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Abstract

It is a longstanding goal of neuroimaging to produce reliable, generalizable models of brain 

behavior relationships. More recently, data driven predictive models have become popular. 

However, overfitting is a common problem with statistical models, which impedes model 

generalization. Cross validation (CV) is often used to estimate expected model performance within 

sample. Yet, the best way to generate brain behavior models, and apply them out-of-sample, on an 

unseen dataset, is unclear. As a solution, this study proposes an ensemble learning method, in this 

case resample aggregating, encompassing both model parameter estimation and feature selection. 

Here we investigate the use of resampled aggregated models when used to estimate fluid 

intelligence (fIQ) from fMRI based functional connectivity (FC) data. We take advantage of two 

large openly available datasets, the Human Connectome Project (HCP), and the Philadelphia 

Neurodevelopmental Cohort (PNC). We generate aggregated and non-aggregated models of fIQ in 

the HCP, using the Connectome Prediction Modelling (CPM) framework. Over various test-train 

splits, these models are evaluated in sample, on left-out HCP data, and out-of-sample, on PNC 

data. We find that a resample aggregated model performs best both within- and out-of-sample. We 

also find that feature selection can vary substantially within-sample. More robust feature selection 

methods, as detailed here, are needed to improve cross sample performance of CPM based brain 

behavior models.
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1. Introduction

A longstanding goal of neuroimaging research has been to establish generalizable links 

between brain structure/function and behavior or traits (Woo et al., 2017). A general 

approach is to identify discriminating imaging features which, when incorporated into a 

statistical model, can be used either for inference into potential causal links, or to reliably 

estimate an observable phenotype for novel participants (Bzdok and Ioannidis, 2019). The 

ultimate aim is to derive clinically actionable diagnoses or intervention strategies from 

imaging data (Insel et al., 2010). In order to achieve a clinically actionable model, both 

feature engineering and model building are important. A simple model may perform well 

with robust features that have a large effect size, yet even the most complex model may 

underperform when given poorly curated features. In neuroimaging generally, and in 

particular functional Magnetic Resonance Imaging (fMRI), an ideal feature set is seldom 

seen due to a combination of factors including site effects (Badhwar et al., 2020), 

physiological noise (Keilholz et al., 2017; Liu, 2016), hardware noise (Triantafyllou et al., 

2005), and small sample sizes (Button et al., 2013), not to mention the complexity of the 

underlying neural activity itself. In order for the combination of a feature set and model to 

be clinically actionable these challenges, which are ubiquitous, need to be overcome. In 

other words, in virtually all cases, model performance and generalization are constrained by 

the feature quality. fMRI based functional connectivity (FC) is a commonly used feature set 

for developing brain imaging-based models of observable phenotypes. Though initial 

investigations using fMRI focused on functional specialization of brain regions, it has been 

shown that widespread neural processes can contribute to higher level brain function. This 

implies that functional integration, rather than discrete specialization, is likely the key to 

characterizing more complex phenotypes (Turk-Browne, 2013; Rissman et al., 2020; Horien 

et al., 2020). As a result, FC based models commonly use the functional connectome, a map 

of the functional connections between all pairs of brain regions (or nodes, defined by an 

atlas), as the starting point for feature selection (Castellanos et al., 2013; Dadi et al., 2019; 

Arbabshirani et al., 2017; Pervaiz et al., 2020). This framework for analyzing brain function 

mostly incorporates undirected, first order, pair-wise estimates of connectivity between brain 

regions (Sporns, 2013). Even still, dependent upon the atlas used to define nodes, these 

approaches typically yield upwards of 70,000 candidate features. Such massive, and often 

disparate, sets of features are both hard to interpret, and easily allow for overfitting, 

particularly when working with small samples (Bzdok et al., 2019).

Approaches to avoid overfitting depend upon the goals of the analysis, and the type of model 

being built, whether it be a predictive or explanatory model. These strategies are not 

mutually exclusive (Rosenberg et al., 2018), but can be contrasted as being biased towards 

using a feature set to predict future observations with high accuracy (predictive), or 

developing a mechanistic understanding of the relationship between the features and the 

observation (explanatory) (Shmueli, 2010). Here, we will focus on the former. Recently 

there has been much interest in successful predictive modeling approaches that estimate 

brain-behavior relationships (Pervaiz et al., 2020; Finn et al., 2015; Smith et al., 2015; 

Rosenberg et al., 2017; Liem et al., 2017; Gao et al., 2019). These strategies, are geared 

toward model performance-based assessments, and attempt to identify reproducible models 
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using cross validation (CV) to yield reliable estimates of model performance within sample 

(Varoquaux et al., 2017), and out of sample (Abraham et al., 2017). However, as is the case 

with predictive frameworks in general, outcomes are agnostic to the consistency of model 

parameters or selected features, with respect to changes in the underlying data. Within 

sample predictive approaches in particular do not guarantee a model will translate to other 

datasets. Notably, within-sample performance estimates can vary, especially when datasets 

are small (< 100 participants) (Varoquaux, 2018). This is not to say that models built within 

one dataset using CV to estimate within-sample performance will always fail to generalize. 

Some studies have shown good performance out-of-sample (Rosenberg et al., 2020; Yip et 

al., 2019; Greene et al., 2018; Lake et al., 2019), when it was a requirement that a given 

feature be selected in a minimum number of CV folds before being included in the external 

application of the model. This out-of-sample application of the model begins to resemble an 

ensemble learning method.

Ensemble learning refers to a group of statistical methods that act to combine multiple 

models, in order to boost performance (Opitz and Maclin, 1999). Ensemble learning can be 

used to alleviate overfitting. One form of ensemble learning is bootstrap aggregating, or 

bagging (Varoquaux et al., 2017; Breiman, 1996). Bagging is based on training models in 

multiple subsets of a training data set, or bootstraps, and aggregating model performance 

across the models. It is also possible to aggregate model parameters and features across 

subsets (De Bin et al., 2016). The CV models cited above (Rosenberg et al., 2020; Yip et al., 

2019; Greene et al., 2018; Lake et al., 2019), which have performed well out-of-sample, 

have in essence used an ensemble approach in the out-of-sample application, though through 

subsampling and then aggregating rather than bootstrap aggregating. Bagging has been 

applied to fMRI data before to determine brain state (Richiardi et al., 2011), and for brain 

parcellation (to define an atlas) (Bellec et al., 2010; Nikolaidis et al., 2020). With respect to 

predictive modeling, it been shown to boost within-sample performance of resting state FC 

based brain-behavior regression models (Wei et al., 2020), and has also been applied in a 

classification approach (Hoyos-Idrobo et al., 2018).

Our goal is to build a more generalizable FC based brain-behavior regression model using an 

ensemble learning approach, building within sample on data from one dataset. In this paper, 

we applied four CV and three resampling approaches, including a bagged modeling 

approach, using connectome predictive modeling (CPM) as the model framework. We 

develop brain-behavior models relating working memory FC and fluid intelligence (fIQ) 

using the typical approach which implements one feature selection and model training step. 

We compare these results to alternative resampling approaches that combine information 

from multiple feature selection and model building iterations. We show, using out-of-sample 

testing, that resample aggregating improves model generalizability. Our results may provide 

a framework for building more translatable brain behavior models.

2. Methods

2.1. Datasets

Data from the Human Connectome Project (HCP), specifically the S900 dataset, (Van Essen 

et al., 2013) and the Philadelphia Neurodevelopmental Cohort (PNC), N = 1000 (Calkins et 
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al., 2015), were used. From these datasets, N = 827 participants from the HCP, ages 21–35, 

and N = 788 participants from the PNC, ages 8–21, were included based on the availability 

of preprocessed T1-weighted images, working memory fMRI scans, and fIQ measures.

For the HCP dataset, fIQ was measured using a 24-item version of the Penn Progressive 

Matrices assessment, scores ranged from 4 to 24, with a mean ± standard deviation (SD) of 

16.78 ± 4.7 (Bilker et al., 2012). In the PNC dataset, the 24- and 18-item versions of the 

Penn Matrix Reasoning Test were used (Moore et al., 2015; Gur et al., 2010). Scores ranged 

from 0 to 23, with a mean ± SD of 11.85 ± 4.06. In both datasets, the score corresponds to 

the number of correct responses.

For the HCP, MRI data were acquired on a 3T Siemens Skyra. The fMRI scans were 

collected using a slice-accelerated, multiband, gradient-echo, echo planar imaging (EPI) 

sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52°, resolution = 2.0mm3, multiband 

factor = 8, left-right phase encoding, scan duration = 5:01). The T1-weighted structural scans 

were collected using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence 

(TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, resolution = 0.7mm3) (Van Essen et al., 2012). 

For the PNC, the MRI data were acquired on a 3T Siemens TIM Trio. fMRI scans were 

collected using a multi-slice, gradient-echo EPI sequence (TR = 3000 ms, TE = 32 ms, flip 

angle = 90°, resolution = 3mm3, scan duration = 11:39). T1-weighted structural scans were 

collected using an MPRAGE sequence (TR = 1820 ms, TE = 3.5 ms, TI = 1100 ms, 

resolution = 0.9375 × 0.9375 × 1 mm) (Satterthwaite et al., 2014).

2.2. Preprocessing

For the HCP, the HCP minimal preprocessing pipeline was used on these data (Glasser et al., 

2013), which includes artifact removal, motion correction, and registration to MNI space. 

All subsequent preprocessing was performed in BioImage Suite (Joshi et al., 2011) and 

included standard preprocessing procedures (Finn et al., 2015), including removal of 

motion-related components of the signal; regression of mean time courses in white matter, 

cerebrospinal fluid, and gray matter; removal of the linear trend; and low-pass filtering.

For the PNC, structural scans were skull stripped using an optimized version of the 

FMRIB’s Software Library (FSL) pipeline (Smith et al., 2004). Slice time and motion 

correction were performed in SPM8 (Frackowiak et al., 2003). The remainder of image 

preprocessing was performed in BioImage Suite (Joshi et al., 2011) and included linear and 

nonlinear registration to the MNI template; regression of mean time courses in white matter, 

cerebrospinal fluid, and gray matter; and low-pass filtering.

FC matrices were generated from the working memory fMRI data using the Shen atlas 

(Shen et al., 2013) (which defines 268 cortical and subcortical nodes), and Pearson’s 

correlation as the time course similarity metric. Following this the matrices were z-

transformed. All further analyses were performed in python using custom scripts. These 

scripts have been made publicly available, see section on data and code availability. Figures 

were generated in python using matplotlib (Hunter, 2007) and seaborn (Waskom et al., 

2017), with the flowchart generated using app.diagrams.net.
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2.3. Modeling protocol

For our modeling framework we chose to use Connectome Predictive Modelling (CPM). 

CPM was performed as in (Shen et al., 2017), with the FC matrices as the explanatory 

variable, and fIQ as the target variable, with one exception; partial correlation was used at 

the feature selection step (Hsu et al., 2018). In full, the CPM process was as follows:

1. Across the training set, correlate each element in the FC matrix, often referred to 

as an edge, (predictive variables) with fIQ (target variable). In this work, partial 

correlation was used. First, mean frame-to-frame displacement in the fMRI scan 

is regressed out of both the edge values and fIQ. Then Pearson’s correlation is 

computed from the residuals.

2. Select positively correlated edges with, where p < 0.01.

3. For each participant or scan, sum the connectivity scores for all selected edges.

4. Fit a linear model, without regularization, between the sum of connectivity 

scores and fIQ summary score.

5. Apply the model to unseen participants and estimate performance.

Overall, we perform 20 data splits on the HCP dataset, into test and train samples, to assess 

the impact of participant inclusion in the training set on model performance. The following 

protocol explains what happens within each data split. The protocol is also shown in Fig. 1.

Model Training: 800 subjects are randomly selected from the N = 827 HCP subjects, and 

split equally into a train and test sample. This randomization was done with respect to the 

family structure within the dataset, ensuring that family members were never split across 

train and test samples. Supplementary Figure 1 shows the results of accounting for family 

structure in the test-train split, when compared to a purely random test-train split. It did not 

significantly impact model performances. The test sample is used exclusively to test within-

sample performance, and none of the participants in the train sample are included in testing, 

see Fig. 1. The train sample is used to build three types of models: (1) resample aggregated 

models, (2) CV models, and (3) a single model trained on the whole train sample.

1. Three varieties of resample aggregated models are generated. All 400 

participants in the train sample are used in each split. 100 iterations of feature 

selection and model building are performed on resampling of different numbers 

of randomly selected participants to create three different models: (i) 

bootstrapping, where 400 subjects are selected, with replacement, (ii) models 

with a subsample of 300 subjects selected without replacement, and (iii) models 

with subsamples of 200 subjects selected without replacement. These models are 

termed the bagged model (i), the subsample 300 model (ii) and the subsample 

200 model (iii). In each case, model parameters, the slope and intercept, and 

features are aggregated to form one model and feature set per split. The slope 

and intercept are the mean across bootstraps/subsamples. A mean feature vector 

is formed, which is the frequency with which each feature (edge) is selected 

across all resampling.
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2. CV is performed four different ways: (i) using split-half, (ii) fivefold, (iii) tenfold 

and (iv) leave-one-out (LOO) resampling. 100 iterations of (i-iii), are performed. 

The models generated by (iv) are unaffected by different iterations. Thus, the 

following number of models per data split of each CV type are generated: (i) 

split-half: 200, (ii) five-fold: 500, (iii) tenfold: 1000, and (iv) LOO: 400.

3. A single model generated using all the participants in the train sample at once. 

Herein, termed a train-only model.

Twenty test-train splits are performed. Thus, our full protocol yields 20 of each of the 

resample aggregated models (type 1), 4000 split-half, 10,000 fivefold, 20,000 tenfold, and 

8000 LOO CV models (type 2), and 20 train-only models (type 3).

Model Testing: The HCP test sample is used to assess the within-sample performance of 

all models, and the PNC data is used to assess out-of-sample performance. In both within-

sample, and out-of-sample testing, each model is tested on 100 random subsamples of 200 

participants from the HCP test sample and 100 random subsamples of 200 participants from 

the external PNC data set. This framework yields 100 measures of performance for each 

model within-sample, and 100 measures of performance for each model out-of-sample. In 

addition to subsamples of 200 participants, models were tested on subsamples of size 300, 

and the full test set. The results of this are shown in the Supplementary Figure 2. The model 

performance shown in the main manuscript focuses on subsamples of 200.

In generating the resample aggregated models, a feature vector is created, in which each 

element corresponds to the frequency with which a given feature passes feature selection, 

across resampling. This allows the possibility of imposing a minimum frequency threshold, 

and filtering the features used in the model. The resample aggregated models are first tested 

including every feature which occurred at least once in any single resample. Following this, 

the feature vector is thresholded. First, to include features which occur in 10% or more 

resamples, then 20% or more, rising in 10% increments, to those that occur in 90% or more 

of resamples. For each threshold, the resample aggregated models’ performance is assessed 

within- and out-of-sample for each data split, as described above.

Model performance is quantified as the variance explained by the predicted fIQ, with respect 

to the actual fIQ. Differences in model performance are assessed using the Wilcoxon signed 

rank test.

3. Results

The performance of the resample aggregated models (with all features included), CV 

models, and the train-only models, in predicting fIQ, within- and out-of-sample are shown in 

Fig. 2. Performance metrics are separated based on the 20 test-train HCP data set splits. 

Performance of all models vary depending on the test train split. In terms of mean 

performance, the subsample 300 models perform best within- and out-of-sample, where they 

are roughly equivalent to the subsample 200 models.
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In Fig. 3, performance metric distributions are shown without differentiating by test-train 

split. Within-sample, the subsample 300 models perform best, better than the next best 

performing CV models (LOO). Using a Wilcoxon signed rank test to compare, the result is 

W = 772,076,502, p = 0.003. This corresponded to the subsample 300 models performing 

better than LOO in 54% of within-sample test cases. Out-of-sample, the subsample 300 

models perform best, though with similar mean performance to the subsample 200 models. 

Both the subsample 300 and subsample 200 models perform better than the best performing 

CV models, LOO, with test statistics: W = 661,298,771, p < 0.001 and W = 676,212,100, p 
< 0.001 respectively. This corresponded to the subsample 300 models performing better than 

LOO models in 79% of out-of-sample test cases, and the subsample 200 models performing 

better than LOO models in 72% of out-of-sample test cases. Density plots showing the 

distribution of differences in model performances for these models are shown in 

Supplementary Figure 3. In addition to the Wilcoxon signed rank tests, a Fishers exact test 

was performed for each set of model comparisons. In each case 2 × 2 contigency tables were 

built, comparing model performance differences. The first row contained the number of 

times the first model performed better in sample, followed by the number of times the 

second model performed better in sample. The second row contained the number of times 

the first model performed better out of sample, followed by the number of times the second 

performed better out of sample. Comparing the subsample 300 and LOO models yielded p < 

0.001, and comparing the subsample 200 and LOO models also yielded p < 0.001.

The distribution of feature occurrence in the bagged models is shown in Fig. 4, left panel. 

On average 48.7% ± 0.8%, or 17,423 ± 302 edges out of a possible 35,778, are selected at 

least once across bootstraps from our undirected FC matrix (268 node atlas). The 

corresponding values for the subsample 300 and 200 models are: 11.7% ± 1%, or 4169 ± 

356 edges, and 20% ± 1.2%, or 7184 ± 420 edges, respectively. On average, in the bagged 

models, only 46 ± 16 edges, reoccur in > = 90% of bootstraps. The corresponding numbers 

for subsample 300 and 200 models are: 58 ± 20 edges, and 1.95 ± 1.5 edges, respectively.

With CPM, edges (features) are selected based on how strongly the edge strength between 

any two nodes varies with the target variable across individuals within the training sample. 

The selection step of whether or not to include an edge depends on a statistical significance 

threshold on the correlation between edge strength and behavior. When creating the 

resample aggregated models, the R values at this feature selection step are indicative of 

whether a feature occurs frequently across bootstraps/subsamples, as shown in Fig. 5.

The number of features passing the selection criteria may be related to the number of 

participants included for a given resampling method. The bagged models have the greatest 

number of features selected at least once overall. This may be as a result of having the 

highest number of participants included for feature selection (400). This also may impact the 

performance of the bagged model as it leads to the more frequent selection of low strength 

edges. In this scenario relatively small effect sizes are sufficient to pass a p-based threshold, 

when compared to a sample size of 200 or 300. While the bagged model has the greatest 

number of features selected overall, the subsample 300 models have the greatest proportion 

of features passing higher frequency thresholds (from > = 20% and up), see Fig. 5. Though 

the bagged models nominally include more participants, resampling is performed with 
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replacement. Thus, only 63.2%, or 253 out of 400, are unique participants in a given 

bootstrap on average (Pathak and Rao, 2013). On the other hand, the subsample 200 and 300 

models are created without replacement, and therefore only contain unique participants. 

Thus, the subsample 300 models have the highest number of unique participants included in 

any resampling. This may explain why the subsample 300 models perform well.

The effect of thresholding the feature vector on the performance of the resample aggregated 

models assessed within-sample, and out-of-sample, is shown in Fig. 6. This reflects the 

performance as assessed on subsamples of 200 participants in each test set. The performance 

was also evaluated on subsamples of 300 participants, and on the full test sets. These results 

are shown in supplemental Figures 4 and 5 respectively.

Within sample.

As described above, with all features included, the subsample 300 models perform best 

within-sample, followed by subsample 200 models which perform marginally better than the 

best non-aggregated models (LOO). The no-threshold bagged models perform worse than 

these non-aggregated models. However, the bagged models’ mean performance initially 

increases with thresholding. The performance of the thresholded bagged models’ remains 

higher than the no-threshold performance (including all features, 17,423 ± 302) up until a 

60% threshold in-sample (413 ± 94 features). Beyond 60%, the mean performance drops 

below the no-threshold level. Both the subsample 300 and 200 models experience a drop in 

performance with any thresholding. The drop off is more severe for the subsample 200 

models, presumably because many fewer edges passed the more stringent thresholds. With 

higher thresholds, the bagged models’ within-sample performance surpasses the no-

threshold performance of both the subsample 300 and 200 models (whose performance 

decrease with thresholding), and the best performing non-aggregated models. At a threshold 

of > = 40%, the bagged model performs best within-sample amongst all models generated 

(and across all feature vector frequency thresholds).

While the mean performance of the subsample 200 models decreases precipitously as the 

feature selection threshold increases, perhaps as a result of fewer features being included at 

the feature selection step, the subsample 300 and bagged models exhibit much less decline. 

Illustratively, the mean within-sample performance of bagged models is 0.11 at a feature 

vector threshold > = 90%. This is 74% of the bagged models’ top performance (which 

occurs at a feature vector threshold of > = 40%). Notably, at a feature vector threshold > = 

90%, the bagged models contain an average of 46 edges compared to an average of 1147 

edges at a > = 40% threshold. Similarly, for the subsample 300 models, mean performance is 

0.12 at a > = 90% feature selection threshold (average model size of 58 edges). This 

performance is 81% of the models’ top performance level which occurs with no-threshold 

(including an average of 4170 edges).

Out-of-sample.

With all features included, the subsample 300 and 200 models perform better than the best 

non-aggregated models out-of-sample: the train-only models. The no-threshold bagged 

models perform as well as the train-only models. Though, once again, the bagged models’ 
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mean performance initially increases with thresholding out-of-sample, beyond the no-

threshold subsample 300 and 200 models, which is the best performance for those models 

across all feature frequency thresholds. The performance of the thresholded bagged models’ 

remains higher than the no-threshold (including all features, 17,423 ± 302) up until a 50% 

threshold (713 ± 131 features). The > = 10% threshold bagged model performs best out-of-

sample amongst all models generated, across all feature frequency thresholds.

The trend of model performance dropping at higher feature frequency thresholds was also 

observed out-of-sample, though with a slightly larger decrease in performance. At a 90% 

threshold, the out-of-sample bagged models mean performance is 0.047, also with 46 edges 

on average. This is 64% of the bagged models top out-of-sample performance at a threshold 

of > = 10%, with 5572 edges on average. Out-of-sample subsample 300 models mean 

performance at a 90% threshold is 0.049, also with 58 edges on average. This is 66% of the 

subsample models top out-of-sample performance at a threshold of > 0%, with 4170 edges 

on average.

4. Discussion

In this study we show that an ensemble method, in this case a resample aggregated 

(subsample or bootstrap aggregated) model, can improve the generalizability (out-of-sample 

performance) of CPM based brain-behavior models for prediction of fIQ, when compared 

with CPM models generated as part of standard CV. Three types of model are evaluated: 

resample aggregated models, CV models, and models trained on the complete train sample 

(train-only). Within-sample evaluation, on a held test sample from the same data set, shows 

that a bagged model with a 50% feature frequency threshold performs best, with the no 

threshold subsample 200 and 300 models also performing well. Out-of-sample testing is 

used as a proxy for generalizability. Out-of-sample, the 10% threshold bagged model 

perform best with the no threshold subsample 300 and 200 models again performing well. 

The resample aggregated are good alternatives to models generated as part of CV when 

generalizability is of key concern. Additionally, the subsample 300 and bagged models show 

relatively good performance at high thresholds given the parsimonious number of features.

Generation of the resample aggregate models allows an estimate of how frequently a given 

feature is selected across resamples. High variance is exhibited, with almost half of all 

possible features (48.7%) being selected at least once when a bagged modeling approach is 

implemented. This fraction is lower for the subsample 200 (20%) and 300 (11.7%) models. 

There is a strong relationship between effect size (R) and how many bootstraps/subsamples a 

given feature is selected within. This varies based on both resample size, and number of 

unique participants included, and may affect the performance of the resample aggregated 

models with increasing feature frequency thresholds.

Our study is performed in response to a general increase in research which focuses on 

predictive modeling (Varoquaux and Thirion, 2014; Gabrieli et al., 2015; Bzdok and Yeo, 

2017), and in particular approaches that utilize FC measures to uncover meaningful brain-

behavior relationships (Pervaiz et al., 2020). Ultimately, with these studies, a clinical 

application is desirable (Castellanos et al., 2013). However, present FC based predictive 
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models are yet to perform well enough in terms of accuracy, sensitivity or specificity to have 

an impact on clinical practice. Generalizability is of particular importance in a clinical 

setting, and presently a major problem for predictive models in neuroimaging. In some 

cases, sophisticated models which have shown much success in other fields, such as 

convolutional neural networks, have been applied to model brain-phenotype relationships 

(Pervaiz et al., 2020), (Jiang et al., 2020). However, they are yet to provide a generalizable 

model with sufficiently high-performance for clinical application. Given the failure of highly 

flexible and complex models to fit these data in a generalizable manner, and the myriad of 

potential confounds that exist in raw neuroimaging data, models themselves may not be the 

barrier generalization. This work suggests that the feature selection step may be a critical 

component in developing generalizable models.

Applying more focus on feature sets, the edges in connectome-based modeling, and 

requiring that they are consistently related to a target variable, in this case a behavior, can be 

seen as more of an explanatory approach. Explanatory approaches are usually contrasted 

with predictive approaches, whereby explanatory approaches are more focused on 

elucidating the brain-behavior link. Predictive approaches, on the other hand, are agnostic to 

the underlying relationship between a feature set and a target variable. However, these two 

approaches are not mutually exclusive (Rosenberg et al., 2018), and emphasis can be placed 

on identifying reproducible features, while still defining success based on prediction 

performance. Ensemble modeling methods that incorporate the feature selection step, for 

example (De Bin et al., 2016), allow for the derivation of a stable estimate of both model 

parameters and features within sample, and within a predictive framework. Our work shows 

that one can achieve better generalization, in terms of out-of-sample model performance, 

using resample aggregated models. And one can also derive a small and much more tractable 

group of features that are consistently linked to the target variable in question, potentially 

shedding light on the underlying brain-behavior relationship. These methods may provide a 

pathway to better generalization.

A prerequisite for generalization is within-sample performance estimation. A common 

method for reliable within-sample performance estimation is CV (Scheinost et al., 2019; 

Poldrack et al., 2020). Though there are exceptions (Rosenberg et al., 2020; Yip et al., 2019; 

Greene et al., 2018; Lake et al., 2019), models using CV are more commonly built and 

evaluated in one relatively homogenous sample and sometimes subsequently tested out-of-

sample. While CV is necessary to get a balanced measure of performance within-sample it 

does not guarantee replication of that performance out-of-sample. Some studies which have 

used CV within-sample and demonstrated successful replication have essentially 

implemented a form of ensemble learning through resampling-based feature aggregation 

(Rosenberg et al., 2020; Yip et al., 2019; Greene et al., 2018; Lake et al., 2019). These 

studies tested the models built as part of CV on an out-of-sample data-set using only the 

most commonly occurring features across CV folds. This is akin to the methods described in 

this paper, however, in these implementations, the maximum number of feature selection 

iterations was 10. Given that with the 100 bootstraps, almost 50% of the features occur at 

least once in the bagged protocol shown here, and indeed 20% of features with subsample 

200 and 11% of features with subsample 300, resample aggregation may provide an 

improvement on identifying noisy features compared to 10-fold cross validation, as well as 
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provide more insight into feature variation. A previous study by Wei et al. using bagged 

models for prediction has also recommended ~100 bootstraps (Wei et al., 2020). An 

additional factor to note is that the greater the fraction of subjects from the training set that 

are included in the feature selection step, the less likely the features are to vary across folds. 

In the case of 10-fold CV this would include 90% of subjects. This is generally an advantage 

but it can also be important to obtain information on how smaller subsamples influence the 

variance in feature selection, provided the overall sample size is sufficient.

A potential downside of a resampling approach is that feature occurrence is a fairly simple 

way of uncovering within-sample variance. Hypothetically, it is possible that some features 

are highly related and do not add unique information. This would indicate using 

dimensionality reduction (Mwangi et al., 2014; Barron et al., 2019) and/or a regularized 

modeling approach (Gao et al., 2019) as a first step. However, it is possible to integrate these 

methods into an ensemble approach, and if this is done, it would be prudent to assess the 

impact of resampling on the parameters generated.

Despite increased performance out-of-sample, there was still a discrepancy with respect to 

within-sample performance for all models. This may suggest that even the resampled 

aggregate models are somewhat overfit to the training data, especially in light of the number 

of features included in the bagged model at the lower levels of feature thresholding. 

Overfitting is defined as “The production of an analysis which corresponds too closely or 

exactly to a particular set of data, and may therefore fail to fit additional data or predict 

future observations reliably” (Overfitting | Meaning of Overfitting by Lexico 2020). This is 

commonly thought to mean that the model has fit too much noise, or signal of non-interest 

related to that particular sample. In the case of FC based models, overfitting can occur as a 

result of modeling signal of non-interest, or as a result of fitting a signal of interest which 

does not generalize. That is to say, a FC model of fIQ built in the HCP dataset might capture 

meaningful signal related to fIQ, but it is specific to the experimental conditions and 

participant demographics of the HCP study. To simply ascribe the difference in performance 

to overfitting signal of non-interest, would be to ignore studies suggesting age and sex-based 

differences in FC (Liem et al., 2017), (Satterthwaite et al., 2015; Zhang et al., 2018; Betzel 

et al., 2014; Dosenbach et al., 2010), along with a host of other factors. One of the strengths 

of ensemble learning is that it can incorporate variation within dataset through resampling, 

but it can only do that to the extent to which the training data exhibits said variance. This 

may explain why the subsample models’ performance decreased out-of-sample with feature 

thresholding, and why the bagged models’ performance peaked at an earlier threshold out-

of-sample, compared to within-sample. At a low threshold for feature inclusion, it is likely 

that we capture some features relevant to estimating fIQ in the out-of-sample test set, 

particularly given that nearly half of all possible features were included. Increasing the 

threshold for feature inclusion could equate to including features that are more relevant to 

the training sample and not the test sample. In this study, models are trained on HCP data, 

which is comprised of adults (ages 21–35), and tested on PNC data, which includes 

adolescents (ages 8–21). In addition to capturing noise specific to the training sample, our 

HCP trained model is likely not capturing features that are specific to adolescent cognition 

that are undoubtedly present in the out-of-sample test set from the PNC (Betzel et al., 2014). 

Another confounding factor is that the working memory tasks in the HCP and PNC data sets 

O’Connor et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have non-negligible differences. The experimental designs of each sample use different 

visual stimuli, and working memory loads (Ragland et al., 2002; Barch et al., 2013). 

Additionally, the target variables are derived from different, though related, assessments of 

fIQ (Bilker et al., 2012; Moore et al., 2015; Gur et al., 2010). These factors likely contribute 

to the difference in performance observed between within- and out-of-sample testing across 

models. It is possible to mitigate this performance difference, using data harmonization 

methods (Yu et al., 2018). While these types of methods can reduce inter site variability in 

FC, they are unlikely to account fully for the demographic and experimental heterogeneity 

described above. Our results suggest there is a tradeoff between fitting the variance we are 

interested in (adult cognition) and providing a generalizable model of fIQ. Generalizability 

encompasses both model parameters and features that are neither too “noisy”, nor too 

specific. In this respect, the bagged model seems to capture features that improve 

generalizability, but not sufficiently to match the level of within-sample performance. It is 

likely that overfitting and an imperfect match between samples hampered generalization.

Though we are in an era where predictive modeling is the focus of much research, we do not 

yet have a complete understanding of how the features we identify vary across cohorts; in 

this case FC data obtained during a working memory task in two different populations. How 

we should adapt our approaches to account for noise and sample-specific features is 

evolving. While the models used in this study are fairly simple linear models, and how our 

approach would generalize to more complicated predictive modeling schema is unclear, we 

assert that an ensemble approach to predictive modeling, such as the one detailed here, can 

help discern features that are relevant to model generalizability.

Conclusions

Resample aggregated models allow for greater model performance and generalizability, 

within the context of CPM. The within-sample boost in performance, in light of including all 

features in performance assessment, are suggestive of overfitting. However, out-of-sample 

performance was also significantly better than non-resample aggregate models, suggesting 

better model generalizability. The resampling procedure also provides an estimate of the 

stability of feature selection across training resampling. Bagged models increase and 

maintain performance when decreasing the number of features up to a point, within- and 

out-of-sample. Subsample aggregated model performance decreases as feature selection 

becomes more stringent.

Data and code availability statement

The HCP data that support the findings of this study are publicly available on the 

ConnectomeDB database (https://db.humanconnectome.org). The PNC data that support the 

findings of this study are publicly available on the database of Genotypes and Phenotypes 

(dbGaP, accession code phs000607.v1.p1); a data access request must be approved to protect 

the confidentiality of participants. Code for conducting the analyses described here can be 

found at https://github.com/YaleMRRC/CPMBaggingAnalysis.
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Fig. 1. 
Analytic workflow. The PNC data is only used for out-of-sample testing. The HCP data is 

split into train and test samples. The train sample (400 subjects) is used to train 3 types of 

models: (1) resample aggregated models, (2) CV models, and (3) train-only models. All 

models are then tested within-sample on the test HCP sample, and out-of-sample on the 

PNC dataset.
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Fig. 2. 
Within and out-of-sample model performance, stratified by data split. In the left panel 

(purple), the first three columns show performance of resample aggregated models within-

sample, columns 4–7 show the CV models, and the eight column shows performance of the 

train-only models. Each column has 20 boxplots, color-coded (in rainbow) by train/test split. 

All models are tested within-sample on 100 random subsamples of 200 subjects from the 

HCP test sample. The second panel (green) shows the performance of the same models 

(same order as the left panel) out-of-sample using random subsamples of 200 subjects from 

the PNC data set.
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Fig. 3. 
Within and out-of-sample model performance. Column one (shaded in purple) shows 

performance of all models, across all data splits, within-sample. All models are tested on 

100 random subsamples of 200 subjects from the test sample of the HCP data set. The 

second column (shaded in green) shows the performance of the same models tested on 

random subsamples of 200 subjects from the PNC data set. The box and whisker plots show 

the median, interquartile range, and 5%–95% markers of the performance distribution. The 

underlying shaded violin plots show the shape of the model performance distribution.
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Fig. 4. 
Distribution of feature (edge) occurrence across subsamples for the ensemble models. For 

the bagged model (left), nearly 11,851 features occur in between 0% and 10% of bootstraps, 

compared to 6056 for the subsample 200 model (right) and 2839 for the subsample 300 

model (center).
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Fig. 5. 
Relationship between effect size and feature occurrence for each aggregated model, across 

all resamples. The bagged models are shown in blue, the subsample 200 in orange, and the 

subsample 300 in green. The subplots on the right and top show probability density plots of 

the feature occurrence and effect size respectively.
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Fig. 6. 
Resample aggregated model performance within sample (white boxplots), and out of sample 

(gray boxplots) across feature frequency thresholds. This reflects the performance as tested 

on subsamples of 200 participants. The box and whisker plots show the median, interquartile 

range, and 5% – 95% markers of the performance distribution. The underlying shaded 

distribution shows the individual data points. The top panel shows the performance of the 

bagged models, as the feature threshold is increased (reducing the number of features 

included). Middle shows the performance of the subsample 300 models, as the feature 

threshold is increased. Bottom shows the performance of the subsample 200 models, as the 

feature threshold is increased. In the background of all plots, a density-based histogram of 
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the percent of features (as a function of all features selected for a given model) included is 

shown in blue.
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