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Background. Chronic kidney disease (CKD) is characterized by progressive renal function loss, which may finally lead to end-stage
renal disease (ESRD). The study is aimed at identifying crucial genes related to CKD progressive and constructing a disease
prediction model to investigate risk factors. Methods. GSE97709 and GSE37171 datasets were downloaded from the GEO
database including peripheral blood samples from subjects with CKD, ESRD, and healthy controls. Differential expressed genes
(DEGs) were identified and functional enrichment analysis. Machine learning algorithm-based prediction model was
constructed to identify crucial functional feature genes related to ESRD. Results. A total of 76 DEGs were screened from CDK
vs. normal samples while 10,114 DEGs were identified from ESRD vs. CDK samples. For numerous genes related to ESRD,
several GO biological terms and 141 signaling pathways were identified including markedly upregulated olfactory transduction
and downregulated platelet activation pathway. The DEGs were clustering in three modules according to WGCNA access,
namely, ME1, ME2, and ME3. By construction of the XGBoost model and dataset validation, we screened cohorts of genes
associated with progressive CKD, such as FZD10, FOXD4, and FAM215A. FZD10 represented the highest score (F score = 21)
in predictive model. Conclusion. Our results demonstrated that FZD10, FOXD4, PPP3R1, and UCP2 might be critical genes in

CKD progression.

1. Background

Chronic kidney disease (CKD) is a syndrome characterized
by persistent kidney function loss. Patients suffered from
gradually reduced glomerular filtration rate (GFR) or kidney
damage over many years and finally lead to end-stage renal
disease (ESRD) [1]. An estimate of 10%-13% population is
affected by CKD in the United States and in China, and the
prevalence increases dramatically as the age prolonged [2].
Despite great improvements in understanding this disease,
the exact molecular mechanism of CKD progression remains
largely uncovered.

Genomic transcript analysis has been widely used in pre-
cision medicine studies, and it can provide an unbiased
description of genome changes in disease progression. Previ-
ous studies have identified differentially expressed genes in
ESRD. For example, diabetic nephropathy (DN) was a major

cause of ESRD, and a recent study identified the candidate
genes in the progression of DN by microarray dataset analy-
sis [3]; cohorts of hub genes were screened related to disease
progression, such as COL6A3, MS4A6A, and PLCEI. Dai
et al. performed the gene coexpression network analysis
and identified a series of hub genes associated with immune
functions in ESRD patients [4]. These types of genomic
profiles analysis could result in a highly robust prediction
for CKD progression.

WGCNA facilitated the summary and normalization of
methods and functions. Kim et al. successfully used the
WGCNA method to identify differentially expressed miRNA
in CKD to predict potential targets in CKD-mineral bone
disorder [5]. In this study, we are aimed at exploring the
genomic changes in CKD development and predict crucial
factors under ESRD conditions by constructing a disease
prediction model.
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2. Materials and Methods

2.1. Data Resource. Microarray datasets under access number
GSE97709 [6] and GSE37171 [7] were downloaded from the
GEO database, which were associated with peripheral blood
samples from subjects with CKD, ESRD, and healthy con-
trols. GSE97709 included 28 ESRD samples, 8 CKD samples,
and 12 normal samples. GSE37171 consisted of 75 ESRD
samples and 40 normal samples. The gene profile (Release
26, grch38.p10) related to annotation information was also
downloaded from the GENCODE database.

2.2. Screening the DEGs. Firstly, the microarray dataset
GSE97709 were normalized using betaqn methods in R soft-
ware. After data preprocessing, the limma package [8] was
used to screen DEGs between CDK groups and normal
groups. Thus, the major DEGs were also identified from
ESRD samples compared with CDK samples. In order to
reduce the false positives in sequencing results, Benjamini
and Hochberg method was used to correct the p values.
Adjusted p value < 0.05 and |logFC | >1 were considered as
thresholds.

2.3. Functional Enrichment Analysis for DEGs. Gene ontol-
ogy (GO) biological terms (Biology Process; Molecular Func-
tion; and Cellular Component) were annotated using online
tool DAVID [9] (version 6.7, https://david-d.ncifcrf.gov/),
and the results were visualized using GOplot [10], an R pack-
age for visually combining expressed dataset with functional
analysis. KEGG enrichment analysis was performed based on
Gene set enrichment analysis (GSEA, version 3.0) [11, 12].
The results with adj.p.value < 0.05 were considered as a
significant difference.

2.4. Weighted Coexpression Network Analysis. In this study,
we used the WGCNA package [13] (Version 1.61) to analyze
the functional modules, construct the coexpression networks,
identify gene cohorts, and calculate topological characteris-
tics. The expressed association was first calculated to identify
the correlation of two genes and the following adjacency
function definition and module division. The modules
contained more than 30 RNA and cutHeight = 0.99 was set
as thresholds.

The expression data of DEGs were extracted from gene
expression profiles together with the clinical characteristics
of patients. Then, the data matrix was normalized using the
betaqn method. Firstly, the input matrix was preprocessed
by screening the top 75% of genes with higher median devi-
ation values. The MAD values should be more than 0.01,
and genes with deleted expression values were also removed.
As for the network construction, the parameters were set as
follows: gene numbers in modules should be more than thirty
while correlation type (corType) was set as the Pearson
Correlation Coefficient.

2.5. Construction of Disease Prediction Model. In order to
explore the better subset of features for crucial genes predic-
tion, we selected a new method for mining feature subset,
such as XGBoost [14], Random Forest methods in the
Sklearn library (https://scikit-learn.org/), and supervised
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classified method SVM. Firstly, we integrated two data sets
GSE97709 and GSE37171 and extracted the coexpressed pro-
file data as feature subsets, which contained 11,629 genes.
GSE37171 dataset were mainly used for training and verifica-
tion of classification models. After feature selection, we con-
structed and selected the optimal classified models by using
the GridSearchCV method. Thus, the samples derived from
the dataset could be predicted whether to be kidney disease
according to their gene expression values. Here, we used
the preprocessing.scale method for data normalization.
Then, the samples were randomly divided into training set
and testing set at a ratio of 6:4 (random_state = 123).
Three-fold cross-validation was used to validate the perfor-
mance of the training model and parameters of class_
weight = “balanced” were added to eliminate the effect of
classification imbalance. Finally, accuracy analysis and
AUC area were considered as criteria for model evaluation
on the test set (mainly AUC area).

3. Results

3.1. DEGs Screening and Cluster Analysis. There were 19310
genes in the GSE97709 dataset. Under the same threshold
of adj.p.value<0.05 and [logFC|>1, we, respectively,
screened 76 DEGs from CDK vs. normal samples and
10,114 DEGs from ESRD vs. CDK samples (Figures 1(a)
and 1(b)). Among these genes, there were 56 upregulated
and 20 downregulated genes in CDK vs. normal groups,
while 4201 upregulated and 5913 downregulated genes in
the ESRD vs. CDK groups. Our results indicated that geno-
mic changes were prevalent in peripheral blood cells of ESRD
patients compared with CDK samples. Furthermore, there
were 51 DEGs that were significantly differentially expressed
both in the CDK and ESRD groups. The top ten DEGs that
were shown in the heat map represented that our cluster
analysis results can significantly visualize the DEGs between
the CDK vs. normal group, as well as ESRD vs. CDK group
(Figures 1(c) and 1(d)).

3.2. GO Enrichment Analysis. GO enrichment analysis was
performed for these DEGs. Firstly, there were no significantly
enriched GO terms for DEGs in the CDK vs. Normal groups.
Our results preliminarily indicated that there were fewer
changes in gene expression patterns of CDK status. As for
the numerous genes screened from the ESRD vs. CDK
groups, we set the [logFC|>5 as the threshold and finally
selected 1095 genes to identify related GO terms.

These DEGs were mainly enriched in 7 biological pro-
cesses (BP), 6 cell components (CC), and 6 molecular func-
tions (MF). The terms were involved in sensory perception,
immune system function, and several signaling pathways,
including detection of chemical stimulus involved in sensory
perception of perception (GO:0050911, p value = 1.26E-99),
sensory perception of smell (GO:0007608, p value = 1.68E-
25), detection of chemical stimulus involved in sensory per-
ception (GO:0050907, p value = 5.58E-20), natural killer cell
activation involved in immune response (GO:0002323, p
value = 8.54E-05), the G protein-coupled receptor protein
signaling pathway (GO:0007186, p value = 2.93E-83), and
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F1GURE 1: The volcano map and clustering analysis for the identification of differentially expressed genes in kidney disease. (a, b) The volcano
maps were used to visualize the differential expressed genes between CDK vs. Normal and ESRD vs. CDK samples. The adjusted p value < 0.05
and |logFC | 21 were considered as thresholds. Red dots represent upregulated gene while green dots represent downregulated genes. (c, d)
The clustering analysis results were visualized in a heat map to identify the top 10 differential expressed genes between differential groups

(CDK vs. Normal and ESRD vs. CDK).

adenylate cyclase-activating serotonin receptor signaling
pathway (GO:0007192, p value = 1.18E-04). The top five
terms were shown in Figure 2.

3.3. Gene Set Enrichment Analysis. According to the GSEA
method, we identified a total of 141 signaling pathways asso-
ciated with kidney disease. The categories with significant
differential expressed values were visualized in Figure 3.
Upregulated pathways included olfactory transduction, taste
transduction, neuroactive ligand-receptor interaction, and
autoimmune thyroid diseases. The normalized enrichment

score (NES) is the primary statistic parameter for examining
gene set enrichment results. Our results showed that
olfactory transduction exhibited the highest NES value
(Figure 3(c)). Olfactory receptors expressed in the olfactory
epithelium act a major role in olfactory transduction. Stimu-
lation of the olfactory receptor is involved in the promotion
of invasion and metastasis in cancer cells [15]. Furthermore,
the mutation of proteins (NPHP6; BBS1, and BBS4) in olfac-
tory epithelium can result in anosmia as well as renal cystic
disease [16]. In addition, several significantly downregulated
pathways were identified, including bacterial invasion of
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F1GURE 2: GO enrichment analysis results. (a) The top five components for biological processes, cell components, and molecular functions were
visualized. (b) Selection of top 8 GO terms and related differential expressed genes for construction of highly clustering phylogenetic tree.



International Journal of Genomics

Activated

KEGG_snare_interactions_in_vesicular_transport :.

KEGG_olfactory transduction
KEGG_primary_immunodeficiency
KEGG_proteasome
KEGG_systemic_lupus_erythematosus
KEGG_taste_transduction
KEGG_amyotrophic_lateral_sclerosis_(ALS)
KEGG_protein_export
KEGG_beta_alanine_metabolism
KEGG_bladder_cancer
KEGG_long_term_depression
KEGG_autoimmune_thyroid_disease
KEGG_primary_bile_acid_biosynthesis
KEGG_protein_digestion_and_absorption

KEGG_neuroactive_ligand_receptor_interaction

KEGG_nicotine_addiction

Suppressed | P-adjust

B

- 0.03

- 0.04

- 0.05

02 04 06 02 04 0.6
GeneRatio

Count
@
.40
.60

(a)

KEGG_olfactory transduction -

KEGG_taste_transduction -+

KEGG_neuroactive_ligand_receptor_interaction -+

KEGG_autoimmune_thifroid_disease -+
KEGG_amyotrophic_lateral_sclerosis_(ALS) -~
KEGG_longevity_regulating_pathway_multiple_species - -

KEGG_bladder_cancer -~

KEGG_synaptic_vesicle_cycle -+
KEGG_melanoma -+

KEGG_primary_immunodeficiency -+
KEGG_VEFG_signaling_pathway - -
KEGG_snare_interactions_in_vesicular_transport - -
KEGG_protein_export -~

KEGG_colorectal_cancer - 3

KEGG_beta_alanine_metabolism - 3

KEGG_FC_epsilon_RI_signaling pathway -~
KEGG_endometrial_cancer - -
KEGG_mitophagy_animal - -
KEGG_acute_myeloid_leukemia -+

KEGG_proteasome -+

KEGG_long_term_depression -
KEGG_leishmaniasis -

KEGG_vibrio_cholerae_infection - - -
KEGG_non_small_cell_lung_cancer - -

KEGG_epithelial_cell_signaling_in_helicobacter_pylori_infection -
KEGG_renal_cell_carcinoma - -

KEGG_adherens_junction - i

KEGG_shigellosis -
KEGG_pathogenic_escherichia_coli_infection -
KEGG_bacterial_invasion_of_epithelial_cells -

()

FiGure 3: Continued.

pvalue

- 0.0024

- 0.0020

0.0016



6 International Journal of Genomics

Olfactory transduction

Ranked list metric

Running enrichment score

T ‘ T ‘ T ‘ ;
0 5000 10000 15000 20000
Position in the ranked list of genes
(©

Platelet activation

Ranked list metric

Running enrichment score

: T : T : T :
0 5000 10000 15000 20000
Position in the ranked list of genes

(d)

FIGURE 3: Gene set enrichment analysis results to identify crucial signaling pathways related to chronic kidney disease. (a, b) The dotplot and
joyplot were constructed to visualize the up- and downregulated pathways associated to chronic kidney disease. (c, d) Representative
enrichment map was visualized for pathway categories in chronic kidney disease, including upregulated pathway olfactory transduction
and downregulated pathway platelet activation.
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epithelial cells, renal cell carcinoma, bladder cancer, and
phagocytic function. Among these downregulated pathways,
platelet ~activation represented higher NES values
(Figure 3(d)). Previous studies have shown that abnormal
platelet activity is closely associated with CKD and plays a
major role in renal failure [17-19].

3.4. Gene Module Mining and Weighted Gene Coexpression
Network Analysis. By combining the clinical information of
patients, we utilized the WGCNA methods to identify critical
DEGs from ESRD vs. CDK samples. Finally, a total of 821
genes were obtained, and these genes were clustering in three
modules, namely, ME1 (314 genes), ME2 (85 genes), and
ME3 (83 genes). As for the genes coexpressed in no one
module, we assigned these cohorts as MEO module.

The gene connections in each module were evaluated by
calculating the correlation coefficient (Table 1). It was obvi-
ous that the MEI had the highest module significance
(correlation coefficient = —0.63439902 and adj.p.value =
3.86e — 06) and contained the largest number of DEGs (314
genes) among these modules. So, further analyses were
focused on the DEGs in MEL. The results showed that
numerous genes with high-connection coeflicient values
were identified as hub genes in the MEl module
(Figure 4(c)). The top ten genes with higher values included
TMBIM6, REXO1L2P, MAPREI, LGALSL, DAPP1, CMPKI,
BRKI, YWHAQ, TBLIXR1, and PDE5A. Several genes have
been shown to be involved in the pathogenesis of nephropa-
thy, such as TMBIM6, BRK1, YWHAQ), and PDE5A; while
other genes were fewer reported (REXOIL2P, MAPREI,
LGALSL, DAPP1, CMPK1, and TBLIXRI).

We also identified three IncRNAs (WWC2-AS2, SH3RF3-
AS1, and DGCRY) as hub genes in the ME1 module, and coex-
pressed mRNA numbers were 6, 84, and 6, respectively. GO
enrichment analysis was performed for these coexpressed
mRNAs of SH3RF3-AS1. The biological terms were mainly
associated with extracellular exosome (adj.p.value = 7.4E — 8)
and focal adhesion (adj.p.value = 1.2E — 3).

3.5. Machine Learning Algorithm-Based Prediction Model of
ESRD. As for the 314 genes in the ME1 module, the expressed
values were extracted from two datasets (GSE97709 and
GSE37171). The corresponding sample was integrated and
finally obtained a total of 111 diseases (CDK and ESRD)
and 52 normal samples. Principal Component Analysis
(PCA) was performed according to the gene expressed values
in disease samples. The results showed that gene expression
values could be used as characteristics to distinguish disease
samples from normal samples (Figure 5(a)).

Several training models were utilized for cross-validation
of the dataset. The optimal parameters of different models
were calculated (Table 2), and the results showed that three
training model (GBDT, RF, and XGB) exhibited better preci-
sion and AUC values than other training models. XGB model
was identified as the optimal disease prediction model in this
study, in which the AUC area is 0.978, and the accuracy rate
was 90%.

By calculating the F score in the XGBoost model 14, 20],
we screened cohorts of genes associated with kidney disease

TaBLE 1: The correlation analysis for disease and gene modules
(ME1, ME2, and ME3).

Correlation adj.p.value (FDR)
ME1 vs. disease -0.63439902 3.86e-06
ME?2 vs. disease 0.44097924 1.71e-03
MES3 vs. disease 0.50514613 5.08e-04

Correlation: the correlation coefficient between modules and disease. FDR:
false discovery rate or adjusted p value.

progression and the top 20 genes were visualized
(Figure 5(c)), such as FZDI0, FOXD4, and FAM2I5A.
FZD10 represented the highest score (F score = 20), indicat-
ing that it played a major role in disease development.

4. Discussion

In this present study, we analyzed the mRNA expression pro-
files associated with peripheral blood samples from subjects
with CDK, ESRD, and healthy control. Large cohorts of
DEGs were identified from ESRD vs. CDK samples. Func-
tional enrichment results for these DEGs revealed that olfac-
tory transduction is markedly upregulated while the platelet
activation pathway is significantly reduced in disease pro-
gression. We focused on the gene modules mining. By using
the WGCNA method, several crucial genes and three
IncRNAs were related to progressive CDK. Based on the
XGBoost prediction model, FZD10, FOXD4, PPP3R1, and
UCP2 were identified as progressive-associated molecular in
CDK patients.

Multiple signaling pathways were abnormally expressed
in CDK progression. According to the GSEA method, plate-
let activation pathways were significantly downregulated
while olfactory transduction was upregulated. Patients with
ESRD could develop hemostatic disorders due to bleeding
diatheses, and platelet dysfunction was a major factor
responsible for hemorrhagic tendencies in advanced kidney
disease patients [21]. Our study revealed that abnormal
platelet function plays a major role in ESRD development,
which was consistent with previous contents. Olfactory func-
tion has been found severely impaired in chronic renal failure
patients, and the ability to discriminate and identify odors
was loss in general population [22]. Olfactory deficit was
involved in food aversion, anorexia, and malnutrition; and
these symptoms resulted in malnutrition, which was a major
factor of mortality in patients with ESRD [23, 24]. However,
the potential mechanism of olfactory function loss was still
unclear in patients with kidney disease. A randomized con-
trolled trial revealed that patients with ESRD represented a
higher olfactory threshold than control groups, and intrana-
sal theophylline therapy might result in olfactory improve-
ment [25]. Koseoglu et al. reported that nondiabetic
chronic renal failure also affects olfactory functions nega-
tively, and dialysis can improve olfactory function [26].
Olfactory receptors (ORs) are chemosensors responsible for
an individual’s smell function. A recent study suggested that
ORs are not only expressed in the nose but also found in
various other tissues including kidney tissue; one of the renal
olfactory receptor (Olfr1393) might contribute to the
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F1GURE 4: WGCNA of ESRD-related genes. (a). Hierarchical clustering dendrogram of genes. Cluster dendrogram was constructed according
to gene expressed values in each sample; (b) Hierarchical clustering heat map. Gene clusters in different colors represent for correlation-ship
of genes expressed values. A deep color indicated a higher correlation-ship among two genes. (c) Gene coexpression network and modules
related to ESRD. In the WGCNA network, the edge weight of 0.05 is considered as a threshold value for screening modules, and points
with different colors represented that the genes belong to different modules. (d) The correlation of module-membership and gene
significance. The x-axis represents the module-membership of genes in ME1 (the values range from 0 to 1). The y-axis represents the gene
significance for disease (the values range from 0 to 1). Regression analysis was performed on scatter plots to calculate the Pearson

correlation coefficient and corresponding p value.

development of type 2 diabetes according to regulate Na
+-glucose cotransportation in proximal tubule [27]. Our
results found that abnormal olfactory transduction pathways
were identified in ESRD patient’s samples, which indicated
its potential regulated role in CDK progression.

By construction of the XGBoost model, we screened
genes associated with progressive kidney disease, such as
FZD10, FOXD3/FOXD4, and FAM2I5A. Of these genes,
FZD10 might be hub genes for the highest feature importance
score. FZD10, also known as CD350, belongs to the frizzled
gene family. Most frizzled receptors are involved in the acti-
vation of the beta-catenin pathway, and the dysregulated
activation of Wnt/-catenin is found in various experimental
CKD models and human nephropathies [28]. Upregulated
FZD10 has been reported in multiple cancer types including
colon cancer, gastric cancer, and breast cancer [29], whereas
the precise roles of FZD10 in CDK were fewer reported.
FZD10 can interact with HIG2 protein to enhance the activa-
tion of WNT/S-catenin signaling, which was involved in the
growth of renal cell carcinoma [30]. Inhibited FZD10 expres-
sion via leflunomide treatment or RNAi targeting also caused
suppression of renal cancer cell growth [31]. Based on these
findings, we promoted that FZD10 might regulate CKD pro-
gression through the f-catenin pathway. Furthermore,
FOXD3/FOXD4 has been broadly reported as forkhead tran-
scription factors to regulate the generation and differentia-
tion of neural crest cells [32]. A recent study showed that
FOXD4 was identified as a novel biomarker for the diagnosis
and treatment of patients with CRC [33]. Serum FOXD3
expression was downregulated and associated with the diag-

nosis of patients with NSCLC [34]. However, whether
FOXD3/FOXD4 related to kidney disease remains unclear
and needs further investigation.

As for the other genes related to CKD, the function of
InRNA-FAM215A has been fewer investigated, and a meta-
analysis report showed that the high expression of FAM215A
was associated with longer overall survival in ovarian cancer
[35]. Inhabited FAM215A expression results in the increasing
death of melanoma cells [36]. UCP2 is an anion transporter
that regulated intracellular oxidative stress. Downregulation
of UCP2 has been related to several pathological sequelae in
animal models, particularly affected vasculature and kidney
[37]. Association analysis showed that the polymorphism of
UCP2 (-866G — A) was significantly (p < 0.05) associated
with CKD in Japanese individuals [38]. Additionally, there
were still some limitations in our studies. Firstly, putative
critical genes were identified according to established algo-
rithms of the predictive model, but none of these genes has
been validated experimentally in CKD. Moreover, the sam-
ples of CKD and ESRD were fewer, and more specimens
should be contained as well as corresponding clinical
information.

5. Conclusion

In summary, the results of microarray dataset analysis in our
study indicate that genomic expression changes were in cor-
relation with progressive CKD. According to prediction
model construction, FZDI10, FOXD3/FOXD4, PPP3R1, and
UCP2 were identified as progressive-associated molecular in
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under ROC curves indicated a better prediction feature of models. (c) The top 20 features were evaluated by the XGB model. F score
indicates the feature importance. A larger F score refers to the more importance of the gene in the XGB model.

TaBLE 2: The optimal parameters of different models were calculated for the validation of the test dataset.

Models Primary parameters Ac;:tre Y Auc
SVM Kernel = “rbf ; C = 1.0; degree = 3 0682 0717
L _ C=1.0; penalty = 11’ max _iter = 100 0606 0715
LogisticRegression

GBDT n_estimators = 100; learning rate =0.1; max __depth = 3; subsample = 0.8; min _samples_ 0.864 0.963

split =2

RandomForest n_estimators = 100; min _samples_leaf = 1; min _samples_split = 2 0.924 0.963
XGBoost max _depth = 3; min _child_weight = 1; gamma = 0; learning_rate = 0.1; n_estimators = 100 0.894 0.978
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CDK patients. Our study investigated the mechanism of
genomic expression changes in CKD and promoted a new
insight into the search for biomarkers with prognostic value
in CDK progression.
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