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Simple Summary: Thyroid cancer is the most common endocrine malignancy. However, the cyto-
logical diagnosis of certain malignant thyroid tumors and their benign counterparts is a challenge
for preoperative diagnosis, as nearly 20–30% of biopsied thyroid nodules are classified as having an
indeterminate risk of malignancy. Although multigene panels customized for thyroid cancer include
most of the known tumor driver genes, many thyroid samples have negative results for the tested
genes. To expand our knowledge, driver-negative samples were profiled by RNA-sequencing. Here,
we report novel gene variants that might be associated with the pathogenesis of thyroid tumors,
and show that driver-negative samples have two distinct expression signatures. We believe that our
findings will ultimately impact preoperative diagnosis on thyroid nodules and provide directions for
further experimental validation analysis.

Abstract: Thyroid cancer is the most common endocrine malignancy. However, the cytological
diagnosis of follicular thyroid carcinoma (FTC), Hürthle cell carcinoma (HCC), and follicular variant
of papillary thyroid carcinoma (FVPTC) and their benign counterparts is a challenge for preoperative
diagnosis. Nearly 20–30% of biopsied thyroid nodules are classified as having indeterminate risk
of malignancy and incur costs to the health care system. Based on that, 120 patients were screened
for the main driver mutations previously described in thyroid cancer. Subsequently, 14 mutation-
negative cases that are the main source of diagnostic errors (FTC, HCC, or FVPTC) underwent
RNA-Sequencing analysis. Somatic variants in candidate driver genes (ECD, NUP98, LRP1B, NCOR1,
ATM, SOS1, and SPOP) and fusions were described. NCOR1 and SPOP variants underwent validation.
Moreover, expression profiling of driver-negative samples was compared to 16 BRAF V600E, RAS,
or PAX8-PPARg positive samples. Negative samples were separated in two clusters, following the
expression pattern of the RAS/PAX8-PPARg or BRAF V600E positive samples. Both negative groups
showed distinct BRS, ERK, and TDS scores, tumor mutation burden, signaling pathways and immune
cell profile. Altogether, here we report novel gene variants and describe cancer-related pathways that
might impact preoperative diagnosis and provide insights into thyroid tumor biology.

Keywords: thyroid carcinoma; FTC; FVPTC; HCC; NRAS; BRAF; NCOR1; ECD; NUP98; SPOP;
expression profile
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1. Introduction

Thyroid cancer is the most common endocrine malignancy. Currently, it is the 5th
most common cancer in women in the United States and in Brazil [1–3]. Differentiated
thyroid carcinomas (DTCs) are the most common type of thyroid carcinoma (90%), which
can be subdivided into papillary thyroid carcinoma (PTC), follicular thyroid carcinoma
(FTC), and Hürthle cell carcinoma (HCC) [4,5].

PTC is the most common thyroid cancer subtype and constitutes more than 80%
of DTC. Over ten histologic variants of PTC have been described, classical (CVPTC) and
follicular variants (FVPTC) being the most common. Notably, FVPTC is the variant with the
highest rate of increase in the last decades [6,7]. The genetic events driving development
and progression of PTCs have been extensively studied and the majority of these changes
result in constitutive activation of the MAPK signaling pathway. Although the prevalence
of BRAF V600E mutation varies across populations, in most studies, it is reported as the
most prevalent genetic alteration in PTCs. RET/PTC fusions are the second most common.

FTC and HCC are two distinct tumor entities that have a more aggressive clinical
behavior compared to PTC, but less information regarding molecular events underlying
development and progression [6]. The preoperative differential diagnosis between the
malignant FTC and HCC and their benign counterparts (follicular thyroid adenoma (FTA)
and Hürthle cells adenoma (HCA)) is problematic, with nearly 20–30% of biopsied thyroid
nodules still classified as having an indeterminate risk of malignancy and undergoing
diagnostic surgery [7–10].

An overlap of benign and malign lesions also occurs at the molecular level, as muta-
tions in RAS and PAX8-PPARg genes are identified in both lesions [11–14]. Additionally,
the absence of mutations widely known as drivers of PTC, FTC, and HCC do not exclude
malignancy. Therefore, even after incorporating molecular tests into the algorithm for
differential diagnosis of thyroid nodules classified as indeterminate or suspicious, it still
could generate false positive or false negative results.

To expand the knowledge of the molecular characterization of thyroid carcinomas,
which would ultimately improve the sensitivity of molecular tests, The Cancer Genome
Atlas (TCGA) consortium analyzed over 400 cases of PTC [15]. However, over 70% of
the cases were CVPTC and nearly 27% lacked alterations in the established and recurrent
thyroid driver genes. After attributing different genomic regions with copy number
alterations as possible drivers for PTC, they still remained with 3.5% of driver negative
cases. Additionally, Yoo et al.’s [10] mutational landscape and expression profiling focusing
on follicular variants of thyroid tumors showed that FVPTC harbored an intermediate
mutational status between CVPTC and minimally invasive FTC; however, it was not able
to distinguish between FTA and FTC. Moreover, they found a higher percentage of FTA,
FTC, and FVPTC without a known or novel driver gene [10]. Recently, whole genome
sequencing analysis was performed in 2 HCC and 11 widely invasive FTC. The authors
identified one or several mutations in coding regions of well-established genes rated as top
20 mutated in FTC, while no coding mutations were found in HCC [12].

To discover new candidate driver genes or novel cancer-related pathway leading to
thyroid cancer, we performed an RNA-Sequencing (RNA-Seq) analysis in samples that are
a source of pre-surgical diagnostic error (FVPTC, FTC, and HCC) and were negative for
mutations in genes ranked as most commonly mutated in thyroid cancer. We expect that
our findings may help to narrow this knowledge gap and provide directions for further
clinical and experimental validation analysis.

2. Materials and Methods
2.1. Patient Cohort

Thyroid tumor samples were collected from patients who underwent total thyroidec-
tomy at Hospital São Paulo (Universidade Federal de São Paulo—UNIFESP) and Hospital
das Clínicas (Universidade de São Paulo—USP), São Paulo, Brazil and snap-frozen in liquid
nitrogen within 60 min.
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The initial cohort encompassed 120 fresh frozen thyroid tissues from patients diagnosed
with DTC. The thyroid tumor samples were screened for somatic mutations in the main
driver genes associated with the pathogenesis of DTC (BRAF V600E, H/K/NRAS, RET-PTC1,
RET-PTC2, RET-PTC3, ETV6-NTRK3, STRN-ALK, AGK-BRAF, and PAX8-PPARg) [16,17].
Sixteen cases with negative results for the mutations tested were selected to comprise the
discovery cohort. For comparative purposes, we included 11 samples positive for RAS
mutations and 3 samples positive for PAX8-PPARg fusion (Figure 1). Clinical-pathological
data of the 30 selected patients can be assessed at Table 1.

Figure 1. Flowchart with overview of sample selection criteria resulting in the final discovery cohort
of 30 samples used for RNA-sequencing analysis. Fourteen samples were positive for RAS and
PAX8-PPARg mutations, which are commonly found in thyroid tumors that are a source of diagnostic
error on FNA. Two samples that were considered negative in the initial screening were positive
for BRAF V600E by RNA-sequencing analysis and were relocated to the positive group. Fourteen
samples were negative for the ranked gene mutations in thyroid carcinomas.

For validation purposes, an independent cohort, encompassing 53 thyroid tumors
(12 PTC, 8 FVPTC, 7 FTC, 7 FTA, 16 HCC, and 3 HCA), was included in the study.

The study was conducted under the approval of the Ethical Committee of the Univer-
sidade Federal de São Paulo—UNIFESP/EPM. Informed consent was obtained from each
patient after full explanation of the purpose and nature of all procedures used.
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Table 1. Clinical pathological data.

Sample Tumor
Type

Mutational
Status

Expression
Classifier Group Gender Age at

Surgery
Tumor
Size Multifocality ETE Vascular

Invasion

Lymph
Node

Metastasis
Stage Risk

1 FVPTC Negative Negative RL F 45 3.0 N N N N I Low
2 FVPTC Negative Negative RL F 31 3.2 N N Y Y I High
3 FVPTC Negative Negative BL F 76 1.0 Y N N Y II High
4 FVPTC Negative - F 68 8.0 Y Y Y N IVA High
5 FVPTC Negative Negative RL F 52 0.9 N N N N I Low
6 FVPTC Positive RAS/PAX8-PPARg M 68 7.5 N N N N II High
7 FVPTC Positive RAS/PAX8-PPARg F 53 4.0 Y N N N I Low
8 FVPTC Negative Negative BL M 40 8.5 Y N Y Y I High
9 FVPTC Negative Negative RL F 73 1.2 Y N N N I Low
10 CVPTC Negative Negative BL F 59 2.5 Y N N N I Low
11 CVPTC Positive BRAF V600E F 46 1.7 N Y Y Y I High
12 CVPTC Positive BRAF V600E F 41 1.3 N N N N I Low
13 CVPTC Negative Negative RL F 56 3.0 Y Y N Y III High
14 FVPTC Positive RAS/PAX8-PPARg M 32 5.0 N Y N N I High
15 FVPTC Positive RAS/PAX8-PPARg M 40 4.0 N N N N I Low
16 FVPTC Positive RAS/PAX8-PPARg F 28 5.0 Y N N N I Low
17 FVPTC Positive RAS/PAX8-PPARg F 55 1.7 Y N N N I Low
18 FVPTC Positive RAS/PAX8-PPARg F 36 3.0 N N N N I Low
19 FVPTC Positive RAS/PAX8-PPARg F 45 1.1 N N N N I Low
20 FTC Positive RAS/PAX8-PPARg F 45 3.5 Y Y N N II High
21 FTC Positive RAS/PAX8-PPARg F 48 3.2 N N Y N I High
22 FTC Positive RAS/PAX8-PPARg F 48 1.6 N Y Y N I High
23 FTC Negative Negative BL F 35 4.5 N N N N I Low
24 FTC Positive RAS/PAX8-PPARg F 76 7.5 N Y Y Y IVA High
25 FTC Positive RAS/PAX8-PPARg M 70 10.3 N Y Y Y IVA High
26 FTC Positive RAS/PAX8-PPARg F 70 10.0 N N N N II High
27 FTC Negative Negative RL F 60 2.5 Y N Y N IVA High
28 HCC Negative Negative (HCC) M NA NA NA NA NA NA NA NA
29 HCC Negative Negative (HCC) F 70 5.0 N N Y Y IVA High
30 HCC Negative Negative (HCC) F 63 6.0 N N Y N IVA High

Abbreviations: CVPTC, classic variant of papillary thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma; FTC,
follicular thyroid carcinoma; HCC, Hürthle cell carcinoma; NA, not available; Negative RL, negative Ras-Like; Negative BL, negative
BRAF-like; ETE, extrathyroidal extension

2.2. RNA Isolation and Library Preparation

RNA isolation and library preparation were conducted as previously described [18]
using TrueSeq Stranded mRNA sample preparation kit v.2 (Illumina Inc., San Diego, CA,
USA) on an Illumina NextSeq 500 sequencing platform (Illumina Inc.) at the Centro de
Oncologia Molecular, Hospital Sírio-libanês, São Paulo, Brazil (Table S1).

2.3. Variant Calling and Gene Expression Analysis

The FASTQ file was mapped against the human reference genome for variant calling
(GRCh37) or gene expression analysis (GRCh38) using STAR 2-pass mode version 2.7 and
transcript abundance was estimated using HTSeq count.

A pipeline was developed for detection of single nucleotide variants (SNVs) and small
insertions/deletions (InDels) from RNA-sequencing data. SNVs and InDels were called
using the Genomic Analysis Toolkit (GATK) HaplotyperCaller version 3.7.0, as previously
described [18].

Variants with poor mapping quality (QC < 20) and Minor Allele Frequency (MAF) > 0.001
in genome aggregation database (gnomAD) or in the Brazilian genomic variants (ABraOM)
database [19] were filtered out. Normal thyroid tissue data obtained from the ENCODE
dataset (https://www.encodeproject.org, accessed on 20 February 2019) were processed
under the same pipeline described above and correspondent annotations were excluded
from the tumor mutation results. All filtered out variants in oncogenes or tumor suppressor
genes (TSG) reported in COSMIC [20] were reimported. Maftools software [21] was used
to analyze and visualize SNVs and Indels. Data from TCGA-THCA was analyzed on cBio-
Portal software [22,23]. In silico prediction of structural and functional impacts of variants
on final protein and protein–protein interactions was accessed through HOPE software [24]

https://www.encodeproject.org
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and Interactome INSIDER [25]. Damaging impact scores were accessed through SIFT and
PolyPhen-2 scores.

2.4. Fusion Gene Analysis

Fusion annotation was performed using STAR-Fusion (parameters: –annotation–
coding-effect) version 1.3.1 [26]. Filter parameters included fusion fragments per million
total reads (FFPM) > 0.1 and Junction Reads Counts and Spanning Fragments Counts > 10.
Comparison between groups was made using Maftools software. TCGA fusion data
was assessed at Tumor Fusions web portal (http://www.tumorfusions.org, accessed on
12 March 2019) [27]. Fusion transcripts detected in normal thyroid dataset from the
ENCODE were filtered out (see variant calling section).

2.5. Confirmation of Selected Variants by Sanger Sequencing

The candidate variants were confirmed in the matching RNA used for library prepara-
tion by Sanger sequencing. Primers were designed using Primer3 V.0.4.0. cDNA synthesis
and PCR reactions were performed as previously described [28]. PCR products were
purified and sequenced in an ABI 3130 Genetic Analyser using BigDye terminator kit,
as described [28]. Following a validation step in the discovery cohort, the variants were
assessed in an independent set of benign and malignant thyroid samples. For this analysis,
the DNA was isolated, amplified by PCR, and sequenced as previously described [28].
Primers and PCR conditions are available on request.

2.6. Sample Cluster Analysis

Annotated genes were filtered for read count > 10 in at least 90% of samples and
genes under any pseudogene-associated class in human reference genome (GRCh37) were
excluded to reduce mismapping. To ensure all cancer-related genes expressed in our
samples were represented, oncogenes and TSG from COSMIC were reimported. Reads were
FPM (fragments per million) normalized through DESeq2 R package (version 1.30.0) [29]
and log2 + 1 transformed. A hierarchical clustering showed that one sample (sample 4,
Table 1) had a very discrepant pattern of expression compared to the others and was
excluded from this analysis. FactoMineR R package (version 2.4) [30] resulted a value of
1-H < 0.5, which indicates that our samples could be clustered. The test was bootstrapped
512 times and the mean values were used.

R package NbClust (version 3.0) [31] was used to verify the optimal number of
clusters for many different algorithms. This test was bootstrapped 1080 times with a
random selection of 10% of all genes, for 19 different algorithms. This approach defined the
optimal number of clusters as two. Next, R package clValid [32] defined the best clustering
method as hierarchical. Finally, using the McQuitty method on FactoExtra R package
(version 1.0.3) [33], 29 samples were clustered, based on expression pattern, in two clusters
with the hierarchical method and visualized in PCA dimensions.

2.7. BRAF V600E-RAS Score (BRS)

For score calculation, we used 87 PTC samples from the TCGA-THCA cohort (26 BRAF V600E
and 61 RAS), which were downloaded from the TCGA data portal (https://portal.gdc.
cancer.gov, accessed on 10 July 2020) and processed according to the pipeline described
above. The BRS was calculated as previously described [15]. Briefly, the centroids for
BRAF V600E positive samples and RAS positive samples were calculated with K-mean
algorithm on the FPM normalized expression of the 71-gene expression signature. The
mean expression value for the 71 genes was used to calculate the Euclidean distance of
each of the 29 samples from the BRAF and RAS centroids. This value was then scaled from
−1 to 1.

http://www.tumorfusions.org
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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2.8. Thyroid Differentiation Score (TDS) and ERK Score

The Thyroid Differentiation Score (TDS) and ERK score were calculated using the
same parameters as previously determined [15]. The TDS was based on a list of 16 genes
related to thyroid function [15]. The ERK score was based on a list of 52 genes from the
ERK-related MAPK pathway [34]. Briefly, normalized FPM expression values for selected
genes were centered by their median and log2 transformed. The final score was obtained
extracting the mean of the selected genes for each sample.

2.9. TMB Calculation

The Tumor Mutation Burden (TMB) was calculated using the R package Maftools with
a capture size of 50. The TMB for each tumor was obtained by dividing the total number of
expressed somatic mutations (non-synonymous variants and InDels) per mega base (Mb)
of the region sequenced. The results were pooled into analysis groups.

2.10. Differential Gene Expression Analysis

R package DESeq2 (version 1.30.0) was used to detect differentially expressed genes
(DEGs) between selected groups, using adjusted p-value < 0.05. Negative samples from the
discovery cohort were separated in two groups according to results obtained from sample
cluster formation (see Sample cluster analysis) and compared against each other. Moreover,
as a second comparison group, DEGs between RAS positive samples and negative samples
located in the same cluster were assessed.

2.11. Differential Expression Analysis on PTC from the TCGA Cohort

The RNA-seq data from 353 PTC samples of the TCGA-THCA cohort (60 RAS and
293 BRAF V600E positive) were downloaded from the TCGA data portal (https://portal.
gdc.cancer.gov, accessed on 10 July 2020). DESeq2 was applied for comparison between
BRAF V600E and RAS positive groups using p adjusted <0.05.

2.12. Pathway Enrichment Analysis

Enrichment analysis was performed on DEGs from each comparison group of the dis-
covery cohort and in PTC from the TCGA cohort. Pathway-based analysis was performed
using ReactomePA and R/Bioconductor package, which provides a gene set enrichment
analysis (GSEA) [35,36]. The R program Gene Set Enrichment Analysis of KEGG (gseKEGG)
from R/Bioconductor ClusterProfiler package, which uses information from KEGG path-
way database, was also applied [37]. Further, gageData package was used to evaluate
specific pathways, shading molecules on KEGG pathway maps according to their degree
of dysregulation [38].

2.13. Evaluation of Tumor-Infiltrating Immune Cells

To evaluate the fraction of tumor-infiltrating immune cells (TIICs) in the discov-
ery cohort and 353 PTC from TCGA-THCA, we used CIBERSORTx software (https:
//cibersortx.stanford.edu, accessed on 18 September 2020) [39]. Samples were analyzed at
a threshold of p < 0.05, 1000 permutations, and LM22 signature provided by the software,
with B-mode batch correction and calculation of the absolute score (which reflects the
absolute proportion of each cell type).

2.14. Statistics

Statistical analysis was made using GraphPad Prism 5 software. Student’s t-test was
used when pairs of data were analyzed and Chi square test was used for contingency data.
All data passed the Shapiro–Wilk normality test.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://cibersortx.stanford.edu
https://cibersortx.stanford.edu
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3. Results
3.1. RNA-Sequencing Framework

To identify novel genes that might provide additional diagnosis information in patients
with nodules classified as indeterminate, we selected histological subtypes that are still
a challenge in FNA biopsy and that were negative for main driver mutations found in
thyroid carcinomas to undergo RNA-Seq analysis (Figure 1).

We obtained on average 126 million reads per sample (56–242 million reads) with an
average of 91.42% (89.2–93.8%) of them correctly mapping to the human reference genome
(after Q20 mapping quality score filtering) (Table S1). Variant calling revealed that 2 cases
(samples 11 and 12, Table 1), previously classified as negative by Sanger sequencing, were
positive for BRAF V600E mutation. Therefore, the final discovery cohort was composed
of 14 cases without the key thyroid driver mutations related to DTCs (henceforth called
“negative samples”) and 16 cases positive for mutations on common driver genes found in
FTC and FVPTC (H/K/NRAS and PAX8-PPARg) (Figure 1).

3.2. Identification of Novel Mutations in Thyroid Cancer

Variant calling following a strict set of filters resulted in 2584 SNVs and InDels in
1805 genes for the 14 negative samples. The mutational landscape of the 30 thyroid
carcinomas is illustrated in Figure 2.

Figure 2. Mutational outline of somatic mutation identified in RNA-sequenced cohort. Each row represents a mutated
gene and each column represents one case, as described in Table 1. Upper panel depicts known driver thyroid genes
found mutated in 16 positive samples and candidate genes found mutated exclusively on the 14 negative samples; middle
panel displays co-occurring mutations in candidate driver genes previously described across PTC, FVPTC, FTC, and FTA
samples [10,15]; bottom panel displays main fusions found in the discovery cohort. Top bar plot represents log-transformed
sample read count. The right bars indicate variant frequency. Samples are sorted by histological subtype, risk for recurrence,
tumor stage, and lymph node (LN) metastasis.
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Focusing on the 14 samples that were negative for the most frequently thyroid mutated
genes, we identified two candidate driver genes (ECD and NUP98) that were not previously
implicated in thyroid cancer and recovered other potential drivers previously described in
thyroid tumors (LRP1B, NCOR1, ATM, SOS1, and SPOP) [14,15,38] (Figure 2—upper panel).

Figure 3. Schematic representation of the proteins encoded by the mutated genes. The amino acid
substitutions in ECD (A), LRP1B (B), NUP98 (C), NCOR1 (D), ATM (E), SOS1 (F) and SPOP (G)
proteins are marked with a pin. Grid on the left represents the number of samples affected by each
mutation, and the bottom grid shows the size of the protein.
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ECD (Ecdysoneless) was recurrently mutated in 3 FVPTC negative samples (cases 5, 3,
and 9) (Figures 2 and 3A). Surveying the TCGA-THCA data, ECD was found mutated in
one PTC sample also negative for BRAF and RAS mutations. NUP98 (Nucleoporin 98 and
96 precursor) gene was mutated in FTC and FVPTC samples (cases 27 and 4).

Among the genes previously implicated in thyroid cancer, LRP1B (LDL Receptor
Related Protein 1B) was found mutated in FTC and FVPTC negative cases (cases 27 and 8)
and NCOR1 (Nuclear Receptor Corepressor 1) in 2 HCC negative cases (cases 28 and 30)
(Figures 2 and 3B–D).

We additionally found variants in the ATM (A-T mutated) gene in HCC and FVPTC
(cases 2, 5, and 29) (Figures 2 and 3E). In one negative sample, ATM co-occurred with an
ECD variant (case 5). ATM variants have already been described in 5 PTC from TCGA
cohort, 3 of which co-occurring with BRAF V600E.

We also observed genetic alterations in potential drivers such as SOS1 (Son of sevenless
homolog 1) (case 30) and SPOP (speckle-type POZ protein) (Case 1) (Figures 2 and 3F,G).
The SPOP p.P94R substitution was previously described in one PTC sample from TCGA
cohort that was negative for RAS and BRAF mutations.

Although not all substitutions reported here have equal impact, most of our findings
are likely damaging by SIFT and Polyphen. Details on the reported variants and their
predicted effects are described in Table S2.

We next surveyed for potential drivers previously described in large DNA and RNA-
sequencing studies such TCGA on PTC [15] and the molecular landscape of minimally
invasive FTC and FTA samples [10]. Among the 32 genes reported by these studies, only
9 (28%) have been found in our cohort (Figure 2—middle panel). However, alterations
in these genes frequently co-occurred with genetic changes in other driver genes. For
example, variants in ZFHX3, TG, TSHR, PPM1D, TP53, and EZH1 genes co-occurred with
canonical mutations in RAS and BRAF genes. HIF1A variants, which have been described
co-occurring with BRAF V600E in TCGA samples, here co-occurred with variants in ECD
and NCOR1. Importantly, genes recently described as drivers in thyroid cancers, such as
EIF1AX, IDH1, PTEN, NF1, CHEK2, RB1, MEN1, DICER, SK11, MLL, and CDH4, were not
mutated in the 14 negative samples.

3.3. Gene Fusions in Thyroid Cancer

We identified novel and known fusions events (Figure 2—bottom panel and Table S3).
We confirmed the PAX8-PPARg fusion in 3 positive samples (cases 26, 6, and 7) and
identified the PAX8-SYN2 fusion co-occurring with the canonical PAX8-PPARg fusion in
one FVPTC (case 6). The MET-TFG fusion, previously described in a PTC from TCGA, was
found in an FVPTC co-occurring with the ATM mutation (case 2). The C10orf112-PLXDC2 is
a novel fusion found in one FVPTC sample (case 1). C10orf68-CCDC7 and KANSL1-ARL17B
are novel fusions identified in 37% and 63% of samples, respectively (Figure 2).

3.4. Technical and Experimental Validation by Sanger

The ECD, NUP98, NCOR1, and SPOP variants were further validated in the discovery
cohort by Sanger Sequencing.

As NCOR1 variants were described in 2/3 HCC cases and as discrimination of HCA
and HCC is the main problem for preoperative diagnosis, they were selected to undergo
validation in an independent cohort of HCA and HCC. Remarkably, the NCOR1 p.H2252Y
variant was recurrent in 3/16 (18%) HCC but was not found in HCA, suggesting it may
be relevant to the pathogenesis of HCC. The p.S2248G NCOR1 variant was found only in
case 28 from the discovery cohort. Further analysis of NCOR1 variants in an expanded
cohort and functional analysis will help define its role in the pathogenesis of thyroid cancer.

Since there is pathological and experimental evidence of the role of SPOP in the
tumorigenesis of a variety of human malignancies and the p.P94R variant was already
described in one PTC case from TCGA, here we assessed the prevalence of this variant in
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additional 34 benign and malignant thyroid lesions (12 PTC, 8 FVPTC, 7 FTC, and 7 FTA).
The p.P94R variant was absent in all 34 samples tested, suggesting that it is a rare variant.

3.5. In Silico Analysis

We performed in silico predictions on variant’s impact using HOPE and Interac-
tome INSIDER softwares. Regarding NCOR1 variants, HOPE suggests that the wild type
residues are crucial for binding with other molecules and the variants may disrupt their in-
teraction with other proteins and likely affect protein function. Additionally, the p.H2252Y
substitution is distinct from all conserved variants for this position and likely alters the
function of the protein.

SPOP p.P94R amino acid change was found to be larger than the wild type and
located on the surface of the protein, near a highly conserved region, which likely affects
its interaction with other molecules. Additionally, the change from a neutral amino acid to
a positively charged and less hydrophobic residue likely changed the binding properties,
disrupting the MATH domain and leading to possible function disruption. Interactome
INSIDER revealed that the p.P94R variant is within the interaction site between SPOP and
DAXX, PIAS1, GIT2, SRRM1, and ZBTB16 proteins.

3.6. Negative Tumors Have Distinctive Expression Profiles

To characterize the expression profile of the 14 negative samples, we performed
a cluster analysis via principal component analysis (PCA), separating all 30 samples
according to their expression pattern (Figure 4). The algorithm classified samples in two
distinct clusters, distinctively separating BRAF V600E positive samples (cluster 1) from
RAS and PAX8-PPARg positive samples (Cluster 2). We not only observed differences in
the measured variables between groups but also verified that the negative samples were
classified within these two main clusters. Hence, the expression profile of four negative
samples visible within cluster 1 resembles that observed for BRAF V600E-Like tumors
(hereafter called negative BL), whereas the expression profile of six negative samples visible
within cluster 2 resembles that observed for RAS-Like tumors (hereafter called negative
RL). Three negative samples grouped within the opposed margin of cluster 2 are HCC and
were considered a distinct group and analyzed independently. Only one negative sample
that clustered out was considered an outlier and excluded from this analysis (Figure 4).

The samples were categorized in 5 groups according to cluster classification and
mutational status. Negative samples were classified according to their placement on the
hierarchical clustering analysis, i.e., negative RL or negative BL (Figure 4, Table 1). Next,
we applied the BRAF V600E-RAS score (BRS), ERK score and thyroid differentiation score
(TDS) (Figure 5).

The BRS, which assesses the similarity of a sample’s expression pattern to that of a
BRAF V600E or RAS mutant, is conventionally associated with mutational status, TDS
score, and tumor histology. In fact, we found that the BRS discriminated well between
BRAF V600E and RAS/PAX8-PPARg positive samples. The negative RL showed a pattern
similar to RAS/PAX8-PPARg positive samples. These data suggest that these tumors have
a genetic profiling that resembles that driven by RAS mutation. However, the negative
BL and negative HCC showed a less homogenous pattern. As BRS is a continuous scale
ranging from −1 to 1, they were considered weakly correlated with BRAF V600E, which is
also consistent with the mutations found in follicular-patterned lesions (Figure 5A).

The ERK score, which measures the activation of the ERK-related MAPK pathway,
was higher in BRAF V600E, negative BL samples, and negative HCC. These data suggests
that the mutations found in these tumors might not respond to ERK feedbacks, resulting in
high MAPK signaling. On the other hand, the negative RL samples and RAS/PAX8-PPARg
showed lower ERK scores, suggesting that the mutations found in the negative RL samples
may respond to ERK feedback (Figure 5B).

Finally, we measured the TDS, which is based on the expression of 16 thyroid-related
genes. As expected, the TDS score was strongly associated with BRS. It was lower in
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BRAF V600E positive samples, compared to the RAS/PAX8-PPARg positive samples. Most
negative samples showed a TDS comparable to the RAS/PAX8-PPARg positive group
(Figure 5C).

Figure 4. Characterization of the expression profile of the 30-sample dataset. PCA visualization of a hierarchical clustering
separates samples according to their expression profile in 2 distinct groups: cluster 1 (blue circle) and cluster 2 (red circle).
BRAF positive samples (red) are located within cluster 1. RAS and PAX8-PPARg positive samples (purple) are located within
cluster 2. The 14 negative samples (green and dark blue) were split within cluster 1 and 2. Each number represents a sample
with a status specific color. X and Y-axis represent PCA dimensions.

3.7. Negative BL Tumors Have Lower TMB Compared to Negative RL

The mean TMB for all 30 samples was 3.79. Negative BL samples had a mean TMB of
2.94 while BRAF V600E positive samples had a mean TBM of 2.62, which are lower than
the general group media. The mean TMB for negative RL samples was 4.59 whereas for the
RAS/PAX8-PPARg positive it was 4.26, higher than the general group media (Figure 6A,B).

In addition, the 14 negative samples presented a higher range of fusion events when
compared to the BRAF V600E and RAS/PAX8-PPARg positive samples. However, within the
negative group, a higher number of fusions are present on negative RL samples. Negative
BL samples have a mean of 1.0 fusion/sample compared to a mean of 2.8 fusions/sample
in negative RL samples (Figure 6C–E).
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Figure 5. Analysis of BRS, ERK, and TDS scores. (A) BRAF V600E-RAS Score (BRS) graphic represen-
tation. The closer to −1, the more the expression pattern resembles that of a BRAF V600E positive
sample and the closer to 1, the more the expression pattern resembles that of a RAS positive sample;
(B) ERK score, based on 52 genes involved in the activation of the MAPK pathway. The higher
the score, the more genes activated within this pathway. (C) Thyroid Differentiation Score (TDS),
based on the expression of 16 thyroid-related metabolism genes. The lower the TDS score, the more
dedifferentiated the samples are.
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Figure 6. Tumor Mutation Burden Analysis. (A) Bar plot representing the TMB/MB calculated for driver negative and
driver positive (BRAF, RAS, and PAX8-PPARg) samples. The dotted line represents the general median calculated for
all 30 samples; (B) bar plot representing the TMB/MB mean per group. The dotted line represents the general median
calculated for all 30 samples; (C) dot plot representing the number of fusion events in driver positive samples (BRAF, RAS,
and PAX8-PPARg) and driver negative samples; (D) dot plot representing the number of fusion events in a pool of BRAF
positive and negative BL samples (BRAF V600E/Negative BL) and a pool of RAS or PAX8-PPARg positive and negative
RL samples (RAS/PAX8-PPARg/Negative RL); (E) dot plot representing the number of fusion events in negative BL and
negative RL samples.

3.8. Identification of Differentially Expressed Genes

To assess the differences in the expression patterns of the negative samples, we
performed a differential expression analysis between negative BL and negative RL groups.
We identified a total of 2655 differentially expressed genes (DEGs), 1685 being up-regulated
and 970 down-regulated.

Next, to narrow down the pathways that characterize the negative samples, we also
performed a differential expression analysis between negative RL samples and RAS/PAX8-
PPARg positive samples. For that, we analyzed the 6 negative RL samples visible within
cluster 2, excluding HCC (Figure 5) versus 14 RAS/PAX8-PPARg positive samples. A total
of 793 genes were found differentially expressed, 410 being up-regulated and 383 down-
regulated. Unfortunately, due to the low number of BRAF positive samples, we were not
able to perform a similar analysis on negative BL samples.

3.9. Negative BL Tumors Have a High Expression of Immune System Components

In order to gain insight into the biological functions of the 2655 DEGs among negative
thyroid carcinomas samples, we performed a gene set enrichment analysis (KEGG and
Reactome). Up-regulated genes in negative BL samples are mostly enriched for immune
system pathways, compared to negative RL samples (Figure S1A,B). Based on CIBERSORTx,
an in silico strategy that employs a machine learning model to estimate the abundance of
cell types in a mixed cell population by gene expression data, we were able to infer the
fraction of 22 different immune cells in each of our samples.

As demonstrated by the pathway enrichment analysis, negative BL samples showed a
higher fraction of Tumor Infiltrating Immune Cells (TIICs; absolute score mean of 1.82),
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similar to what was obtained for BRAF V600E positive samples (absolute score mean
of 1.69). On the other hand, the negative RL samples had a lower fraction of immune
cells (absolute score mean 0.71), more similar to the RAS/PAX8-PPARg positive samples
(absolute score mean 0.70) (Figure 7A and Figure S2A). The immune cell subtype with the
higher fraction in BRAF V600E positive and negative BL groups is the T cell CD4 memory
resting subtype (Figure 7B).

Figure 7. In silico analysis of tumor infiltrating immune cells. (A) Absolute score generated by CIBERSORTx software
representing the abundance of immune cells in each sample group. The higher the score, the more relative presence of
immune cells in that sample. The black bar represent BRAF positive and negative BL samples pooled together and the
white bar represent RAS and PAX8-PPARg positive and negative RL samples pooled together; (B) fractions of 22 different
immune cell subtypes in each sample obtained by CIBERSORTx software. The black bars represent BRAF positive and
negative BL samples pooled together and the white bars represent RAS and PAX8-PPARg positive and negative RL samples
pooled together; (C) heatmap representation of normalized FPM values for immune evasion genes in all samples. * p < 0.05;
** p < 0.01; *** p < 0.001.

The analysis of 353 PTC samples from TCGA cohort under the same parameters on
CIBERSORTx also found a high fraction of TIICs in all samples. Similar to our findings,
BRAF mutated samples also have a higher absolute score when compared to RAS mutated
samples (Figure S2B,C).
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Regarding gene expression, cancer immune evasion-related genes were found up-
regulated in the negative BL samples, such as CD274 (alias PD-L1), IDO1, LAG-3, CTLA4,
and CD80 and CD86 genes, required for the activation of the inhibitory activity of CTLA4.
Notably, this expression pattern was similar for BRAF V600E positive samples (Figure 7C).
Interestingly, negative HCC showed higher levels of CD274.

3.10. Cancer-Related Pathways Are Differently Regulated in Negative BL and RL Tumors

It is well established that PTC is MAPK-driven with distinct consequences depending
whether the tumor harbors BRAF V600E or RAS mutations. Pathway analysis was used to
find specific signaling pathways associated with the genes differentially expressed between
analyzed groups. We found that some genes are highly up-regulated, suggesting their
related pathways might be activated.

Similar to that observed for TCGA’s BRAF V600E positive samples (Figure S3A,B),
negative BL samples had an overall higher expression of cancer-related genes and pathways
when compared to negative RL, particularly the PI3K, JAK/STAT, and MAPK pathways
(Figure 8A).

Figure 8. Signaling pathways on negative samples. Genes are marked in shades of red when up-
regulated and in shades of green when down-regulated. Mutated genes are marked with a blue
star. (A) Representation map of tumor-related signaling pathways differentially expressed between
negative BL and negative RL samples; (B) representation map of PI3K and ERK signaling pathways
evidencing DEGs between negative RL and RAS/PAX8-PPARg positive samples; (C) panel of mutated
genes from PI3K, WNT, and mTOR pathways in negative samples. The pathway lines (black) mark
which samples are mutated for each pathway.
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Curiously, pathway enrichment on DEGs between negative RL and RAS/PAX8-PPARg
positive samples evidenced an increase in expression of PI3K pathway related genes in
negative RL samples, including important membrane receptors such as PDGFR, c-KIT,
GHR, OSMR, and ITGA (Figure 8B). Alterations in the PI3K pathway may be involved
in tumor development on the absence of RAS mutations in these samples. The MAPK
pathway, however, is similarly expressed in both negative RL and RAS/PAX8-PPARg groups
(Figure S3C).

As the enrichment analysis revealed that negative samples showed DEG associated
with cancer specific pathways, using variant calling data, we further searched for variants
(SNVs and InDels) within genes associated with the enriched pathways. We observed
alterations in candidate drivers previously described in other cohorts related to PI3K
(FLT4, BIM, ERBB2, OSMR, and TGFA), WNT (FZD7, APC, LRP6 and WNT11), and mTOR
(DEPDC5, TSC1, and TSC2) pathways (Figure 8A–C and Table S2). Mutations in APC,
WNT11, DEPDC5, TSC1, TSC2, ERBB2, OSMR, and FLT4 overlapped with RAS or BRAF
mutations in TCGA-THCA cohort. Whether these additional mutations alter the biological
behavior of the tumors still needs further investigation.

4. Discussion

Fine needle aspiration (FNA) cytology is an important diagnostic tool for the evalua-
tion of thyroid nodules. The preoperative diagnosis is accurate for about 70% of the cases,
while nearly 30% of thyroid nodules fall into the indeterminate category. While molecular
tests improved the preoperative diagnosis of thyroid nodules and helped predict prognosis,
the clinical management of nodules with indeterminate diagnosis and negative for genetic
alterations on known driver genes is still a challenge.

In this study, we characterized the mutational status and expression pattern of thyroid
carcinomas that are a source of diagnostic error on FNA and that are negative for the genetic
alterations in the top ranked thyroid cancer driver genes. Although the identification of
drivers that are infrequently mutated is more difficult, we identified novel candidate driver
genes in thyroid cancer. It is important to mention that driver negative samples comprise
a small, yet relevant subset of thyroid tumors that include samples that are an important
source of diagnostic error on FNA such as FVPTC, FTC, and HCC.

The ECD gene was found mutated in three negative samples. It is a cell cycle regu-
lator, involved in cell cycle progression through facilitation of Rb-E2F dissociation and
stabilization of p53 through ubiquitination control [40]. In fact, Ecd siRNA expression led
to a reduction in the level of hyper-phosphorylated Rb, and most genes that were down-
regulated upon Ecd knockdown were E2F target genes [41,42]. Additionally, overexpression
of ECD was described in different types of tumors such as breast and pancreatic cancer
and correlated with poor prognosis and shorter survival of patients [41,43,44]. Functional
analysis demonstrated that in cooperation with driver genes such as HRAS, it promoted
migration, invasion, and anchorage-independent growth in mammalian epithelial cells
and promoted tumor formation in vivo [41]. Others have showed that ECD knockdown
reduced cell growth, proliferation and tumorigenicity in vivo while affecting glucose up-
take by pancreatic cancer cells and reduced phosphorylation of Akt [43]. Although the role
of ECD variants in thyroid cancer still needs further investigation, 118 variants have been
described in the integrative Onco Genomics analysis (intOgen https://www.intogen.org/,
accessed in 14 March 2021) software.

We also report NUP98 and LRP1B variants in FTC and FVPTC. NUP98 variants
have not been previously reported in thyroid cancer. Although little is known about
NUP98 mutation in thyroid cancer, it is known that it mediates selective transport of RNA
molecules between the cytoplasm and nucleus and also regulates cell cycle progression
through interactions with several cofactors. Over 30 NUP98 fusion oncoproteins were
described in a spectrum of hematologic malignancies with poor prognosis [45,46].

Regarding LRP1B, different variants have already been described in PTC and ATC [47].
Others found somatic mutations and genomic loss of LRP1B in thyroid cancer cell lines

https://www.intogen.org/
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and thyroid carcinomas correlated with vascular invasion. LRP1B ectopic expression
inhibited thyroid cancer cell growth and invasion [48]. Additionally, LRP1B have been
described as a bona fide driver gene in many tumors, including liver, melanoma, colon,
lung, gastric, ovarian, and breast [49]. It was one of the most recurrently mutated melanoma
genes and was associated with chemoresistance and poor outcome in glioblastoma [50,51].
Importantly, in association with LRP1B mutation, higher TMB and improved outcomes
in patients treated by immune checkpoint inhibitors across different cancer types have
been described [52,53]. Also, concomitant mutations of KRAS and LRP1B were associated
with worse disease-free survival in pancreatic ductal adenocarcinoma [54]. However, the
mechanism through which LRP1B induces high TMB in tumors is still unknown.

Remarkably, we here found NCOR1 recurrently mutated in HCC. The p.H2252Y
variant was further validated in additional 3 HCC cases while it was not found in HCA.
HOPE analysis described this variant as possibly leading to failure in interaction with C1D,
an apoptosis-inducing protein.

It is known that NCOR1 has unique roles in the regulation of thyroid hormone sig-
naling in specific cell types [55]. It has been suggested that NCOR1, via protein–protein
interaction, is a novel regulator of PI3K signaling and could modulate thyroid tumor
progression [56]. NCOR1 was also found mutated, lost, or with aberrant localization in
several human cancers such as bladder, breast, prostate, retinoblastoma, and malignant
melanoma. It has also been found deleted in different tumors by TCGA [57] and mutated
in PTC, FTC, and ATC by other groups [47]. Functional analysis demonstrated that NCOR1
is required for colorectal cancer cell growth and protects against cellular senescence, while
loss of NCOR1 reduced tumorigenic growth in vivo [58]. In addition to its role in cell cycle
regulation, NCOR1 was identified as a central transcriptional repressor check point of genes
involved in inflammation [58]. NCOR1 was also involved in regulation of mitochondrial
function and ROS generation [52] and required to maintain systemic metabolic homeostasis
in vivo [59]. Its alteration has also been associated with enhanced tumor immunogenicity
and higher TMB in patients with bladder cancer.

Altogether, our data suggest that NCOR1 may play role in the pathogenesis of HCC.
Whether NCOR1 also play a role in the pathogenesis of other thyroid cancer subtypes
needs further investigation.

The recurrently mutated gene ATM is a serine/threonine kinase that plays a role
in DNA repair of double strand breaks. Although the variants reported here have not
been previously described, they are located near the site of activation of the protein and
were classified as damaging by Polyphen and Sift scores [60]. ATM is another gene
potentially associated with higher TMB and increased expression levels of some immune
checkpoints [61]. Remarkably, most negative samples classified as RL, with higher TMB,
presented LRP1B, NCOR1, and ATM variants.

SOS1 and SPOP have been previously found mutated in thyroid tumors negative for
RAS and BRAF mutations and in several types of cancers such as prostate, lung, and colon.

It has been shown that SPOP suppress tumorigenesis in human cancers via regulation
of cell growth, apoptosis, migration, invasion, and drug resistance by targeting different
downstream substrates [62]. As SPOP may play a dual role in cancer, it has been suggested
that it exerts its biological function in a cancer type-specific manner [62]. Despite SPOP
being the most commonly mutated tumor suppressor gene in prostate and its variants
being highly prevalent in other human cancers, the p.P94R variant has been recurrently
found only in thyroid tumors and its role has yet to be determined [62]. In silico analysis
has shown that the mutant residue is in the surface of the protein, in a highly conserved
region, and the drastic changes in amino acid properties may lead to failure in interaction.
Furthermore, the P94 position is within the interaction site of SPOP with several proteins,
including DAXX (death domain-associated protein), which may be disrupted by the p.P94R
variant. Interestingly, DAXX overexpression in cancer is related to disease progression
and treatment resistance. It has been shown that in kidney cancer, SPOP promoted the
ubiquitination and degradation of DAXX [62]. Failure of interaction between them will
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compromise DAXX degradation and lead to its accumulation in the cell [63,64]. Inter-
estingly, DAXX has also been associated with degradation of Gli2 and PTEN in kidney
cancer [62].

Although this variant has been described in benign lesions, it was described in PTC
and minimally invasive FTC [10,15,65,66]. To better understand the role of SPOP, the
p.P94R variant was further validated in an independent set of thyroid benign and malignant
thyroid tumors. Although we did not find the SPOP p.P94R variant in an extended
validation cohort, the low prevalence of this variant is still in accordance with literature.
Altogether, SPOP p.P94R may be an early stage tumor variant that requires cooperation
with other drivers in the pathogenesis of thyroid tumors and so we believe it should be
further investigated.

We have previously screened out the most common fusions found in thyroid cancer
and identified four novel fusions that have drawn our attention. While SYN2 has already
been described fused with PPARg [67], here we identified PAX8 as a new partner. C10orf112-
PLXDC2 fusion, recently associated with the progression of meningioma [68], co-occurred
in one sample with SPOP variant. C10orf68-CCDC7 was identified co-occurring with other
variants across most samples. Interestingly this fusion showed relatively high recurrence
in invasive breast carcinoma, prostate, kidney, and lung [69]. KANSL1-ARL17B has been
considered a polymorphic translocation with a possible role as a predisposition marker [70].
Interestingly, multiple read-through fusion transcripts or even fusions that occur through
trans-splicing mechanism have been described in several normal cells [71]. Although the
role of these fusions still needs to be determined, they are highly recurrent and may have a
role in cell function.

Despite the fact that our study brings novel candidate driver genes that might be
associated with pathogenesis or progression of thyroid tumors, we understand that it
has some limitations such as sample size. Additionally, although some variants work as
drivers in certain tumor subtypes while being permissive in other subtypes, functional
analysis will certainly help fill these gaps. However, as some of these genes co-occur
with other driver genes in different tumor subtypes, mutational screening of candidate
drivers in a large set of thyroid tumors is required to select which ones must undergo
functional analysis and in which genetic background. Functional analysis performed in
these candidate genes without further analysis could lead to a biased effect in cell lines and
likely conflicting results.

Regarding the expression profiling, hierarchical clustering on principal components
separated the negative samples into two distinct groups, named RL and BL, each of which
contained samples with RAS or BRAF V600E mutations.

The expression signature presented in this work was comparable to that observed in
the TCGA cohort and available database, reinforcing our results despite the overall low
number of samples in our cohort. Moreover, although there are only two BRAF V600E
positive samples in our cohort, we believe them to be true representatives of their group
as they behaved similarly to TCGA BRAF V600E samples across all analysis performed
in this study. Our set of samples showed BRS and TDS, immune infiltration rate, and
level of MAPK pathway expression similar to that observed in TCGA cohort with BRAF
V600E mutation.

Negative BL and RL samples behaved similarly to the negative samples of the TCGA-
THCA study on BRS and TDS scores [15]. TCGA showed that samples harboring fusions
with genes such as ALK, MET, and NTRK1/3 and negative samples had an intermediary or
RAS-like BRS and a higher TDS. Furthermore, they demonstrated that other mutations in
BRAF gene scored closer to RAS positive samples in both scores. On ERK score analysis,
negative BL samples showed higher activation of ERK-related MAPK pathway, compared
to negative RL samples and these data are confirmed by differential expression analysis
between negative BL and negative RL samples. The negative BL tumors may harbor
mutations that are more sensitive to the negative feedback regulation of the ERK1/2 than
negative RL tumors. This shows that driver negative samples are not a homogeneous group
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and may behave differently and benefit from different clinical approaches. Altogether,
these findings highlights that the negative samples have distinct expression profiling and,
therefore, likely activate/deactivate distinct cancer-related pathways.

When we investigated the pathways that are dysregulated in negative samples, we
observed that genes that encoded proteins that control the mTOR pathway are mutated or
down-regulated in negative BL samples. The mTOR pathway has been found up-regulated
in the presence of BRAF V600E mutation, which might cooperate with loss of expression of
the LKB1 gene, leading to failure in activating the TSC1/2 complex and activation of mTOR
pathway [72,73]. We have found mutations in genes TSC1, TSC2, and DEPDC5 (GATOR 1)
and down-regulation of TSC2 and NPR2 (part of GATOR1 complex) in negative BL samples.
These genes may play a role in the activation of the mTOR pathway in the absence of other
commonly found alterations. In addition, these findings may partly explain the difference
observer in ERK score for the negative BL samples.

The topmost DEGs between negative BL and negative RL samples belonged to im-
mune system pathways. Interestingly, we found that negative BL samples have a higher
expression of immune components and CD274 (PD-L1), IDO1, and CTLA-4 immune eva-
sion genes. The same result was observed for BRAF positive samples from the TCGA
cohort. Several studies already described an abundant presence of immune cells in BRAF
V600E positive thyroid tumors with more aggressive behavior, as well as higher expression
of immune evasion genes such as PD-L1, IDO1, and CTLA-4 [74,75]. They suggested that
as PTC develops, the proportion of tumor infiltrating immune cells increases significantly,
especially in BRAF V600E positive cells [75].

Frequently, higher TMB is associated with better response to immune checkpoint in-
hibitors (ICI), however this is not a universal rule [76]. This happens because ICI treatments
only re-invigorate immune cells, but do not induce their formation. Based on that, it has
been proposed to predict ICI efficacy based on expression of T-cell markers and Interferon
signature, as ICI treatment will only succeed if effector immune cells are presents in the
tumor microenvironment [76]. Although the negative BL samples have a low TMB, there
is a high presence of immune cells and the immune evasion genes seen overexpressed in
our samples are common targets for immunotherapy in many tumors using ICI [77]. We
believe this finding is of great interest, as the portrait in the immune landscape observed in
BRAF V600E and negative BL samples might be therapeutically relevant.

When looking at DEGs between Negative RL and RAS/PAX8-PPARg positive samples,
the main difference was the pronounced expression of genes in PI3K/AKT pathway. In
cancer, the common drivers for this pathway are activating mutations in PIK3CA gene,
inactivating modifications in PTEN, and activating modifications in AKT isoforms or in
PI3K activating receptor tyrosine kinases (RTKs) [78]. We found mutations in RTK genes
ERBB2 (also known as HER2) and FLT4 (also known as VEGFR-3) and cytokine receptor
OSMR in negative RL samples that have been previously described as able to activate the
PI3K/AKT pathway [78,79]. These mutations may explain the activation of this pathway
in the absence of RAS mutations and highlight the importance of further investigation.

5. Conclusions

We here explored the molecular profiling of thyroid carcinomas that are negative for
the main thyroid driver genes and the main source of preoperative diagnostic errors. We
identified recurrent genetic alterations in candidate drivers in 92% (13/14) of negative
samples, which were validated by Sanger. The list includes known drivers that had not
been associated with thyroid cancer such as ECD and NUP98 and recovers other potential
drivers previously described in thyroid tumors such as LRP1B, NCOR1, ATM, SOS1,
and SPOP. In silico analysis confirmed the potential of most of the predicted variants,
particularly NCOR1 and SPOP. Negative samples showed distinct expression profiling;
however, they resemble those observed in BRAF V600E or RAS positive tumors in many
different aspects, with highlights to tumor infiltrating immune cells. In summary, our
results not only increase knowledge of the molecular pathogenesis of driver negative
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thyroid tumors but also describe novel variants in thyroid cancer, which may ultimately
help to narrow down the dark matter, i.e., the driver negative samples. These data might
impact preoperative diagnosis and management of thyroid nodules commonly classified
as indeterminate on FNA analysis, provide directions for further experimental validation
analysis and might represent suitable candidates for adjuvant therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13205184/s1, Figure S1: Ridgeplot representing the most significantly enriched
pathways by KEGG or GSEA enrichment analysis, Figure S2: Immune cell fraction, Figure S3: Kegg’s
‘Pathways in cancer’ enriched pathway, Table S1: Summary of RNA-Seq alignment data, Table S2:
Genomic specifications of described variants, Table S3: Fusions detected in this study on 30 samples
by RNAseq.
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