
Neglect, VAN; Rapid Arterial Occlusion Evaluation scale RACE
and Field Assessment Stroke Tri-age for Emergency Destination,
FAST-ED) (5–9) that are based on NIHSS, and the recently
proposed model by Philipp Hendrix et al., which combines past
medical history and neurologic examination (10), have focused
on the identification of large vessel occlusion in patients with AIS.
The main clinical purpose of the prediction scores is to identify
which patients with AIS have LVO so that they can be referred
to capable centers for endovascular treatment (EVT). However,
accurate prediction of AIS in patients with AC-LVO remains
a challenge.

Anterior circulation-LVO stroke can be further divided based
on pathogenesis and severity of clinical consequences, into non-
disabling and disabling stroke with the latter frequently resulting
in post-stroke dependence. Nevertheless, no previous studies
have predicted the risk of disabling ischemic stroke in patients
with AC-LVO, which may be useful in treatment decisions
and prevention.

In this study, we developed and validated two models based
on machine learning algorithms with clinical variables, to predict
acute ischemic stroke (Model 1) and severity of neurological
impairment (Model 2) in patients with AC-LVO.

METHODS

Patient Cohorts
A total of 1,100 patients with AC- LVO admitted between June
2016 and April 2018 at the Second Hospital of Hebei Medical
University, North China, were registered in the derivation cohort;
927 of them who presented with AIS related with AC-LVO
and asymptomatic AC-LVO were retrospectively reviewed. In
addition, 471 patients with first-ever ischemic stroke (including
disabling and non-disabling stroke) were selected. For the

external validation, we collected data of patients with AC-
LVO from Hebei Province People’s Hospital, China between
September 2016 and April 2021.

Anterior circulation-LVO was defined as complete occlusion
of at least one intracranial internal carotid artery (ICA) or middle
cerebral artery (MCA) visualized on computed tomography
angiography (CTA) or magnetic resonance angiography (MRA).
ICA occlusion refers to the complete occlusion of the C1–
C7 segment of the internal carotid artery based on CTA or
MRA. MCA occlusion refers to the occlusion of the MCA
involving at least the M1 segment (for more details please see in
Supplementary Figure I). Asymptomatic AC-LVO was defined
as the absence of a transient ischemic attack (TIA), amaurosis
fugax, and ischemic stroke attributed to anterior circulation large
vessel (11, 12). In accordance with previous studies, disabling
and non-disabling ischemic strokes were defined by the initial
clinician as National Institutes of Health Stroke Scale (NIHSS)
> 5 and≤ 5 on admission, respectively (13).

Data Collection and Variable Selection
Patient characteristics that were collected on admission for the
development of Models 1 and 2 include (1) demographic data
of the patients such as the age, sex, body mass index (BMI),
current smoking and drinking status, comorbidity (hypertension,
coronary atherosclerotic heart disease, atrial fibrillation, diabetes
mellitus, and hyperlipidemia), history of transient ischemic
attack (TIA); (2) clinical variables such as serum apolipoprotein B
(Apo B) and homocysteine on arrival; (3) imaging variables such
as occluded vessels (unilateral MCA, unilateral ICA, andmultiple
arteries), posterior circulation large vessel severe stenosis (≥
70%) /occlusion, anterior cerebral artery (ACA) occlusion, and
Alberta Stroke Program Early CT Score (ASPECTS). Data on
14 variables were included in Model 1, and on 12 in Model
2. Specifically, normal blood flow status of the vertebrobasilar
arteries via the posterior communicating artery plays a major
role in primary collateral compensation after anterior circulation
large vessel occlusion. Therefore, posterior circulation large
vessel stenosis/occlusion was introduced into Model 1. Posterior
circulation large vessel refers to the intracranial vertebral artery,
basilar artery, or segment P1 of the posterior cerebral artery.

Data Pre-processing
Processing of the data was performed using Python. First,
records containing outliers, which were identified by boxplot,
were excluded. Furthermore, the median imputationmethod was
used to impute missing values in derivation cohorts. Finally, the
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categorical variables were converted into numerical values with
dummy encoding, and the continuous features were standardized
by removing the mean and scaling to unit variance.

Prediction Models With Machine Learning
Machine learning is a discipline that constructs models base on
data, which is a part of artificial intelligence. Machine learning
extracts the characteristics and abstracts the model of the data,
discovers the information in the data, and then analyzes and
predicts it. First, an algorithm and some parameters of the
model which were supplied with training data were selected
arbitrarily. During training procedures, the model automatically
adjusts some trainable parameters stage by stage to achieve
better performance optimization. After the training, all themodel
parameters are fixed. Importantly, the true effectiveness of the
model was evaluated using test data that were completely separate
from the training data.

We selected logistic regression without regularization (LR),
regularized logistic regression (RLR), random forest (RF), and
support vector machine (SVM) as machine learning algorithms
that are commonly used.

Logistic regression, a classic classification algorithm in
machine learning, was regularized using a combination of L1 and
L2 loss in this study. Here, the target was determined by Y:

Y = {“disabling ischemic stroke,′′

“non-disabling ischemic stroke′′}

Z = WTX+ b

y =
1

1+ e−Z
=

1

1+ e−WTX+b

We selected binary cross-entropy loss as the cost function, where
y is the ground truth, y∧ is the predicted score of the model, and
R represents the regularization. The loss functions L1 and L2 are
defined as follows:
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ŷ(i), y(i)

)

=
1

m

m∑

i=1

(
−y(i) log ŷ(i) −
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In the training process of themodel, standardization of numerical
variables was carried out to accelerate the convergence process
and speed of the model.

Random forest is an extended variant of bagging, which uses
a decision tree as the base learner and introduces the selection
of random attributes in the training process of the decision tree
(14). The main parameters that can affect the model performance
in RF include the number of trees in the forest, maximum depth
of the tree, minimum number of samples required to split an
internal node, minimum number of samples required to be at
a leaf node, and function to measure the quality of a split.
In this study, the values in the dataset were discretized, and

the parameters were optimized with a grid search during the
training process.

An SVM classifies data by calculating the maximum-margin
hyperplane, which adds a regularization term in the solving
process to optimize the structural risk. The strength of SVM
is that it can process complex datasets with many variables or
dimensions (15). The validity of SVM depends mainly on the
selection of the kernel function, parameters of the kernel, and soft
margin parameter C. Otherwise, in this study, each combination
of parameter selections was checked using cross-validation, and
only parameters with optimal accuracy were selected.

Moreover, LR, RLR, RF, and SVM can estimate the
contribution of each feature to the model by calculating
the absolute value of the standardized regression coefficient,
information gain / Gini coefficient, and weight coefficient.

Model Derivation and Internal Validation
In this study, for model derivation, we adopted 5-fold cross-
validation, which is a standard way of optimizing the model
with inner test data and has been used in a previous study
(16). During modeling, the grid search algorithm which is
a greedy algorithm was combined to tune and optimize the
model hyperparameters. For each group of hyperparameters, we
selected 5-fold cross-validation to determine the optimal ones,
after which we calculated the means of sensitivity, specificity,
accuracy, and AUC to evaluate the performance of each model
(Figure 1).

The derivation and validation models were conducted using
Python 3.6. The model algorithms, cross-validation, and grid
search were based on the Scikit-Learn library of Python in the
PyCharm. Matplotlib 3.3.3, NumPy 1.19.5, pandas version 1.1.5,
and Scikit-Learn toolkit version 0.21.0 were used to train the
machine learning models.

External Validation
After internal training and testing, the performance of the model
was evaluated using external validation data. Subsequently, the
AUCs were compared among machine learning algorithms.

Statistical Analysis
Clinical variables are presented as mean ± SD or median
with interquartile range, depending on the distribution of
the variables. To compare the group differences, continuous
variables were compared using the Student’s t-test or Mann-
Whitney U test, and categorical variables were compared with
the χ2 test or Fisher’s exact test. These two prediction models
were discriminated against using AUC. Calculation of AUC,
sensitivity, specificity, precision, negative predictive value (NPV),
and accuracy criteria were performed with R statistical software
version 3.0.2. The area under the precision-recall curve (PRC)
and F1-score were calculated with MedCalc. For the derivation
and validation cohorts, a comparison of AUC among themachine
learning methods was performed using the DeLong test with
Bonferroni correction. Two-sided P < 0.05 were considered
statistically significant.
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FIGURE 1 | The schema of 5-fold cross-validation and external validation. First, the original data were randomly divided into five patterns without duplication, one of

which was used as the test set, and the remaining four as the training set for model training. Next, we adapted grid search with 5-fold cross-validation to optimize the

hyperparameters for each machine learning model. Finally, the trained models were externally validated on the external test data.

RESULTS

Baseline Characteristics
Figures 2A,B illustrate the flow diagram of the enrolled
patients. For the derivation cohort, 1,100 patients with AC-
LVO were hospitalized at the study institution. After excluding
173 patients with prior stroke or TIA as non-acute ischemic
cerebrovascular events, 713 patients with AIS related with
AC-LAO and 214 with asymptomatic AC-LAO were finally
included in the analysis for model 1. Among the 214 patients
with asymptomatic AC-LVO, 119 (56%) were hospitalized for
head discomfort such as heaviness of the head and fullness
in the head. The other reasons for hospitalization in patients
with asymptomatic AC-LVO included coronary artery disease,
subarachnoid hemorrhage, migraine, cerebral large artery
disease detected by routine physical examination, unruptured
intracranial aneurysms, diabetic peripheral vascular disease,
central nervous system infection, lower extremity atherosclerotic
occlusive disease, intracranial space-occupying lesions, epilepsy,
Parkinson’s disease, cerebral atrophy, subclavian artery steal
blood syndrome, cough syncope, and cardiac syncope. The
general screening of large artery disease was performed with
transcranial Doppler and carotid artery ultrasound in these
patients. Further computed tomography angiography (CTA)
or magnetic resonance angiography (MRA) examinations were
conducted and AC-LVO was identified. Among the 713 patients
with AIS, 242 with prior stroke were excluded, and 471
patients with first-ever ischemic stroke (254 with disabling and
217 with non-disabling strokes) were included in the analysis
for Model 2. For the external validation cohort, 150 eligible
patients with AC-LVO were included in Model 1. Of the 99

patients with AIS, 82 who presented with the first episode were
included in the analysis for model 2. The baseline characteristics
of the included patients are presented in Tables 1, 2, and
Supplementary Tables I–IV.

Comparison Between the Models in the
Derivation Cohort
The performance metrics of each approach for Models 1 and 2
in the derivation cohort are shown in Tables 3, 4, respectively.
The receiver operating characteristic (ROC) curve (indicating
the predictive performance of our LR/RLR/RF/SVM model) for
each algorithm in the two models and the comparison among
these machine learning algorithms are shown in Figures 4A,C.
In model 1, the AUCs of RF and SVM were significantly
higher than those of the LR and RLR, when using the DeLong
test with Bonferroni correction (RF vs. LR, P < 0.0001; RF
vs. RLR, P < 0.0001; SVM vs. LR, P < 0.0001; SVM vs.
RLR, P < 0.0001; Figure 3A). Similar results were obtained
for accuracy and F1-score. In model 2, while the differences
in AUCs among the four machine learning algorithms were
not significant (Figure 3C), the RF showed the most perfect
classification accuracy (71.8%) compared to that of the other
machine learning approaches.

Comparison Between the Models in the
External Validation Cohort
The ROC curves for Models 1 and 2 in the external validation
cohort are shown in Figures 4B,D. In Model 1, RF exhibited
the worst performance among the machine learning models
(Table 5). The AUCs in LR, RLR and SVM were significantly
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FIGURE 2 | The flow diagram of the patients included in this study is shown in (A,B).

higher than that in RF, when using the Delong test with
Bonferroni correction (LR vs. RF, P = 0.0048; RLR vs. RF, P =

0.0048, SVM vs. RF, P = 0.0006; Figure 3B). In Model 2, there
was no difference in AUCs among the four machine learning
algorithms (Figure 3D). The AUC of each algorithm was as
follows: LR 0.68 (95% CI 0.56–0.8), RLR 0.76 (95% CI 0.66–0.87),
RF 0.71 (95% CI 0.59–0.83) and SVM 0.77 (95% CI 0.66–0.87)
(Table 6).

Important Variables of the Machine
Learning Models
After calculating the importance of each feature, the top five
selected variables of Models 1 and 2 were ranked by their
discriminative performance (Figures 5, 6). For LR and RLR,
the absolute value of the standardized regression coefficient was
calculated in both models. For RF, the important features for
information gain and Gini coefficient were ranked in Models 1
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TABLE 1 | Baseline characteristics of patients with anterior circulation large vessel

occlusion.

Derivation

cohort

(n = 927)

Validation cohort

(n = 150)

Mean ± SD age, y 59.3 ± 12.4 62.0 ± 10.9

Males n (%) 626 (67.5) 108 (72.0)

Current smoking n (%) 268 (28.9) 57 (38.0)

Drinking n (%) 267 (28.8) 26 (17.3)

Hypertension n (%) 602 (64.9) 107 (71.3)

Coronary atherosclerotic heart

disease n (%)

143 (15.4) 22 (14.7)

Atrial fibrillation n (%) 52 (5.6) 11 (7.3)

Diabetes n (%) 225 (24.3) 52 (34.7)

Hyperlipidaemia n (%) 292 (31.5) 14 (9.3)

Occluded vessels n (%)

Unilateral MCA

442 (47.7) 51 (34.0)

Unilateral ICA 261 (28.2) 69 (46.0)

Multiple artery 224 (24.2) 30 (20.0)

BMI≥24 n (%) 795 (85.8) 108 (72.0)

Posterior circulation large vessel

severe stenosis /occlusion n (%)

176 (19.0) 9 (6.0)

ApoB (g/L) 1.0 ± 0.3 0.7 ± 0.2

Homocysteine (µmol/L) 19.0 ± 11.2 15.9 ± 9.6

Acute ischemic stroke n (%) 713 (76.9) 99 (66.0)

ApoB, apolipoprotein B; BMI, body mass index; ICA, internal carotid artery; IQR,

interquartile range; MCA, middle cerebral artery; SD, standard deviation.

and 2 respectively. For SVM, the absolute value of the weight was
used to rank the variables only in model 2 due to the introduction
of the kernel function in Model 1. The absolute values of the
important metrics for the features were normalized, ensuring
the comparability in feature importance ranking. In Model 1,
homocysteine, occluded vessels and BMI appeared together in
the top five rankings of all machine learning algorithms. In
addition, coronary atherosclerotic heart disease was an important
feature in both LR and RLR. Age and Apo B appeared to be
important variables in RF. In Model 2, ASPECT, age and BMI
were common variables for all machine learning algorithms.
Prior TIA was included in LR, RLR, and RF. Hypertension,
current smoking, and gender appeared in RLR, RF, and SVM,
respectively. Furthermore, occluded vessels coexisted in LR
and SVM.

DISCUSSION

This study demonstrated that the use of a machine learning
approach can predict the risk of AIS and severity of ischemic
stroke in AC-LVO from clinical data. To the best of our
knowledge, this is the first report on an attempt to predict
AIS and severity of neurological impairment in patients with
AC-LVO using the machine learning approach. The machine
learning algorithm can eliminate linearity and has various ways of
overcoming the imperfections of the polyfactorial models such as
overfitting ofmodels and collinearity of variables, whichmay lead

TABLE 2 | Baseline characteristics of patients with first-ever acute ischemic

stroke (AIS) caused by anterior circulation large vessel occlusion.

Derivation

cohort

(n = 471)

Validation cohort

(n = 82)

Mean ± SD age, y 58.6 ± 12.7 61.0 ± 13.0

Males n (%) 321 (68.2) 59 (72.0)

Current smoking n (%) 147 (31.2) 35 (42.7)

Hypertension n (%) 290 (61.6) 51 (62.2)

Diabetes n (%) 105 (22.3) 25 (30.5)

Coronary atherosclerotic heart

disease n (%)

69 (14.6) 7 (8.5)

Prior TIA n (%) 30 (6.4) 0 (0)

Hyperlipidaemia n (%) 158 (33.5) 8 (9.8)

BMI ≥24 n (%) 410 (87.0) 60 (73.2)

Median ASPECTS (IQR) 6 (3–8) 8 (7–9)

Occluded vessels n (%)

Unilateral MCA

236 (50.1) 31 (37.8)

Unilateral ICA 133 (28.2) 36 (43.9)

Multiple artery 102 (21.7) 15 (18.3)

Anterior cerebral artery occlusion n

(%)

87 (18.5) 3 (3.7)

Disabling ischemic stroke (NIHSS >

5) n (%)

254 (53.9) 31 (37.8)

ASPECTS, Alberta Stroke Program Early CT Score; BMI, body mass index; ICA, internal

carotid artery; IQR, interquartile range; MCA, middle cerebral artery; NIHSS, National

Institutes of Health Stroke Scale; SD, standard deviation; TIA, transient ischemic attack.

to a series of problems when it comes to variable selection (17).
In the two prediction models in this study, 14 and 12 common
variables were collected, respectively, bypassing the traditional
method of variable selection.

Contrary to the findings in the derivation cohort of model
1 that RF showed significantly better predictive performance
than LR and RLR, in the validation cohort, RF had the worst
performance among the machine learning models. The decision
trees of RF forced interactions between the features, which might
make the result rather inferior if the majority of the features
have no or very weak interactions. Therefore, we suspect that
the RF was not able to carry on an accurate classified forecast
owing to extremely weak interactions between the variables
in our dataset. Moreover, the small data sets with 150 cases
in the validation cohort may be another reason for the poor
performance of the RF. In model 2, although the LR showed a
predictive property similar to those of the other three algorithms
both in the validation cohort and derivation cohort, the RLR
exhibited a higher AUC compared with LR in the validation
cohort, this was as a result of the poor generalization performance
of LR compared with other algorithms. Accordingly, LR with L2
regularization was implemented in this study to avoid overfitting
and improve the generalization performance and robustness of
the model; thus, a more optimal result was obtained with an AUC
of 0.76.

As shown in Figures 5, 6, the important features were
not entirely consistent in the machine learning algorithms in

Frontiers in Neurology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 749599

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cui et al. Model for Predicting Ischemic Stroke

TABLE 3 | Scores for each algorithm of model 1 in derivation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.68 (0.64–0.72) 0.88 57.9 71.5 87.1 33.8 61.1 0.87

RLR 0.68 (0.64–0.72) 0.88 57.9 71.5 87.1 33.8 61.1 0.87

RF 0.80 (0.77–0.83) 0.93 69.1 79.9 92.0 43.7 71.6 0.89

SVM 0.77 (0.74–0.81) 0.92 76.9 68.2 89.0 46.9 74.9 0.88

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

TABLE 4 | Scores for each algorithm of model 2 in derivation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.78 (0.74–0.81) 0.78 63.0 77.9 76.9 64.3 69.9 0.76

RLR 0.75 (0.71–0.79) 0.77 61.0 78.3 76.7 63.2 69.0 0.74

RF 0.77 (0.73–0.81) 0.78 67.7 76.5 77.1 66.9 71.8 0.75

SVM 0.76 (0.71–0.80) 0.78 63.4 77.0 76.3 64.2 69.6 0.74

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

FIGURE 3 | The means ± 95% CI of the receiver operating characteristic area under the curve (AUC) for models 1 and 2 are displayed as bar graphs using the

derivation cohort data (A,C), and the validation cohort data (B,D). For the derivation cohort data, there were significant differences between random forest [RF],

support vector machine [SVM] and logistic regression without regularization [LR], regularized logistic regression [RLR] in model 1. For the external validation cohort

data, there were significant differences between the random forest [RF] and the other three machine learning methods in model 1. For the derivation and external

validation cohort data, the Delong test with Bonferroni correction was used. LR indicates logistic regression without regularization; RF, random forest; RLR, regularized

logistic regression; and SVM, support vector machine. *P < 0.01, **P < 0.001.
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FIGURE 4 | The AUC of the machine learning models for model 1 (A,B) and model 2 (C,D) on the derivation and external validation cohort data. LR indicates logistic

regression without regularization; RF, random forest; RLR, regularized logistic regression, SVM, support vector machine.

model 1 and model 2. As important variables of model 1,
homocysteine, BMI, and occluded vessels (unilateral MCA)
appeared in all three algorithms, and atrial fibrillation and
coronary atherosclerotic heart disease were detected in both LR
and RLR. Elevated blood homocysteine concentration increases
the risk of ischemic stroke by inducing oxidative damage to

vascular endothelial cells and enhancing platelet adhesion to
endothelial cells, especially in large vessel strokes (18–22). The
results of our study are in accordance with the aforementioned
studies, suggesting that elevated homocysteine levels may be
a significant marker for predicting ischemic stroke in AC-
LVO.
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TABLE 5 | Scores for each algorithm of model 1 in external validation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.66 (0.57–0.74) 0.82 42.4 88.2 87.5 44.1 58.0 0.80

RLR 0.66 (0.57–0.74) 0.82 42.4 88.2 87.5 44.1 58.0 0.80

RF 0.55 (0.45–0.64) 0.72 59.6 54.9 72.0 41.2 58.0 0.80

SVM 0.67 (0.58–0.76) 0.81 65.7 60.8 76.5 47.7 64.0 0.80

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

TABLE 6 | Scores for each algorithm of model 2 in external validation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.68 (0.56–0.80) 0.60 45.2 86.3 66.7 72.1 70.7 0.60

RLR 0.76 (0.66–0.87) 0.71 83.9 56.9 54.2 85.3 67.1 0.66

RF 0.71 (0.59–0.83) 0.65 41.9 92.2 76.5 72.3 73.2 0.61

SVM 0.77 (0.66–0.87) 0.71 93.5 49.0 52.7 92.6 65.9 0.67

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

Regarding the association between BMI and ischemic stroke,
a previous meta-analysis revealed a J-shaped dose-response
relationship between being overweight or obese and an increased
risk of incident ischemic stroke (23). However, few studies
have focused on the relationship between BMI and risks of
ischemic stroke subtype (24, 25). Our study showed a robust
positive association between overweight/obesity and AC-LVO
AIS. Possible explanations for our findings include insulin
resistance, endothelial dysfunction, and inflammation, which
have been considered to influence the relationship between
obesity and atherosclerosis (26). Moreover, our findings further
revealed that a high BMI (≥ 24 kg/m2) shows a greater
predisposes to disabling than non-disabling ischemic stroke with
AC-LVO, emphasizing the importance of weight control and
aerobic fitness.

The compensation of the collateral pathway inMCAocclusion
mainly depends on the pia meningeal branch from the anterior
cerebral artery and the posterior cerebral artery with worse
compensatory ability than the circle of Willis, which means it
would result in hemodynamic failure and is more prone to
decompensation (27). Our study delves deeper into this field and
demonstrates that unilateral MCA occlusion plays a crucial role
in the occurrence of ischemic stroke. Furthermore, we found
that stroke severity at admission was greater in the multiple AC-
LAO patients than in unilateral MCA occlusion or unilateral ICA
occlusion patients. This is consistent with a previously published
study of patients with AC-LVO AIS, which showed that high
NIHSS was associated with multiple AC-LAO (28).

Cardioembolism might be responsible for large vessel
occlusion, in which atrial fibrillation accounts for∼50% (29, 30).
Atrial fibrillation is strongly associated with a high occurrence
rate of LVO, suggesting that it may be a potential risk factor
for LVO (31). Otherwise, large emboli that block intracranial
vessels usually originate from the left atrial appendage in

patients with symptomatic carotid stenosis or atrial fibrillation
(32). Similarly, in our analysis, atrial fibrillation showed a
robust association with AC-LVO AIS, further suggesting that
knowledge of the potential complications of atrial fibrillation
is likely to motivate both patient and clinician to comply with
standard treatment.

Large-artery atherosclerotic stroke is associated with a high
risk of coronary atherosclerotic heart disease (33). Nevertheless,
our results indicate that coronary atherosclerotic heart disease
is associated with a low risk of AIS in AC-LVO patients.
One explanation for this finding might be that coronary
atherosclerosis is significantly correlated with stenosis of the
extracranial carotid; therefore, the development of intracranial
anterior circulation large vessel occlusion may be independent
of coronary atherosclerotic heart disease (34). Furthermore,
antiplatelet and statin therapy in coronary atherosclerotic heart
disease may reduce the risk of ischemic stroke in AC-LVO.

Apolipoprotein B is the primary apolipoprotein component of
chylomicrons and low-density lipoproteins (35). In this study, we
found that elevated serum levels of Apo B were associated with
an increased risk of ischemic stroke in AC-LVO. Additionally, a
Mendelian randomization study reported a positive correlation
of Apo B with large artery stroke and small vessel stroke (36).
Therefore, we advocate Apo B as a marker of routine serum
lipid examination.

In our study, age emerged as an important predictor in
both models, as well as in a previously developed model for
predicting the clinical outcome of AIS with LVO (17). In
general, our results indicate that the prevalence of ischemic
stroke and disability increases with age in patients with AC-
LVO. In addition, our data also suggested that ASPECT
was the common element included in all machine learning
methods. Studies have demonstrated that diffusion-weighted
imaging (DWI) ASPECTS which represents infarct volume,
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FIGURE 5 | Top five Important Features in the Model 1. Apo B indicates apolipoprotein B; AF, atrial fibrillation; BMI, body mass index; CHD, coronary atherosclerotic

heart disease; Hcy, homocysteine; LR, logistic regression without regularization; OV, occluded vessels; RF, random forest; RLR, regularized logistic regression.

FIGURE 6 | Top 5 Important Features in the Model 2. ASPECT indicates Alberta Stroke Program Early CT Score; BMI, body mass index; HTN, hypertension; LR,

logistic regression without regularization; OV, occluded vessels; RF, random forest; RLR, regularized logistic regression; SVM, support vector machine; TIA, transient

ischemic attack.

is a significant independent predictor of functional outcome
in AC-LVO strokes (37). Correspondingly, patients presenting
with ASPECTS ≥7 are correlated with favorable outcomes
following intravascular or thrombolytic therapy (38, 39). Our
study further supports the association between ASPECT and
the severity of neurological defects in first-ever ischemic stroke
with AC-LVO. Consequently, a lower score of ASPECTS
suggests less preserved brain parenchyma and predicts severe
neurological impairment in patients with first-ever AC-LVO
ischemic strokes.

It is well established that TIA increases the risk of ischemic
stroke. In the present study, we found that prior TIA decreased
ischemic stroke severity at admission, which is similar to the
results of Marc Gotkine et al. showing that previous TIA was
independently associated with lower severity of the ischemic
stroke and a better short-term outcome (40). Prior TIA may have
a neuroprotective effect on the subsequent ischemic stroke.

The chief strength of this study is the development and
external validation of a new scoring tool, which predicts the risk
of ischemic stroke and the severity of ischemia in AC-LVO based
on machine learning approaches. Nevertheless, this study has
several limitations. Foremost, few neuroimaging features were

taken into consideration, excluding others such as the collateral
flow status which might improve the predictive performance
of the models. Further evaluation of the level of collateral
circulation is necessary. Second, the sample size for this study
was small which might have been due to the stringent inclusion
criteria for patients with AC-LVO. As a result, the performance
advantages of machine learning models may not have been fully
realized. Finally, this was a retrospective study; the performance
of the model needs to be tested in a prospective population in
future studies.
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