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Extracellular vesicles are small membrane particles derived from various cell types. EVs are
broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis
and cargoes. Numerous studies have shown that EVs regulate multiple physiological and
pathophysiological processes. The roles of small extracellular vesicles in cancer growth and
metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles
are an ideal drug delivery platform for anticancer agents. However, several aspects of small
extracellular vesicle biology remain unclear, hindering the clinical implementation of small
extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the
utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers
andpredict treatment outcomes.Wealso review findings frompreclinical and clinical studies of
small extracellular vesicle-based cancer therapies and summarize interventional clinical trials
registered in the United States Food and Drug Administration and the Chinese Clinical Trials
Registry. Finally, we discuss the main challenges limiting the clinical implementation of small
extracellular vesicles and recommend possible approaches to address these challenges.
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INTRODUCTION

Extracellular vesicles (EVs) are small lipid bilayer-bound vesicles released from living cells into the
extracellular environment. These vesicles lack functional nuclei and cannot replicate (1).
Traditionally, EVs can be roughly classified into two main subtypes regarding their
characteristics and biogenesis pathway: ectosomes and small extracellular vesicles (sEVs).
Ectosomes have a diameter between 100 and 1000 nm and are generated by cytoplasmic
membrane budding (2). sEVs, also referred to as “exosomes” by some researchers, are smaller in
diameter (30–150 nm) and released by the fusion of the multivesicular bodies (MVBs) with the
plasma membrane. According to the updated guidelines of the International Society for
Extracellular Vesicles of 2018 (MISEV2018), when naming a new EV subtype, the term “EVs” is
recommended, followed by a description of vesicle features, such as size, density, cell of origin, and
experimental conditions, making EV names more descriptive and informative (2, 3). Some experts
have a greater attachment to the traditional term “exosomes” and we consider it quite a personal
preference to call them either “exosomes” or “small extracellular vesicles (sEVs)” (3). In congruence
with the latest suggestion, we refer to “exosomes” as “sEVs” throughout this review.

In 2018, Zhang et al. discovered another group of non-membranous secretory extracellular
nanoparticles (<50 nm) termed “exomeres”, which were initially identified by asymmetric flow field-
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flow fractionation (AF4) and consisted of various biological
molecules (4). Later on, a simple ultracentrifugation-based
method was employed to isolate exomeres from sEVs (5).
Although the research on exomeres is limited by technical
barriers, such as the rarity of AF4 and the lack of the
universally recognized nomenclature system, researchers have
reported some biological functions of exomeres. For example, the
b-galactoside a2,6-sialyltransferase 1 (ST6Gal-I), an exomere
protein from human colorectal cancer cells, could sialylate the
b1-integrin of recipient cells. Another exomere protein
amphiregulin (AREG) could serve as the EGFR ligand, regulate
the EGFR signaling pathway in normal intestinal organoids, and
significantly promote the growth of colonic cancer organoids (5).
Although exomeres and sEVs have comparable protein profiles,
the stability in the circulatory system regarding the absence of
bilayered membrane, and the biological safety of exomeres in
vivo are still unclear. However, similar issues related to sEVs have
been well addressed with extensive investigation, leaving sEVs
much more accessible therapeutic tools.

EVs play a critical role in intracellular hemostasis and
intercellular communication. In 1946, researchers discovered
that ultracentrifugation pellets of plasma could activate
platelets and blood clotting factors; these effects were attributed
to the EVs in the pellets (6, 7). Subsequently, reticulocyte-derived
EVs were identified by electronic microscopy as “discarded
waste” that maintains intracellular homeostasis during
erythrocyte maturation (8, 9). As the knowledge of sEVs has
grown exponentially since 2000, some research groups have
unveiled more biological functions and established novel
clinical applications of sEVs, especially sEVs as messengers in
various pathological processes and an efficient and targeted drug
delivery system (10–13). In this review article, we focus on the
recent development of sEVs as biomarkers for early cancer
detection and follow-up care, as well as therapeutic particles
for cancer treatment.
Abbreviations: AF4, asymmetric flow field-flow fractionation; ATG5, autophagy-
related protein 5; AREG, amphiregulin; CAR-T cells, chimeric antigen receptor T
cells; ChiCTR, Chinese Clinical Trials Registry; CRY2, cryptochrome 2; DAMPs,
damage-associated molecular patterns; DCs, dendritic cells; DEVs, DC-derived
sEVs; EGFR, epidermal growth factor receptor; ESCRT, endosomal sorting
complexes required for transport; EVs, extracellular vesicles; GPC1, glypican 1;
GPI, glycosylphosphatidylinositol; HBECs, human bronchial epithelial cells; HCC,
hepatocellular carcinoma; HCMV, human cytomegalovirus; HEK-293 cells,
human embryonic kidney cells; HMGB1, high mobility group box-1;
hnRNPA2B1, sumoylated heterogeneous ribonucleoprotein A2B1; HRS,
hepatocyte growth factor-regulated tyrosine kinase substrate protein; ISG15,
interferon-stimulated gene 15; MDSCs, myeloid-derived suppressor cells; MIF,
migration inhibitory factor; MISEV2018, International Society for Extracellular
Vesicles in 2018; MTX, methotrexate; MVB, multivesicular body; MVP, major
vault protein; NFAT3, nuclear factor of activated T cells 3; NHEJ, non-
homologous end-joining; NSCLC, non-small-cell lung cancer; OVA, ovalbumin;
PDAC, pancreatic ductal adenocarcinoma; PLP, proteolipid protein; RIBE,
radiation-induced bystander effect; sEVs, small extracellular vesicles; SIMPLE,
small integral membrane protein of the lysosome/late endosome; Stx3, syntaxin 3;
ST6Gal-I, b-galactoside a2,6-sialyltransferase 1; TYRP2, tyrosinase-related
protein-2; Ub, ubiquitin; VLA-4, very late antigen 4; VSVG, vesicular stomatitis
virus glycoprotein.
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SMALL EXTRACELLULAR VESICLES
BIOGENESIS, CARGO SORTING,
AND CONTENTS

sEV biogenesis is complex and involves the formation of
specialized intracellular compartments, known as MVBs/late
endosomes, a key sorting point in the endocytic pathway (14).
The inward budding of MVB membrane produces numerous
intraluminal vesicles (ILVs), a group of small (~25–30 nm in
diameter) spheroids containing cytosolic components and
certain proteins from the invaginated MVB membrane (15).
ILVs are expelled into the extracellular environment when MVBs
fuse with the plasma membrane, referred to as sEVs. sEVs are
spheroids in solution but sometimes they display a sauce-like
shape under transmission electron microscopy as an artifact of
drying during preparation (16). Typically, sEVs collected by
fraction collection have a density range from 1.1 to 1.2 g/ml
(17). Alternatively, MVBs with ILVs can fuse with lysosomes for
hydrolysis of endocytosed macromolecules (18). However, some
ILVs can fuse with MVB membrane and the proteins of ILVs
membrane can be incorporated into endosome or lysosome
membrane, a process called “backfusion”. As a result, some
ILV membrane proteins, such as tetraspanin proteins and
mannose-6-phosphate receptors, can escape the lysosomal
degradation and recycle to the trans-Golgi network or plasma
membrane (15, 19) (Figure 1).

Although the formation of ILVs and the protein cargo sorting
system have not been fully elucidated, researchers showed that
the endosomal sorting complex required for transport (ESCRT)
functions in this process (20). As complicated protein
machinery, ESCRT consists of four main complexes (ESCRT-0,
-I, -II, and -III) and works cooperatively with associated proteins
(VPS4, VTA1, ALIX) to promote MVB and ILV biogenesis. The
ESCRT-0 complex recognizes and sequesters ubiquitinated
domains of endosomal membrane proteins via its ubiquitin-
binding subunits, such as hepatocyte growth factor-regulated
tyrosine kinase substrate protein (HRS); whereas ESCRT-I and-
II facilitate the formation of the buds with sequestered proteins.
Then the whole complex interacts with ESCRT-III/Vps4
complex, which stabilizes tubular endosomes and cleaves the
bud to form ILVs (20, 21). Finally, the disassembly and recycling
of ESCRT machinery requires the energy supplied by AAA-
ATPase Vps4 (20). Besides, several ESCRT components
(TSG101, ALIX) and ubiquitinated proteins have been
identified in purified sEVs from various cell types. Typically,
the sEV marker protein ALIX was reported to collaborate with
other ESCRT proteins (TSG101 and CHMP4) and facilitate
cargo selection, endosomal membrane budding and vesicle
detachment in the form of syntenin-syndecan-ALIX complex
(22). These results support the theory that ESCRT is critical in
sEV biogenesis. However, some research indicated ESCRT-
independent mechanisms for ILVs formation and release
(Figure 1). Trajkovic et al. reported that the depletion of
sphingomyelinases, instead of ESCRT inhibition, in
oligodendroglial cells could significantly reduce the formation
of MVBs and associated proteolipid protein (PLP)-enriched
March 2021 | Volume 11 | Article 638357
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sEVs, an inspirational phenomenon referred to as “ceramide-
dependent sEV biogenesis” (23). Further investigation showed
that some lipid raft-based microdomains of the endosomal
membrane contain numerous sphingomyelinases, enzymes
hydrolyzing sphingomyelins to ceramides (24). Ceramides
could induce negative curvatures of the endosomal membrane
and lateral phase separation, thus functioning as coalescers in the
process of ILV abscission (25, 26). Nonetheless, whether this
ceramide-dependent machinery could be generalizable to other
cell types and intraluminal contents is still unclear. Interestingly,
some tetraspanins, such as CD63, CD82 and Tspan8, have been
regarded as key points in cargo sequestration and sEVs
formation, in a ceramide-independent and ESCRT-
independent manner. Niel et al. reported that a CD63-
dependent mechanism facilitated the formation and release of
melanosomes-enriched sEVs, while downregulating CD63 led
these melanosomes into ESCRT-dependent degradation in
human melanoma cells (27). Similarly, the elevated expression
of CD9 and CD82 could increase the secretion of b-catenin-
enriched sEVs from human embryonic kidney 293 cells
(HEK293), and a study utilizing the rat adenocarcinoma model
showed that Tspan8 participated in the selective recruitment of
proteins into sEVs (28, 29). Additionally, thousands of molecules
have been reported to contribute to selective cargo sorting into
ILVs and the release of sEVs, such as Rab GTPase (30),
glycosphingolipids and flotillins (31), chaperone HSC70 (32,
33) and small integral membrane proteins of the lysosome/late
endosome (SIMPLE) (34).

Similar to the specific recruitment of protein contents, the
sorting of particular nucleic acids is dedicatedly monitored by
multiple mechanisms. Generally, smaller size, higher abundance,
and greater accessibility to membranous intracellular organelles
Frontiers in Oncology | www.frontiersin.org 3
and cytoplasmic locations promote the accumulation of RNAs in
sEVs. Since most RNAs are relocated to specific cellular
compartments in association with RNA-binding proteins
(RBPs) and 25% of sEV proteins have been identified as RBPs,
it is rational to assume that RBPs are important in transferring
RNAs into sEVs (35, 36). For example, Beltri et al. reported that a
f o u r n u c l e o t i d e mo t i f (GGAG) c o u l d b i n d t o
sumoylated heterogeneous ribonucleoprotein A2B1
(hnRNPA2B1), thus delivering miRNAs into sEVs derived
from human T cells (37). HnRNPA2B1 could also deliver
unspliced HIV genomic RNA into sEVs via the interaction
with several sequences (A2RE and nucleotides 557-663) (38,
39). Besides, miRNAs with 3′-end uridylation appeared to be
directed into sEVs but 3′-end adenylated isoforms were more
likely to be confined within the cells, indicating that post-
transcriptional modification plays a role in the RNA sorting
system (40, 41). Subsequently, RNA secondary configuration and
unique motifs (42, 43), the interaction with membrane lipids (43)
and innumerable RBPs, such as AG02 (44), major vault protein
(MVP) (45), YBX1 (46, 47) and lupus La protein (48), have also
been implicated in RNA packaging into sEVs. In summary, there
are multiple mechanisms of cargo sorting and ILVs formation
and it is still obscure whether the sequestering and sorting of
specific molecules requires different pathways or how these
pathways regulate various ILV subpopulations even within
one MVB.

The components of sEVs indicate their cellular origin and
potential biological functions. As oncologists, we have a
particular interest in identifying sEV-related oncogenic factors
(49–52). Significant efforts have been made to characterize the
oncogenic alterations in sEVs and inhibit tumor-specific sEV
pathways as a new class of anticancer therapies. Here, we briefly
FIGURE 1 | sEV biogenesis, cargo contents and uptake. HSP, Heat shock proteins; SCAMPs, Secretory carrier membrane proteins; ALIX, Apoptosis-linked gene
2–interacting protein X; HRS, Hepatocyte growth factor-regulated tyrosine kinase substrate; TSG101, Tumor susceptibility gene 101.
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discuss how the malignant transformation of parent cells affects
sEV components to promote cancer progression and described
sEV as cancer biomarkers. For instance, upregulation of
oncogenes can increase the levels of sEV oncoproteins, such as
EGFR variant III and HRS (53, 54). Additionally, researchers
have reported specific collections of sEV proteins associated with
different donor cells. For example, Hurwitz et al. reported that
nine different cancer types had only 213 sEV proteins in
common through proteomic analysis of sEVs from 60 cancer
cell lines provided by the National Cancer Institute (NCI-60).
Most of the 6,071 proteins identified were unique for each cancer
type, suggesting that sEV protein enrichment analysis could
provide insight into the cells of origin (55). In line with these
findings, p53 loss and oncogenic aberrations in EGFR in human
bronchial epithelial cells (HBECs) leads to sEV protein patterns
that are distinct from those in non-malignant HBECs (52).

Nucleic acids and lipid components can also be altered by
oncogenic mutations (56, 57). In patients with non-small-cell
lung cancer (NSCLC), the levels of let-7f and miR-30e-3p in
circulating sEVs are positively correlated with disease severity
(58). Llorente et al. showed that, compared with parental cells,
sEVs from prostate cancer cells had significant enrichment of
distinct lipids and a higher lipid-to-protein ratio, indicating that
the lipid profile of sEVs could provide further information about
sEV biogenesis (59).

Numerous randomized clinical trials have revealed different
clinical outcomes in patients with the same cancer after
treatment with different therapeutic regimens, raising the
possibility that different treatments or stress factors in tumor
cells can alter sEV cargo patterns and downstream signaling
pathways. Harmati et al. obtained B16F1 cell-derived sEVs
released under heat, oxidative, or cytostatic stress and observed
unique miRNA and protein patterns in each sEV group (60).
Besides, each sEV group demonstrated distinct oncogenic
functions; for instance, doxorubicin-elicited sEVs enhanced
melanoma cell migration, and oxidative stress-elicited sEVs
promoted Ki-67 upregulation in mesenchymal stem cells (60).
These results suggest that we may be able to predict therapeutic
outcomes and design more effective personalized cancer
treatment plans based on the analysis of sEVs from the
patients’ tumor tissue, organoid models, or xenograft models.
Using these models, we could precisely mimic the complex
tumor microenvironments and obtain reliable information
about the disease.
SMALL EXTRACELLULAR VESICLES AND
CANCER DEVELOPMENT

Recently, the importance of sEVs in intercellular communication
has attracted increasing attention, especially in the context of
tumorigenesis and metastasis. The bilayer lipid membranes of
sEVs protect their cargo, enabling the transfer of signaling
molecules from sEVs to the nearby cells or the distant sites via
circulatory and lymphatic systems (61–64). It has become
evident that sEVs from cancer cells can promote tumor
Frontiers in Oncology | www.frontiersin.org 4
progression and metastasis through multiple pathways (65–68).
For instance, breast cancer-derived sEVs promoted oncogenic
transformation in non-malignant epithelial cells (65, 69, 70),
neoangiogenesis (71–73), cancer cell invasion, metastasis (74),
chemoresistance (75, 76), and immune suppression (77, 78).
Recently, Gao et al. reported that cancer-associated fibroblasts
(CAFs) promoted tamoxifen resistance in breast cancer by
sending miR-22 to silence ERa and PTEN expression in
recipient cancer cells, suggesting the engagement of tumor
stroma-derived sEVs in oncogenesis (79).

Additionally, sEVs may serve as “waste disposals” to
eliminate unwanted cellular components (8, 9). Recent studies
have identified the crosstalk between lysosomal degradation,
autophagy and sEV biogenesis (80). As a traditional proton
pump V-ATPase inhibitor, bafilomycin A1 could increase the
pH of lysosomes and interfere with the trafficking between
lysosomes and other intracellular compartments, especially
MVBs and autophagosomes, thus enhancing sEV secretion in
various cell types (81, 82). Some researchers reported that
bafilomycin A1 could remarkably reduce the tumor load in
hepatocellular carcinoma(HCC) xenograft mice and confirmed
its potential as antitumor medicine (83). However, this
conclusion is challenged by other experiments. Guo et al.
discovered that the autophagy-related protein 5 (ATG5) could
improve sEV secretion by dissociating V1V0-ATPase that
acidifies MVBs and lysosomes, similar to the mechanism that
bafilomycin A1 promoted sEV secretion; the increased sEV
secretion could accelerate tumor migration in breast cancer
mice models (84). These conflicting results may be due to the
relatively small sample size of animal experiments, different cell
types, and more importantly, the intricate relationship between
sEV secretion and autophagy, warranting extensive investigation
to illuminate the underlying mechanism.

Another interesting study showed that bafilomycin A1 could
rescue the sEV secretion from human T cells, which was
impaired by the IFN-1 induced TSG101(a component of
ESCRT complex) ISGylation (85). In a ubiquitin-like fashion,
interferon-stimulated gene 15 (ISG15) is covalently linked to
target proteins, a process called ISGylation. Some researchers
reported that downregulation of ISG15 increased the
camptothecin resistance in breast cancer, while another study
showed that high ISG15 expression in breast cancer indicated
radiation resistance and poor prognosis (86, 87). Therefore,
bafilomycin A1 might serve as a powerful tool to help us
understand the double-edged sword role ISGylation plays in
oncogenesis with a mechanism involving membrane
vesicle trafficking.
SMALL EXTRACELLULAR VESICLE
BIOMARKERS

Protein Biomarkers for Cancer Diagnosis
ExoCarta is a manually curated database of sEVs proteins, RNAs
and lipids, providing imperative information for sEV research.
As of January 21, 2021, the number of recorded protein (9,769)
March 2021 | Volume 11 | Article 638357
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has far exceeded that of RNAs (3,408) and lipids (1,116),
indicating extensive studies on sEV proteins (88). Therefore, it
is safe to suppose that sEV proteins could function as biomarkers
for sEVs-related biological events. Several proteins, such as CD9,
CD63, and CD81, are enriched on most sEVs and recognized as
markers to verify the presence of sEVs in heterogeneous
populations of EVs (89). Further research showed that some
unique sEV proteins were associated with the existence of tumor
cells, thus facilitating the early cancer detection and prognosis
prediction (Table 1).

The application of sEVs as liquid biopsy samples has gained
substantial attention (Figure 2). Although blood is the primary
sample used for liquid biopsy, saliva is a promising alternative
approach to detect early-stage oral cancer since obtaining saliva
is less invasive and closer to malignant lesions than phlebotomy.
For instance, increased expression of alpha-2-macroglobulin,
haptoglobin, and mucin-5B on oral cancer-derived sEVs could
serve as biomarkers for oral cancer diagnosis (103). Saliva
biopsies are also becoming increasingly common for head and
neck cancer diagnosis, in addition to the detection of other solid
tumors, such as breast cancer (104) and pancreatic cancer (105,
106). Urinary sEV protein analysis also identified several
markers associated with pancreatic cancer and has emerged as
another noninvasive method to identify biomarkers for cancer
diagnosis (107).

Some surface proteins can guide the cellular tropism of sEVs,
leading to organotypic metastasis. For instance, breast cancer-
derived sEVs coated with integrin a6b4 and a6b1 were more
likely to be uptaken by pulmonary fibroblasts and epithelium,
establishing a premetastatic niche in the lungs (74). Several
surface proteins from melanoma-derived sEVs, such as very
late antigen 4 (VLA-4) and tyrosinase-related protein-2
(TYRP2), were also shown to recruit bone marrow progenitor
cells to premetastatic niches via the MET signaling pathway,
promoting bone metastasis and outgrowth (67, 108). Compared
with without liver metastasis and healthy control subjects, stage 1
pancreatic ductal adenocarcinoma (PDAC) patients who later
developed liver metastasis had remarkably higher levels of
migration inhibitory factor (MIF) in their circulating sEVs
Frontiers in Oncology | www.frontiersin.org 5
(66). Depletion of MIF in PDAC-derived sEVs strongly
inhibited the formation of fibrotic microenvironment created
by Kuffer cells, thereby reducing premetastatic niche in
preclinical mice models (66). These unique surface proteins
could potentially be used to predict metastatic sites.

However, to which extend a single sEV protein marker can
serve as a diagnostic and predictive biomarker in cancer is still
under debate. Glypican 1 (GPC1) levels on pancreatic cancer-
derived sEVs indicated cancer burden in patients before and after
surgery, exhibiting significant diagnostic and predictive
potentials (96, 109). In contrast, other studies have failed to
confirm the diagnostic value of GPC1 alone in pancreatic cancer
(110), highlighting the need for the combination of GPC1 with
other biomarkers to increase diagnosis accuracy (111, 112).
These studies emphasize that we could not sensitively detect
early-stage cancerous lesions with a single protein biomarker,
probably owing to the high heterogeneity of tumors.

Protein Biomarkers of Immunotherapy
Response
Certain sEV proteins have been shown to modulate the tumor
immune microenvironment through various mechanisms.
Notably, the melanoma-derived sEV cargo proteins S100A8
and S100A9 downregulated the expression of the costimulatory
marker CD83 in dendritic cells (DCs), thereby inhibiting DC
maturation and cytokine production, as well as establishing a
premetastatic niche (113). In melanoma mouse models, sEVs
containing high PD-L1 levels have been shown to bind PD-1
receptors on T cells, exacerbating T cell exhaustion;
p emb ro l i z umab admin i s t r a t i on d im in i s h ed t h i s
immunosuppression (77, 78). Therefore, further investigations
of circulating PD-L1+ EVs are required to identify the
mechanisms underlying anti-PD-L1 therapy failure and
determine the ability of PD-L1+ sEVs to predict clinical
outcomes of anti-PD-L1 treatment (Figure 2).

Intriguingly, blockade of PD-L1+ sEVs reinforced systemic
antitumor responses in mouse models of prostate cancer (78),
underpinning these cancer-promoting sEVs as a promising
therapeutic target. Several studies have demonstrated that PD-
TABLE 1 | sEV protein markers in multiple cancers.

Tumor types Human sample Isolation methods Signature proteins Possible application Ref.

Lung cancer Blood Ultracentrifugation LG3BP and PIGR Diagnosis (90)
Saliva Ultracentrifugation BPIFA1, CRNN, MUC5B, and IQGAP Detection (91)
Urine Ultracentrifugation LRG1 Diagnosis (92)

Breast cancer Plasma Ultracentrifugation 144 Phosphoproteins Detection (93)
Serum Ultracentrifugation Survivin and Survivin-DEx3 Prognosis (94)
Plasma Ultracentrifugation FAK Diagnosis and prognosis (95)

Pancreatic cancer Blood Ultracentrifugation Glypican-1 Diagnosis (96)
Plasma Ultracentrifugation MIF Prognosis (66)

Colorectal cancer Plasma ExoCap™ kit GPC1 Diagnosis (97)

Blood Ultracentrifugation CD147 Detection and diagnosis (98)
Ovarian cancer Ascitic fluid Ultracentrifugation TGM2, U2AF1, U2AF2, and HNRHPU Diagnosis (99)
Glioma Cerebrospinal fluid Ultracentrifugation IL13QD Detection (100)
Cholangiocarcinoma Blood Ultracentrifugation VNN1, CRP, FIBG, IGHA1, and A1AG1 Diagnosis (90)
Melanoma Plasma Ultracentrifugation MIA and S100B Prognosis and diagnosis (101)
Prostate cancer Urine Ultracentrifugation PCA3 Diagnosis and monitoring (102)
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L1 on sEVs acts as a decoy inhibiting immune responses in
draining lymph nodes (78, 114, 115). Furthermore, increased
levels of serum PD-L1+ sEVs predicted poor prognosis in
patients with head and neck cancer (116). Although these data
suggest serum PD-L1+ as a promising predictor of
immunotherapy response and that targeting tumor-associated
sEVs may augment the antitumor effects of immunotherapy, the
underlying mechanisms remain unclear. In addition to immune
checkpoints, tumor-infiltrating lymphocytes and innate immune
cells are also crucial for the success of immunotherapy (117,
118). However, future studies are required to confirm the ability
of circulating PD-L1+ sEVs to predict response to anti-PD-
L1 therapy.

sEVs also play a critical role in innate immune responses.
Pancreatic cancer-derived sEVs were found to express tumor-
associated antigens (TAA)(Fig.2) and bind to circulating
autoantibodies, thereby inhibiting complement-mediated
cancer cell lysis (119). Furthermore, gastric cancer cell-derived
sEVs were enriched in high mobility group box-1 (HMGB1) and
activated tumor-promoting neutrophils via the TLR4/NF-kB
signaling pathway (120). However, a recent study has shown
Frontiers in Oncology | www.frontiersin.org 6
that sEVs released by breast cancer cells with higher expressing
of NFAT3 could inhibit cancer cell invasion; the underlying
mechanisms are under extensive investigation (121). It is widely
accepted that tumor-associated sEVs are key modulators of
immune responses, exerting anti-inflammatory or pro-
inflammatory effects. Therefore, sEVs can be used as robust
biomarkers to predict cancer prognosis and response to
immunotherapy (122).

Nucleic Acid Biomarkers
In addition to protein sEV cargoes, nucleic acids contained in
sEVs have also emerged as promising biomarkers. Nucleic acid
components include DNA, coding mRNA, and non-coding RNA
(ncRNA) molecules (13, 123). Double-stranded (ds)
mitochondrial and genomic DNA molecules have been
detected in serum sEVs from cancer patients (124, 125).
Importantly, sEV dsDNA reflected driver mutations in patients
with pancreatic cancer (50, 126, 127). In addition to shared
genetic mutation patterns, sEV DNA and genomic DNA have
similar nucleic acid modifications. Thakur et al. have identified
shared methylation patterns between sEVs DNA and
FIGURE 2 | Clinical applications of sEVs TAA, tumor-associated antigens; DAMPs, damage-associated molecular patterns; NKG2D, Natural Killer Group 2D
receptor ligands.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Small Extracellular Vesicle Cancer Management
chromosomal DNA from parental cells, suggesting that sEV
DNA methylation analysis might have strong clinical
implications (126).

Ten HCC-related mRNAs in sEVs were identified by EV
Click Chip analysis and these mRNAs could be used to
accurately detect early-stage HCC (128). A scoring system
based on these mRNAs was superior in distinguishing HCC
patients from liver cirrhosis patients. Compared with traditional
serum AFP tests, this system provided a higher area under the
curve (AUC) of 0.69 versus 0.93, 0.68 versus 0.91, and 0.70 versus
0.92, according to BCLC stage 0-A, Milan criteria, and UNOS
DS criteria respectively (128). These data provide strong
evidence of sEV mRNA uti l izat ion for ear ly-stage
cancer detection.

ncRNAs, such as microRNAs (miRNAs), circular RNAs, and
long ncRNAs (lncRNAs), are also abundant in sEVs (36, 129).
The levels of certain miRNAs have been associated with cancer
development and progression (130–132). Several studies have
shown that, in HCC patients, high levels of miR-92a-3p in
circulating HCC-derived sEVs were associated with HCC cell
proliferation and poor overall survival (130, 133, 134). In
multiple myeloma-derived sEVs, let-7b, and miR-18a levels
accurately stratified patients according to survival outcomes
(132). Although one or two specific miRNAs could strongly
predict cancer prognosis, a recent study has shown that using a
miRNA signature improves the sensitivity and specificity of sEVs
as biomarkers (135–137). A miRNA cluster from breast cancer-
derived circulating sEVs has been confirmed as a predictor for
bone metastasis and is currently under investigation as a new
therapeutic target (138).

ncRNAs from sEVs are also promising clinical biomarkers. In
cholangiocarcinoma, several lncRNAs (139) and circular RNAs
(140, 141) from circulating sEVs have been correlated with
metastasis and have been proposed as cancer biomarkers (142).
An ongoing clinical trial is investigating the ability of a group of
serum lncRNAs to detect early-stage lung tumors to improve
clinical outcomes (143).

An obstacle in the discovery of liquid cancer biomarkers is the
low yield of sEV isolation methods, which are not yet suitable for
clinical practice. Genetic engineering of donor cells and
manipulating the cell culture medium have been employed to
scale up the isolation of sEVs (144). Furthermore, many
techniques have been established to purify sEVs based on their
unique physicochemical and biochemical properties (145, 146).
Particularly, sEV isolation by size-exclusion separation
chromatography can significantly reduce the sEV damage and
protect sEV nucleic acids and other cargoes (145).

Lipid Biomarkers
Compared with sEV proteins and nucleic acids, sEV lipids have
been studied less as cancer biomarkers, possibly due to the
limited diversity in sEV lipids and the limitations of lipid
analysis techniques. In 2003, distinct lipid patterns were
identified in sEVs from human B cells. The accumulation of
certain lipids and a relatively higher lipid-to-protein ratio were
also validated in sEVs secreted by colorectal cancer cells and
prostate cancer cells (Figure 2) (59, 147). Recent studies
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evaluated the lipidomic profiles of cancer-derived sEVs. Cheng
et al. have demonstrated that sEVs from human ovarian cancer
cells SKOV-3 had higher amounts of cholesterol esters and
zymosterol species than sEVs derived from a different human
ovarian epithelial cancer cell line (HOSEPiC), indicating that the
lipid profile of sEVs could indicate the origin of sEVs (148).
However, considering that these cholesterol esters assemble
dynamically into lipid rafts and are rapidly exchanged between
neighboring cells, future studies are warranted to determine the
feasibility and sensitivity of using cholesterol esters as
cancer biomarkers.
MODIFIED SMALL EXTRACELLULAR
VESICLES FOR CANCER THERAPY

In the past decade, we have witnessed the exponential growth of
sEVs modification strategies. These strategies could be classified
into two types according to the source of parental cells: altering
sEVs from unmodified parental cells and harvesting sEVs from
well-modified parental cells (Figure 3).

Alteration of Small Extracellular Vesicles
From Unmodified Donor Cells
Increasing Targeting Ability of Small Extracellular
Vesicles
Numerous efforts have been made to increase the targeting
ability of modified sEVs. Aminoethylanisamide-polyethylene
glycol (AA-PEG) vector moiety targeting the sigma receptor on
cancer cells was integrated into sEVs from macrophages via
crosslinkers (149) (Figure 2). Compared with unmodified
parental sEVs, modified sEVs accumulated in cancer cells and
prolonged overall survival in mice (149). Tian et al. established
an efficient and rapid method to add integrin avb3 targeting
peptides [c(RGDyK)] onto the sEVs via crosslinkers, considering
the high expression of integrin avb3 on the surface of reactive
vascular endothelial cells (150) (Figure 3). Although this
technology was initially employed in cerebral ischemia models,
it can be adapted for anti-angiogenesis therapy in cancer models,
given the role of integrin avb3 in promoting tumor angiogenesis
(151). Modified nucleic acids could also be used for targeted
delivery. Pi et al. developed an innovative method to anchor
arrow-shaped RNA nanoparticles, known as aptamers, on the
surface of sEVs, which carried therapeutic siRNA and miRNA
(152). These aptamers could be stably attached to the external
surface of the membrane due to their unique configuration and
the cholesterols added to their tails (152) (Figure 3). The
aptamers specifically recognized surface cancer markers, such
as EGFR in breast cancer and PSMA in prostate cancer, thus
guiding the sEVs to cancer cells (152).

Compared with EVs from genetically engineered donor cells,
surface-modified purified sEVs provides more options in terms
of conjugated ligands. However, how to protect sEV structure
and cargoes from acidic environments and high-speed
centrifugation in the modification process are critical
challenges that need to be addressed.
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Loading Isolated Small Extracellular Vesicles With
Functional Molecules
Compared with liposomes, carbon nanoparticles, and other
artificial drug delivery systems, autologous sEVs are less toxic
and immunogenic (153, 154). sEVs can also target tumor cells
and immune cells with a higher specificity than liposomes and
are ideal drug delivery vehicles (155, 156). Numerous efforts have
been made to engineer isolated sEVs and donor cells (Figure 3).
Some commercial kits have been available for loading nucleic
acids into sEVs (64). The techniques used to load sEVs with
Frontiers in Oncology | www.frontiersin.org 8
various cargo include free-thaw cycles to fuse sEVs and
liposomes, sonication, extrusion, permeabilization with
saponin, and electroporation (157–159). Electroporation is
commonly used to transfer small interfering RNAs (siRNAs)
and other cytotoxic agents into sEVs (160–164). Particularly,
mesenchymal stromal cell-derived sEVs loaded with siRNA or
other oligonucleotides specific for oncogenic KrasG12D strongly
inhibited KrasG12D expression in pancreatic ductal cancer cells
and inhibited orthotopic tumor growth (162). Importantly, sEVs
loaded with KrasG12D-targeting siRNA significantly suppressed
FIGURE 3 | Modified sEV as anticancer therapies.
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pancreatic cancer growth in mice (162). The strong antitumor
effects of these modified sEVs were attributed to their high CD47
levels, which protected sEVs from macrophage-mediated
elimination (162). Recently, Faruqu et al. used electroporation
to transfer siRNAs into sEVs from human embryonic kidney
cells (HEK-293 cells); these modified sEVs were internalized by
pancreatic cancer cells with high efficiency, providing a standard
procedure for making s iRNA-containing sEVs via
electroporation (164) (Figure 3). Although sEV loading by
electroporation may cause less damage than the genetic
modification of donor cells, RNA precipitation and altered
biochemical and physiochemical features of the membrane
during electroporation are critical challenges that need to be
addressed (165).

Therapeutic Small Extracellular Vesicles
From Modified Donor Cells
Enhancing the Targeting Ability of Small Extracellular
Vesicles
Although the ability of sEVs to target different cell types has been
well demonstrated, their targeting ability as a drug delivery
system can be further enhanced by introducing targeting
molecules into the donor cells, which release the targeting
ligand-enriched sEVs. The neuron-targeting peptide RVG has
been successfully conjugated with Lamp2b, a transmembrane
protein abundantly found on the surface of sEVs (161, 166). This
reconstructed protein enabled the delivery of therapeutic siRNA-
packaged sEVs to neurons, maximizing their safety and efficacy
(161). Although this method was primarily tested in mouse
models of neurodegenerative diseases, it provided an optimized
method to improve the targeting ability of sEVs. Recently,
HEK293T cell-derived sEVs with Lamp2b-anti-HER2 affibody
fusion protein were shown to selectively bind HER2-expressing
colon cancer cells, delivering 5-fluorouracil and miRNA
inhibitors to tumor cells and suppressing tumor growth
(Figure 3) (167).

Significant progress has also been made in combining various
nanoparticles and sEVs via chemical modification of donor cell
membranes, providing a novel method to generate therapeutic
sEVs. For instance, nanobodies attached to the sEV surface via a
glycosylphosphatidylinositol (GPI) linker can recognize different
therapeutic targets, such as EGFR expressed on tumor cells
(Figure 3) (168, 169).

Chemotherapeutics Cargo
Modification of donor cells is another strategy to load anticancer
agents into sEVs and improve the targeting ability of sEVs. An
early study showed that paclitaxel-treated donor cells secreted
paclitaxel-containing sEVs, which significantly inhibited the
proliferation of pancreatic cancer cells in vitro (170). Guo et al.
designed a novel system to generate methotrexate (MTX)-loaded
EVs from UVB-irritated donor cells treated with MTX
previously (Figure 3) (171). These EVs (30–930 nm in
diameter) remarkably increased the overall survival of mice
with malignant pleural effusion and decreased pleural effusion
in a small group of patients with late-stage lung cancer (171).
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These preliminary findings open a new avenue for the
production of therapeutic EVs by manipulating donor cells.
However, the clinical implementation of this method is
hindered by several factors. Importantly, a balance between
achieving an ideal loading efficacy and minimizing cytotoxicity
caused by co-incubation with chemotherapy drugs is required.
The stability of the pharmaceutics in the cytoplasm is another
key concern, given that some commonly used drugs (e.g.,
cisplatin and paclitaxel) can be inactivated by intracellular
enzymes (170, 172, 173). Indeed, isolated sEVs, rather than
intact donor cells, have been regarded as more suitable carriers
to transport chemotherapeutics because of the limitations of
current techniques and platforms.

Protein Cargoes
Single Soluble Proteins
Transfecting donor cells with vectors carrying genes of interest is
a possible method to generate sEVs enriched in specific proteins.
Previous studies have reported the successful generation of sEVs
carrying 5-fluorocytosine-activating enzymes by transfecting
293T cells; co-administration of these sEVs with 5-
fluorocytosine significantly inhibited the proliferation of
glioma cells (Figure 3) (174, 175). The feasibility of this
method has been validated by a study showing that caspase-1-
containing sEVs released from transfected 293T cells inhibited
the growth of schwannoma cells without causing significant
neurotoxicity (176). However, this sEV generation approach
has been used less than the production of siRNA/miRNA-
enriched sEVs. One of the challenges in producing soluble
protein-enriched sEVs is the cytotoxicity to parental cells
caused by the overexpression of these proteins, which
significantly reduces sEVs production yield and alters sEV
composition (174). Another obstacle is the complexity of the
protein sorting and trafficking system involved in sEV
biogenesis. This system randomly delivers target proteins into
sEVs, hindering the reproducibility of the method (174, 177).
Therefore, other approaches have been established to specifically
transport target proteins into sEVs, including conjugation of the
target protein with sEVs-associated proteins and ubiquitination
of target proteins.

Recombinant Proteins
Enhancing the expression of target proteins and exogenous
leader peptide complexes in donor cells has emerged as a
promising method to generate sEVs. Viral envelope proteins
are an ideal source of leader peptides. The mechanisms
underlying viral recognition of target cells and viral spread via
cellular vesicles have been extensively studied for decades, and
several links between viral proteins and sEV biogenesis have been
identified (178, 179). Viral proteins can be delivered to sEVs by
using endosomal sorting complexes required for transport
(ESCRT). CD8 ectodomain-Env chimeric protein was loaded
to K562 cell-derived sEVs by the interaction of the Env protein of
the bovine leukemia virus with ESCRT (180). A mutated HIV-
Nef protein, also known as NefMuf, was transported to sEVs
without causing significant damage, indicating its potential to
lead target molecules to sEVs (181–183). Manfredi et al. designed
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a NefMuf/E7 DNA carrier to incorporate NefMuf-HPV E7 fusion
protein into 293T cell-derived sEVs (184). The HPV E7 protein
conjugated to the C-terminal of NefMuf accumulated in the sEVs;
these sEVs remained intact and activated anti-E7 CD8+ T cells,
inhibiting TC-1 tumor cell proliferation in mice (Figure 3) (184).
Vesicular stomatitis virus glycoprotein (VSVG) among other
viral proteins, has also been used as leader peptides to target
fusion proteins into sEVs (185). Therefore, viral leader peptides
may provide a novel avenue to produce therapeutic sEVs.

Interestingly, some intracellular signal tags have been
demonstrated to facilitate the targeted delivery of modified
molecules to sEVs. Cheng et al. reported that recombinant
proteins with C-terminal ubiquitination were ten times more
likely to be loaded into HEK 293 cell-derived sEVs than
unmodified isoforms (186); sEVs carrying ubiquitin (Ub)-
tagged proteins boosted T cell responses (Figure 3) (186).
Additionally, monoubiquitinated syntaxin 3 (Stx3) was rapidly
internalized from the basolateral plasma membrane and was
secreted apically into sEVs along with Stx3-binding partners
(187). However, mutated forms of Stx3 that cannot be
ubiquitinated could not be loaded into sEVs and reduced the
shedding of human cytomegalovirus (HCMV) from infected
cells, highlighting this to be a promising approach to produce
customized sEVs (187). Besides, some plasma membrane
anchors, such as N-terminal myristoylation and palmitoylation,
selectively guided fusion proteins to sEVs (188). Sterzenbach
et al. labeled Cre recombinase with WW tag, a signal peptide
recognized by NDFIP1 involved in ESCRT system assembly. The
modified Cre recombinase was ubiquitinated and loaded into
sEVs (189). Interestingly, the recipient cells underwent Cre-
mediated genomic editing after sEV internalization, opening a
new avenue for reversing oncogenic mutations in tumor cells
(Figure 3) (189).

However, one problem of using reconstructed proteins is the
fragility of signal peptides during sEV biogenesis (166). Besides,
whether these cargo modifications work independently of the
ESCRT machinery is still under debate. Studies have shown that
ubiquitinated MHCII b-chain levels were withdrawn from the
cell surface and accumulated into secretory sEVs (190, 191). In
contrast, Gauvreau et al. argued that MHCII molecules are
loaded into sEVs via a ubiquitin-independent pathway (192).
Additionally, it remains unclear whether these tags, especially
ubiquitin, induce the degradation of fusion proteins by
proteasomes and alter the therapeutic effects of sEVs.
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Another possible method to generate therapeutic ligand-
enriched sEVs is the conjugation of target proteins with
constitutive sEV proteins, especially transmembrane proteins
and peptides. These hybrid proteins have successfully been
delivered to sEVs and the antitumor effects of these sEVs are
under investigation (193) (Table 2). For example, CD9 is
abundantly found on the sEV surface. Yim et al. developed an
optically controlled delivery system by using the interaction
between cargo-photoreceptor cryptochrome 2 (CRY2) soluble
protein and CIBN-CD9 membrane complex. Under blue light,
the interaction between CIBN and CRY2 subunits attaches the
cargo protein to the intraluminal site of the sEV membrane, and
the cargo can be released into the intraluminal space in the
absence of blue light (Figure 3) (205). Moreover, sEVs from
genetically engineered immune cells, a widely used
immunotherapy, can deliver specific proteins to desired organs
and cells. Compared with chimeric antigen receptor (CAR)-T
cells, sEVs from CAR-T cells caused less severe cytokine release
syndrome and comparable antitumor effects in mouse models
(206). Moreover, CAR-T cell-derived sEVs with minimal PD-1
expression are less immunosuppressive than CAR-T cells, which
express higher levels of PD-1 (206). Therefore, more research is
needed to validate these promising preclinical findings and
confirm the therapeutic effects of CAR sEVs in patients.
Additionally, the ability of CAR sEVs to improve the safety
and antitumor efficacy of CAR-T cell therapy merit
further investigation.

Nucleic Acid Cargo
Due to their natural characteristics, such as low homing in the
liver and better penetration across the blood-brain barrier, sEVs
have been utilized as reliable bio-shuttles for gene therapy,
especially delivering brittle nucleic acid agents to target cells
(207). Since miRNA and siRNA are the most favorable tools to
regulate genomic expression, many efforts have been made to
produce sEVs containing miRNAs as therapeutic agents by
transfecting donor cells with DNA vectors (208). sEVs from
mesenchymal stem cells carrying miR-122 expression plasmids
delivered enormous amounts of miRNAs to liver cancer cells,
sensitizing xenograft tumors to sorafenib (209). Abels et al.
isolated miR-21-enriched sEVs from transfected glioma cells;
these sEVs were internalized by microglia and suppressed the
expression of specific mRNA targets (210). Although cell
transfection is a simple and feasible approach to generate
TABLE 2 | Proteins or peptides providing potential modification targets to load therapeutic agents.

Proteins or peptides Characteristics reference

CD63, CD9, CD81 Tetraspanin (194–196)
MHC Membrane-anchored (197)
SCAMPs Secretory carrier-associated membrane protein (193)
EGF VIII Transmembrane glycoprotein (198)
LAMP2B, LAMP1 Lysosome-associated membrane glycoprotein 2, lysosome-associated membrane glycoprotein 1 (199, 200)
PDGFR TM domain Cell surface tyrosine kinase receptor (201)
VSVG Vesicular stomatitis virus glycoprotein (185)
HSP90, HSP70, HSP50 Heat shock protein (202, 203)
WW tag Recognized by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into sEVs (189)
ALIX-1 Cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 (204)
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siRNA-enriched sEVs, cytoplasmic siRNA instability and
miRNA-mediated cytotoxicity in donor cells are challenges
that remain to be addressed.
OTHER THERAPEUTIC APPLICATIONS OF
SMALL EXTRACELLULAR VESICLES IN
CANCER

Depletion of Cancer Cell-Derived Small
Extracellular Vesicles
Given that cancer cell-derived sEVs promote cancer progression
and metastasis, the depletion of circulating oncogenic sEVs has
been proposed as a method to suppress cancer progression (172,
211). In xenograft mouse models of human breast cancer,
administration of anti-CD9 and anti-CD63 antibodies
suppressed the spread of cancer cells to lymph nodes, lungs, and
the thoracic cavity by targeting cancer-derived sEVs carrying CD9
and CD63 (212). Subsequent studies have demonstrated the
preferential internalization of antibody-tagged sEVs by
macrophages, suggesting that blocking specific surface protein
biomarkers on sEVs could be a promising anticancer strategy (212).

Aptamer-modified nanoparticles were employed to transport
circulating lung cancer-derived sEVs from the circulation to the
intestinal tract; these agents inhibited sEV-induced metastasis in
mice. Notably, EGFR-targeting aptamers were attached to
positively charged mesoporous silica nanoparticles, and when
they were injected intravenously, they recognized circulating
EGFR+ sEVs. sEVs-nanoparticle complexes were uptaken by
Kuffer cells and secreted into the bile; their elimination from
the circulation suppressed cancer cell metastasis (211). Hence,
selective depletion of circulating oncogenic sEVs can improve
therapeutic outcomes in cancer patients and imply various
potential clinical applications.

Chemotherapy and radiotherapy can cause the accumulation
of DNA fragments in the cytoplasm of cancer cells and some
DNA pieces are disposed of into sEVs (213–215). As sEVs could
remove damage-associated molecular patterns (DAMPs) from
source cells to maintain intracellular homeostasis, inhibiting
sEVs secretion can increase DAMPs levels in the cytoplasm,
triggering cancer cell apoptosis (214). Cannabidiol, ketotifen,
and simvastatin can block sEV biogenesis and release from
cancer cells and monocytes through various mechanisms,
which amongst others are linked to mitochondrial dysfunction
and calcium dysregulation, thereby reversing chemotherapy
resistance and magnifying antitumor immune responses (216–
219). Interestingly, these inhibitors target different steps of sEV
biogenesis and secretion; thus, combination therapies could
synergistically inhibit sEV secretion.

Small Extracellular Vesicles as Vaccines
Numerous research has focused on developing cancer vaccines to
augment antitumor immunity. In April 2001, the US Food and
Drug Administration (FDA) approved Provenge® (sipuleucel-T)
as the first cancer vaccine to treat metastatic, hormone-resistant
prostate cancer (220, 221). Unlike traditional prophylactic
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vaccines against infectious diseases, this anticancer vaccine
primes DCs with prostate cancer-associated antigens in vitro,
and the activated DCs are then re-infused into patients (222). In
a phase III trial, sipuleucel-T significantly prolonged the overall
survival of 127 patients with metastatic prostate cancer survival
without causing significant toxicity (223). However, not all
clinical trials of sipuleucel-T showed encouraging results (224),
raising the need for further investigation of the clinical efficacy of
sipuleucel-T. The inconsistent clinical outcomes may be due to
the variable sensitivity of DCs to immunosuppressive molecules,
and the cost of priming and storing autologous DCs is very high.
Therefore, we wonder whether cell-free vaccines, such as sEV-
based vaccines, could facilitate antitumor immunity. Cancer cell-
derived sEVs could carry numerous tumor-associated
neoantigens, MHC class I molecules and HSP70, which are
recognized as the stimulus for the immune response against
cancer (225, 226). Rao et al. showed that HCC-derived sEVs
could carry several HCC-associated antigens and trigger a
stronger tumor suppression than cell lysates in murine HCC
models (227). Biopsy showed improved HCC tumor
microenvironments by sEVs, with increased T lymphocyte
infiltration, elevated IFN-g and decreased interleukin-10
expression, indicating sEV cancer vaccines as competent
immune modulators (227).

DAMPs involved pathways have also been reported in the
application of sEV cancer vaccines. Due to the hypoxia,
malnutrition and cytotoxic agents in tumor microenvironments,
misfolded proteins accumulate in cancer cells and trigger
endoplasmic reticulum (ER) stress (228). ER stress could promote
MVB formation and the release of the DAMPs-rich sEVs, which
could inhibit tumor progression via an inflammatory response
(229, 230). DNA fragments resulted from chemotherapy are a well-
known example of DAMPs. For instance, chromosomal DNA-rich
sEVs fromcancer cells treatedwith topotecan activatedDCs via the
cGAS-STING signaling pathway, thereby inducing cancer cell
apoptosis and inhibiting tumor progression (213, 231, 232).
Given that these sEVs may promote antitumor immunity, careful
selection of DNA-containing sEVs subpopulations is critical.

Furthermore, sEVs from irradiated cancer cells could inhibit
the growth of nearby nonirradiated cells, a phenomenon known
as the radiation-induced bystander effect (RIBE) (233).
Numerous sEV contents have been identified to mediate the
RIBE, including cytokines, antigens, free radicals, and immune
modulators (234, 235). For instance, high levels of miR-1246
have been detected in sEVs from irradiated BEP2D cells, and
miR-1246 has been shown to inhibit non-homologous end
joining (NHEJ) and the proliferation of unirradiated recipient
cells (236). Besides, several studies have shown that adjusting
wavelengths and doses of electromagnetic radiation could
remarkably alter the number of sEVs produced by
mesenchymal tissues and tumor cells via several mechanisms,
such as the activation of Wnt signaling and enhanced p53
expression (228, 235, 237, 238). These results indicate that not
only the contents but the number of sEVs might account for
RIBE, which varies with the adaptation of radiotherapy
modalities. In a recent study, Wan et al. reported that injecting
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irradiated lung cancer cell-derived EVs with a mean diameter of
approximately 400 nm into the pleural space activated
macrophages and significantly prolonged overall survival in a
pleural malignancy mouse model (239). Therefore, we wonder if
the administration of larger EVs in addition to sEV vaccines
could significantly augment the antitumor immunity. These
inspiring results have deepened our understanding of RIBE,
indicating advanced clinical strategies when managing patients
with inoperable cancerous lesions.

Although tumor cell-derived sEVs could perform as potential
cell-free vaccines, the culture and expansion of patients’ tumor
cells in vitro is time-consuming in clinical practice. Malignant
effusion, such as ascites from colorectal cancer (CRC) patients,
provides an approachable source of adequate tumor cell-derived
sEVs. Dai et al. conducted a phase I clinical trial of treating CRC
patients with either ascites-derived sEVs alone or the sEVs plus
GM-CSF. The combination regimen (sEVs plus GM-CSF)
showed remarkable tumor inhibition and confirmed biosafety
while administering sEVs alone did not achieve a significant
therapeutic effect (240). This study offered a convenient and safe
method to harvest autologous sEVs, but the researchers did not
compare the clinical outcomes of using GM-CSF alone with the
combinatory therapy, requiring more investigation to
demonstrate how ascites-derived sEVs enhance antitumor
immunity in conjugation with immune-modulatory
cytokines (240).

Some immune cells-derived sEVs could also regulate
antitumor immunity. DC-derived sEVs (DEVs) carry peptides/
MHC complexes, costimulatory molecules, such as CD80 and
CD86, and tumor-associated antigens to prime T cells directly in
vitro (241). However, in vivo experiments showed that DEVs
Frontiers in Oncology | www.frontiersin.org 12
were less able to prime naïve T cells via direct sEVs-to-T cells
interaction (240). Instead, DEVs could be internalized into or
fuse with nearby APCs and tumor cells, followed by the antigen
presentation on the surface of these recipient cells indirectly
(242). Zitvogel et al. reported that cancer cells cocultured with
DEVs could more efficiently reactivate previously primed T cells,
showing the higher expression of interferon-g (IFN-g) (243)
Besides, DEVs possess Natural Killer Group 2D receptor
ligands (NKG2D-L), which bind to NKG2D on NK cell surface
and activate NK cells; the tumor necrosis factor (TNF) in these
sEVs could enhance the INF-g release from NK cells (244). A
completed phase II clinical trial conducted in advanced lung
cancer patients confirmed the biosafety and activation of NK
cells when using DEVs as the maintenance immunotherapy
(245). Therefore, DEVs in combination with NK cells for
cancer immunotherapy should be considerable.

Cytotoxic T cells (CTLs) are key regulators in antitumor
immunity and many methods have been adopted to reactive
CTLs in tumor microenvironments. One of the problems when
applying these methods is that CTLs can hardly penetrate the
dense stromal barriers, which shield cancer cells from the CTL-
mediated cytotoxicity. As nano-sized particles with the better
penetration across biological barriers, CTL-derived sEVs could
efficiently approach the lesions, carry TCR and costimulatory
molecules to bind to peptides/MHC complexes and contain
cytotoxic enzymes to trigger targeted cell death (246). A recent
study reported that with the stimulation of IL-12, high-affinity
CTLs could secrete sEVs that activated low-affinity CTLs to
produce more granzyme B and IFN-g (247). However, Xie et al.
reported that sEVs from exhausted CD+8 T cells could impair
the activity of functional CD+8 T cells and a set of lncRNAs
TABLE 3 | Registered clinical trials of sVE-related cancer therapies.

Disease Drug EV source Phase, status Registration number

Metastatic pancreatic
cancer

KRASc G12D siRNA MSCd-derived sEVs Phase I
Recruiting

NCT03608631a

Malignant pleural effusion Methotrexate Microparticles N/A
Recruiting

NCT04131231a

Methotrexate Autologous tumor-derived microparticles Phase II
Recruiting

NCT02657460a

Chemotherapeutic drugs Tumor cell-derived microparticles Phase II
Unknown

NCT01854866a

Head and neck cancer Grape extract Plant sEVs Phase I
Active, not
recruiting

NCT01668849a

Hemopurifier
pembrolizumab

Blood-derived sEVs N/A
Not yet recruiting

NCT04453046a

Colorectal cancer Curcumin Plant sEVs Phase I
Active, not
recruiting

NCT01294072a

Non-small cell lung cancer Antigens Tumor DEV2e Phase II
Completed

NCT01159288a

Hepatocellular carcinoma DC-derived vaccine Hepatic liver cells or other solid tumor
cells

Phase I and II
Not yet recruiting

ChiCTR1800020076b
March 2021 | Volu
aThe NCT# refers to a registered National Clinical Trial (NCT), which can be found at Clinicaltrials.gov.
bChiCTR# refers to a registered Chinese Clinical Trial (CHiCT), which can be found at Chictr.org.cn.
cKirsten Rat Sarcoma (KRAS).
dMesenchymal Stem Cells (MSC).
eDendritic Cell-Derived sEVs (DEV).
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involved in the immunosuppression was identified (246). These
paradoxical discoveries allow us to better understand the
multiple functions of CTL-derived sEVs under different
circumstances and intravital imaging could provide a powerful
tool to directly observe the interaction between sEVs vaccines
and recipient cells (248). Other source cells for producing
therapeutic sEVs have been disclosed, such as NK cells (249),
myeloid-derived suppressor cells (MDSCs) (250), tumor-
associated macrophages (159), mast cells (251) and neutrophils
(252), which shed light on the systemic study of disorganized
antitumor immunity.
CLINICAL TRIALS ON THERAPEUTIC
SMALL EXTRACELLULAR VESICLES

As of October 4, 2020, nine clinical trials testing sEVs as potential
therapeutics have been registered on ClinicalTrials.gov and
Chictr.org.cn (Table 3). No sEV-derived therapeutics have
been approved by the US FDA or the Chinese National
Medical Products Administration (NMPA). The evaluation of
the safety and therapeutic efficacy of sEVs remains a significant
clinical challenge caused by the lack of understanding of sEV
biogenesis and functions. Besides, the pharmacokinetic
characteristics of sEVs, such as the rapid clearance through the
liver and kidneys, are factors limiting their therapeutic efficacy
(201, 253). Notably, nanoparticle drug delivery systems have
been approved by the FDA as anticancer agents because of their
excellent performance in maximizing the efficacy and
minimizing the side effects of chemotherapy (254). Therefore,
advancing sEV therapeutics using similar techniques as those
used for nanoparticles, such as fusing liposomes with sEV
membrane (159) to increase the cellular uptake, improve the
performance of sEVs as drug delivery vehicles. Recently, some
biotechnology companies have announced plans to start sEV-
related clinical trials as early as 2020, providing hope for the
clinical application of sEVs (251).
CONCLUSION

In this review, we discuss the role of sEVs in cancer development
and the recent advances in using sEVs to diagnose and treat
various cancers. Despite significant progress in this field, several
important issues remain to be solved. For instance, how to obtain
homogenous sEVs subpopulations and distinguish between
Frontiers in Oncology | www.frontiersin.org 13
oncogenic sEVs and antitumor sEVs are significant obstacles in
translating these scientific findings into clinical practice. Here,
we propose several possible solutions. First, future studies are
required to deepen our understanding of sEV biology, such as
intraluminal components in different experimental conditions
and various downstream events when sEVs are internalized by
recipient cells. Second, advanced techniques for large-scale sEV
production and purification are in demand. A combinatory
approach consisted of immune-magnetic isolation, size-
exclusion chromatography, and centrifugation could increase
the homogeneity of final products (65, 144, 252, 255, 256).
However, this approach could reduce the yield of sEVs due to
its multiple steps. Therefore, a balance between obtaining
homogenous sEV subpopulations and maximizing sEV yield is
required. Establishing a standardized nomenclature system and
elucidating the mechanisms underlying sEV biogenesis, release,
and interaction with surrounding cells are also required.

Although there are multiple ongoing clinical trials evaluating
sEVs as biomarkers for cancer detection andmonitoring, only a few
clinical trials are investigating the therapeutic effects of modified
sEVs; thus, the long-term safety and clinical efficacy of sEVs as
therapeutic targets or drug carriers remain unclear. In contrast to
using sEVs as drug carriers, inhibiting sEVs release and depleting
circulating sEVs are far less studied in preclinicalmodels since sEVs
clearance remains a challenge and the available sEV inhibitors
cannot selectively inhibit specific sEV subtypes (257). Besides, the
biodistribution and safety of sEVs absorption agents is still a major
clinical concern (258). Hence, collective efforts are required to
address the remaining technical challenges in the development of
sEV-based biomarkers and therapies.
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2. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD,

Andriantsitohaina R, et al. Minimal information for studies of
extracellular vesicles 2018 (MISEV2018): a position statement of the
International Society for Extracellular Vesicles and update of the
MISEV2014 guidelines. J Extracell Vesicles (2018) 7(1):1535750.
doi: 10.1080/20013078.2018.1535750
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