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Three learning stages and
accuracy–efficiency tradeoff of restricted
Boltzmann machines

Lennart Dabelow 1 & Masahito Ueda 1,2

Restricted Boltzmann Machines (RBMs) offer a versatile architecture for
unsupervised machine learning that can in principle approximate any target
probability distribution with arbitrary accuracy. However, the RBM model is
usually not directly accessible due to its computational complexity, and
Markov-chain sampling is invoked to analyze the learned probability dis-
tribution. For training and eventual applications, it is thus desirable to have a
sampler that is both accurate and efficient. We highlight that these two goals
generally compete with each other and cannot be achieved simultaneously.
More specifically, we identify and quantitatively characterize three regimes of
RBM learning: independent learning, where the accuracy improves without
losing efficiency; correlation learning, where higher accuracy entails lower
efficiency; and degradation, where both accuracy and efficiency no longer
improve or even deteriorate. These findings are based on numerical experi-
ments and heuristic arguments.

Restricted Boltzmann Machines (RBMs)1,2 are a versatile and
conceptionally simple unsupervised machine learning model.
Besides traditional applications, such as dimensional reduction
and pretraining3–6 and text classification7, they have become
increasingly widespread in the physics community8,9. Examples
include tomography10,11 and variational encoding12–18 of quantum
states, time-series forecasting19, and information-based renorma-
lization group transformations20,21.

A general goal in unsupervised machine learning is to find the
best representationof someunknown targetprobabilitydistribution
p(x) within a family ofmodel distributions p̂θðxÞ, where θdenotes the
model parameters to be optimized. To this end, the RBM archi-
tecture introduces two types of units, the visible units
x = ðx1, . . . ,xM Þ 2 X , which relate to the states of the target distribu-
tion, and the hidden units h= ðh1, . . . ,hNÞ 2 H, which mediate corre-
lationsbetweenthevisibleunits (see,e.g., refs.22–24forreviewsand
thetop-rightcornerofFig. 1 foran illustration).Wefocusonthemost
commoncasewhereboth thevisible and thehiddenunits arebinary,
i.e., X = f0,1gM and H= f0,1gN . The RBM model is based on a joint

Boltzmann distribution for x and h,

p̂θðx,hÞ := Z�1
θ e�Eθðx,hÞ, ð1Þ

where the “energy” Eθ(x, h) := −∑i,jwijxihj −∑iaixi −∑jbjhj takes the form
of a classical spin Hamiltonian with “interactions” between visible and
hidden units described by theweights wij 2 R and “external fields” for
visible and hidden units described by the biases ai,bj 2 R. The weights
and biases constitute the model parameters θ = (wij, ai, bj), and the
normalization factor

Zθ :=
X
x,h

e�Eθðx,hÞ ð2Þ

is referred to as the partition function. The model distribution p̂θðxÞ
that approximates the target p(x) is obtained from marginalization
over the hidden units, p̂θðxÞ :=

P
hp̂θðx,hÞ.

The major drawback of RBMs is that the computational cost to
evaluate Zθ (and hence p̂θðx,hÞ and p̂θðxÞ) scales exponentially with
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minfM,Ng (see also Methods), which renders the model intractable
in practice25. Therefore, both training (i.e., finding the optimal θ)
and deployment (i.e., applying a trained model) rely on approx-
imate sampling from p̂θðxÞ, typically via Markov chains. Ideally, one
wishes to generate samples both efficiently, in the sense of minimal
correlation and computational cost, and accurately in the sense of
a faithful representation of the target p(x). Unfortunately,
these two goals generally compete and cannot be achieved
simultaneously.

In this work, we explore the tradeoff relationship between accu-
racy and efficiency by identifying three distinct regimes of RBM
training as illustrated in Fig. 1: (i) independent learning, where the
accuracy can be improved without sacrificing efficiency; (ii) correla-
tion learning, where higher accuracy entails lower efficiency, typically
in the form of a power-law tradeoff; and (iii) degradation, where lim-
ited expressivity, overfitting, and/or approximations in the learning
algorithm lead to reduced efficiency with no gain or even loss of
accuracy.

Biased or inefficient sampling is a known limitation of standard
training algorithms23,26,27, but it is not an artifact of deficient training
methods. Rather, it should be understood as an intrinsic limitation of

Fig. 1 | Schematic illustration of the three learning regimes. These learning
stages of Restricted Boltzmann Machines (RBMs) are characterized by the rela-
tionship between themodel's divergenceΔθ from the target distribution (accuracy,
cf. Eq. (3)) and its integrated autocorrelation time τθ (efficiency, cf. Eq. (6)): inde-
pendent learning with improved accuracy at no efficiency loss, correlation learing
with a power-law tradeoff relation between accuracy and efficiency, and the
degragation regime with steady or diminishing accuracy and loss of efficiency.
Inset: Schematic illustration of the RBM structure comprised of visible and
hidden units.

Fig. 2 | RBM learning characteristics for a quantum-state tomography task.The
ground state of the transverse-field Ising chain with M lattice sites is recon-
structed from magnetization measurements along a fixed axis, namely the z
direction in b, c and the x direction in d. Thus the ground state is represented
in the eigenbases of the σz

i or σx
i Pauli operators associated with each lattice

site. Training used contrastive divergence (CD) or persistent CD (PCD) with
η = 10−3, B = 100. a Hamiltonian and sketch of the transverse-field Ising chain,
whose ground-state wave function ψ(x) is the square root of the target dis-
tribution p(x). b Exact loss Δθ (points) and empirical loss ~Δ

ðSÞ
θ (solid lines) vs.

autocorrelation time τθ defined in (6), utilizing PCD (first column) or CD (last
three columns), nCD = 10 (second column) or nCD = 1 (all other columns) and
∣S∣ = 25,000 (first three columns) or ∣S∣ = 500 (fourth column) training sam-
ples, measured in the σz basis, for several different values of the magnetic field

g (see left panel of each row). Markers: Δθ calculated from (3) with the filling
color indicating the total correlation Ctotðp̂θÞ of the model distribution (see
right colorbars), and the border color and marker type indicating the number
of hidden units N (see second panel in first row). Solid lines: ~Δ

ðSÞ
θ (see below Eq.

(4)), partially masked under the Δθ data and thus not visible. Dashed lines:
τθ = 1 (black), Δθ = Ctot(p) (red), Δθ = c τ

�α
θ (blue). c Δθ/Ctot(p) vs. τθ for various

system sizes M utilizing CD with nCD = 1, N = 16, ∣S∣ = 25,000, σz basis, and g as
indicated in each panel. As a result of rescaling the loss Δθ with the total
correlation Ctot(p) of the target distribution, the learning curves collapse in
the independent- and correlation-learning regimes. Inset: Same data, but
without the rescaling. d Δθ vs. τθ for CD training in the σx basis, with
∣S∣ = 25,000 samples and nCD = 1. Markers and dashed lines as in b. All curves
correspond to averages over 5 independent training runs.
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the RBM model. Yet its consequences for the usefulness of trained
models in applications have received relatively little attention thus
far. Our observations (i)–(iii) above elucidate the inner workings of
RBMs and imply that, depending on the intended applications, aim-
ing at maximal accuracy may not always be beneficial. We demon-
strate the various aspects of these findings by way of several
problems, ranging from quantum-state tomography for the
transverse-field Ising chain (TFIC, cf. Fig. 2) to pattern recognition
and image generation (Figs. 3 and 4); see also the figure captions and
Methods for more details on the examples.

Results
Accuracy and efficiency
Anaturalmeasure for the accuracy of themodel distribution p̂θðxÞ is its
Kullback-Leibler (KL) divergenceDKLðp∣∣p̂θÞ28 with respect to the target
distribution p(x),

Δθ :=DKLðp∣∣p̂θÞ �
X
x

pðxÞ log pðxÞ
p̂θðxÞ

, ð3Þ

which is nonnegative and vanishes if and only if the distributions p(x)
and p̂θðxÞ agree. Indeed, Δθ provides the basis of most standard
training algorithms for RBMs such as contrastive divergence (CD)22,29,
persistent CD (PCD)30, fast PCD31, or parallel tempering26,32. Adopting a
gradient-descent scheme with Δθ as the loss function, one would

ideally update the parameters according to

θkðt + 1Þ � θkðtÞ= � η
∂Eθðx,hÞ

∂θk

� �
p̂θðh∣xÞpðxÞ

� ∂Eθðx,hÞ
∂θk

� �
p̂θðx,hÞ

" #
, ð4Þ

where η >0 is the learning rate and p̂θðh∣xÞ is the conditional dis-
tribution of the hidden units given the visible ones. Since this condi-
tional distribution factorizes and the dependence on Zθ cancels out
(see Methods for explicit expressions), the first average on the right-
hand side of (4) can readily be evaluated. More precisely, since p(x) is
unknown, it needs to be approximated by the empirical distribution
~pðx; SÞ := 1

∣S∣
P

~x2Sδx,~x for a (multi)set of training data S := f~xð1Þ, . . . ,~xð∣S∣Þg,
which are assumed to be independent samples drawn from p(x). Hence
the effective loss function is ~Δ

ðSÞ
θ :=

P
x~pðx; SÞ log ~pðx;SÞ

p̂θðxÞ , which is an
empirical counterpart of (3).

The second average in (4), however, requires the full model dis-
tribution (1) and is thus not directly accessible in practice. Instead, it is
usually approximated by sampling alternatingly from the accessible
conditional distributions p̂θðh∣xÞ and p̂θðx∣hÞ, leading to a Markov
chain of the form

xð0Þ ! hð0Þ ! xð1Þ ! hð1Þ ! � � � ð5Þ

The distribution of (x(n), h(n)) converges to the model distribution
p̂θðx,hÞ as n→∞. Truncating the chain (5) at a finite n = nCD, we obtain a

Fig. 3 | RBM learning characteristics for a pattern recognition task. a The target
distribution consists ofM = 5 × 5 “images” subject to periodic boundary conditions
and a fixed 15-pixel “hook” pattern implanted at random locations, where the
remaining pixels are active (white) with probability q =0.1. b Exact loss Δθ vs.
autocorrelation time τθ for RBMs with different numbers of hidden units N (see
legend), trained on the distribution from a using contrastive divergence of order
nCD = 1with ∣S∣ = 5000 training samples and various values of the batch sizeB (rows)
and learning rate η (columns). Data points are averages over five independent runs.
c Δθ, τθ, total correlation Ctotðp̂θÞ of the model distribution, and the standard
deviation of the weights σw : = ð 1

MN�1

P
i,jw

2
ijÞ

1=2
as a function of the training epoch t

for various N; η = 0.005, B = 100 (cf. bottom left panel of b). d Simplifiedmodel
of M = 1 × 4 or M = 1 × 5 images with an implanted “black-white(-white)-black”
pattern. e Δθ vs. τθ for RBMs with N = 2 hidden units trained on the distribu-
tions from d using the full target distribution (i.e., ∣S∣ = ∞) and exact
continuous-time gradient descent with either the full model distribution
p̂θðx,hÞ (nCD = ∞) or contrastive divergence of order nCD = 1. Data points are
averages over 100 independent runs with different initial conditions. b, e Fill
colors indicate the total correlation Ctotðp̂θÞ of the model distribution (see
colorbars), border colors and marker types indicate the number of hidden
units N (see legends in bottom-right corners).
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(biased) sample from that distribution, whose bias vanishes as
nCD→∞33, but depends on the initializationof the chain forfinitenCD. In
our numerical examples, we will usually adopt the common CD algo-
rithm, which chooses x(0) as a sample from the training data S, or the
PCD algorithm, where x(0) is a sample from the chain of the previous
update step (see also Supplementary Note 1). Subsequently, the Mar-
kov chain (5) can be used to generate a new, but correlated sample.
Similarly, when analyzing and deploying a model p̂θðxÞ after training,
new samples are typically generated by means of Markov chains (5),
with the caveat that those samples are correlated and thus not
independent.

To quantify the sampling efficiency, we therefore consider the
integrated autocorrelation time34

τθ := 1 + 2
X1
n= 1

gθðnÞ
gθð0Þ

, ð6Þ

where gθðnÞ := 1
M

P
i½hxð0Þ

i xðnÞi i � hxð0Þ
i i2� is the mean correlation func-

tion of the visible units for the Markov chain (5) in the stationary
regime, i.e., xð0Þ ~ p̂θðxÞ. Notably, τθ is independent of the training
algorithm since it depends only on the RBM parameters θ, but not on
the different initialization schemes of the Markov chains in (P)CD and
its variants. In practice, particularly when utilizing the scheme (5) to
employ a trained model productively, one will start from an arbitrary
distribution and discard a number of initial samples (ideally on the
order of the mixing time33,35,36) to thermalize the chain and approach
the stationary distribution p̂θðxÞ.

The interpretation of τθ as a measure of sampling efficiency is as
follows: Supposewe have a numberRof independent samples from the
model distribution p̂θðxÞ to estimate 〈xi〉 (or 1

M

P
ihxii). To obtain an

estimate of the same quality via Gibbs sampling according to (5), we
would then need on the order of τθR correlatedMarkov-chain samples
(see, for example, Sec. 2 of ref. 34 and also Methods). Hence the
(minimal) value of τθ = 1 hints at independent (uncorrelated) samples,

Fig. 4 | Approximate RBM learning characteristics on digit images. a Images of
M = 5 × 7 pixels showing patterns of the digits 0 through 9 (selected uniformly) at a
random location. Gray pixels must either be made black (xi =0) or be cut away by
the image boundaries (see examples in the second row). Pixels that are not part of
the pattern are active (white) with probability q =0.1. The total number of such
images is 40,507,353. b Various loss measures vs. autocorrelation time τθ forN = 16
(left) and N = 32 (right) hidden units, utilizing persistent contrastive divergence
(PCD) with nCD = 1, η =0.005, B = 100 on ∣S∣ = 50,000 training images. Top: Exact
lossΔθ (black), exact test error ~Δ

ðTÞ
θ (empirical loss for a test datasetTof ∣T∣ = 10,000

images, gray), and Gaussian-smoothened empirical loss estimate ~Δ
ðT ,T̂Þ
σ (∣T̂ ∣= 106,

σ =0.32, cyan). The cyan dashed line marks ~Δ
ðT ,SÞ
σ =0:32 = 1:354, the minimal Gaussian-

smoothened loss estimate between the test and trainingdatasets.Middle: empirical

error ~δθ using majority-rule (r = 1) coarse-grainings of samples from the target and
model distributions, partitioning pixels into local or random groups (seemain text
for details). Solid lines: results for individual partitions; starmarkers: average of the
solid lines of the same partitioning type (color, see legend). Bottom: empirical error
~‘
1
θ for the same coarse-grainings. cΔθ vs. τθ forN = 16 (left) andN = 32 (right) hidden
units, utilizing persistent contrastive divergence (PCD) with fixed (nCD = 1) or
adaptive (nCD∝ τθ) approximation order; other hyperparameters as in b.
d Examples from the MNIST dataset, which comprises images ofM = 28 × 28 pixels
showing handwritten digits. e Similar to b, but for the MNIST dataset and PCD
training with nCD = 1, η = 10−4, B = 100, ∣S∣ = 60,000, ∣T∣ = 10,000, ∣T̂ ∣= 106, σ =0.41,
and ~Δ

ðT ,SÞ
σ =0:41 = 147:4. Missing data points correspond to ~δθ =1 and/or unrealiable τθ

estimates.
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and the larger τθ becomes, the more samples are needed in principle,
rendering the approach less efficient.

Note that the integrated autocorrelation time τθ defined in Eq. (6)
is conceptually related to, but different from the mixing time of the
Markov chain (see also Discussion below). Furthermore, different
observables (i.e., functions of the visible units xi) generally exhibit
different autocorrelation times. As explained in detail in Methods, the
quantity τθ from (6) is a weighted average of the autocorrelation times
associated with the observables’ elementary variables, namely the
individual xi. Hence we expect τθ to capture the relevant correlations
and thus the sampling efficiency in the generic case. The evaluation of
other correlation measures introduced below will reinforce this
notion. In addition, a quantitative comparisonof autocorrelation times
for different observables is provided in Supplementary Note 4 for the
examples from Figs. 2 and 4a–c.

Our principal object of study is the mutual dependence of Δθ and
τθ on the parameters θ for a given target distribution p(x). As outlined
above and illustrated in Fig. 1, there are three regimes the machine
undergoes during the learning process. Globally, the overall tradeoff
between accuracy and efficiency is numerically found to be bounded
by a power law of the form

Δθ τ
α
θ ≳ c, ð7Þ

where both c and the exponent α are positive constants whosemeaning
will be clarified in the following. Moreover, in the correlation-learning
regime, Δθ and τθ are often directly related by a power law Δθτ

α0
θ ’ c0,

where the constants c0 and α0 are close to c and α, respectively.

Mechanism behind the learning stages
With no specific knowledge about the target distribution, it is natural
to initialize the RBM parameters θ = (θk) = (wij, ai, bj) randomly. More-
over, the initial values should be sufficiently small so that any spurious
correlations arising from the initialization are much smaller than the
actual correlations in the target distribution and can be overcome
within a few training steps. In the examples fromFigs. 2–4, wedraw the
initial θk independently from a normal distribution N ðμ,σÞ of mean μ
and standard deviation σ, namely wij ~N ð0,10�2Þ and ai,bj ~N ð0,10�1Þ
unless stated otherwise. A brief exploration of other initialization
schemes, including Hinton’s proposal22 and examples with significant
(spurious) correlations, can be found in Supplementary Note 3. In
Figs. 2 and 3, the experiments were repeated for 5 independent runs
for each hyperparameter configuration, and the displayed data are
averages over those runs at fixed training epoch t. No error bars are
shown in these figures for clarity, but the spread of the point clouds
typically serves as a decent visualization of the uncertainty. We also
highlight that important information for the ensuing discussion is
encoded in the coloring of the data points. Particularly, both the filling
color and the border color convey correlation characteristics and
hyperparameter dependencies as indicated in the legends and figure
captions.

We now sketch how the three learning regimes and the tradeoff
relation arise. Intuitively, the origin of the accuracy–efficiency tradeoff
can be understood as follows: To improve the model representation
p̂θðxÞ of the target distribution p(x), correlations of p(x) between the
different visible units xi have to be incorporated into p̂θðxÞ. Since
correlations between visible units are mediated by the hidden units in
the RBM model (1), this inevitably increases the correlation between
subsequent samples in the Markov chain (5) and thus leads to larger
autocorrelation times τθ in (6). Nevertheless, the detailed relationship
betweenΔθ and τθ and its remarkable structural universality turn out to
be more subtle as discussed in the following.

In the independent-learning regime, which constitutes the first
stage of the natural learning dynamics, the loss Δθ is actually reduced
without any significant increase of the autocorrelation time τθ. Hence

the RBM picks up aspects of the target distribution whilst preserving
independence of its visible units. The minimal loss Δθ that can be
achievedwith a productdistribution of independent units xi is givenby
the total correlation37

CtotðpÞ :=
X
x

pðxÞ log pðxÞ
p1ðx1Þ � � �pMðxM Þ ð8Þ

of the target distribution. This quantity is thus the KL divergence (cf.
Eq. (3)) from the product of marginal distributions pi(xi) to the joint
distribution p(x) = p(x1,…, xM). It can be understood as a multivariate
analog of mutual information. For an arbitrary product distribution
p̂ðxÞ :=Qip̂iðxiÞ, we have DKLðp∣∣p̂Þ=CtotðpÞ+

P
iDKLðpi∣∣p̂iÞ≥CtotðpÞ

(see Supplementary Note 5). Hence Ctot(p) indeed lower-bounds the
loss Δθ for independent units.

The valueofCtot(p) is indicatedby the reddashed lines in Figs. 1–4,
and indeed marks the end of the independent-learning regime as
defined by τθ≃ 1 in Figs. 2–4. As a consequence, we can identify the
constant c from the tradeoff relation (7), which bounds Δθ from below
at τθ = 1 (see also Methods), with the total correlation Ctot(p) of the
target distribution, c≃Ctot(p), as illustrated by the intersection of the
red (Δθ =Ctot(p)), blue (Δθ = c τ

�α
θ ), and black (τθ = 1) dashed lines in

Figs. 1–4.
A closer inspection of the total correlation Ctotðp̂θÞ of the model

distribution, encoded by the color gradients in Figs. 2 and 3, confirms
that no significant correlations between the RBM’s visible units build
up as long as τθ≃ 1, providing further justification for labeling this
stage as the “independent-learning” regime. The time spent in this
regime can be reduced by adjusting the biases ai to the activation
frequencies of the visible units in the training data as suggested by
Hinton22 (see also Supplementary Note 3).

The independent-learning regime is thus characterized by τθ≃ 1
and Δθ ≳Ctot(p). As soon as Δθ falls below Ctot(p), the RBM enters the
correlation-learning regime and starts to exhibit noticeable depen-
dencies between its visible units, accompanied by an increase of τθ.
This regime is characterized byΔθ≲Ctot(p) and

∂τθ
∂Δθ

<0, meaning that τθ
grows as Δθ decreases. Quantitatively (cf. Figs. 2b–d, 3b, e, 4b, c), we
find that the functional dependence between Δθ and τθ is (piecewise)
power-law-like and often closely follows the lower bound provided by
the tradeoff relation (7).

In most of our examples, the exponent α turns out to be well
approximatedbyα ’ 1

2. Thenotable exception is the example inFig. 2d
of TFIC ground-state tomography in the σx basis (but not the σz basis;
see figure caption for details), where a value of α ≈ 6…8 seems more
appropriate. Roughly speaking, α quantifies how efficiently the pre-
vailing correlations in the target distribution p(x) can be encoded in
the RBMmodel p̂θðxÞ. A larger value of α implies that the tradeoff (7) is
less severe, indicating a closer structural similarity of p(x) to themodel
family p̂θðxÞ.

The relationship between accuracy and efficiency in the
correlation-learning regime turns out to be remarkably stable against
variations of the architecture or the training details, suggesting that it
is indeed an intrinsic limitation of the RBM model whose qualitative
details are essentially determined by the target distribution. First, as
long as training is stable, the Δθ–τθ learning trajectories are almost
independent of further hyperparameters such as the number of
training samples ∣S∣, the minibatch size B, or the learning rate η. This is
illustrated in Fig. 3b (see Supplementary Note 5 for further examples),
which also visualizes how training becomes unstable if η or B become
too small, leading to underperforming machines with (τθ,Δθ) further
away from the global bound (7). Second, changing the approximation
of the model averages in (4) does not affect the relation between Δθ

and τθ. In fact, approximation schemes that achieve a smaller loss Δθ

increase the autocorrelation time τθ in accordance with the tradeoff
(7). This is exemplified by variations in the order (nCD) and the
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initialization (CD vs. PCD) of the training chains (5) in Fig. 2b. Third, as
long as the loss is sufficiently above the expressivity threshold (see
below), the relationship between Δθ and τθ is largely insensitive to the
number of hidden units N (see Figs. 2b, d, 3b and 4b, c). Fourth, the
learning characteristics appear to be intrinsic to the problem type, but
not its size if a natural scaling for the number of visible unitsM exists.
To this end, we consider the TFIC example and vary the number of
lattice sitesM in Fig. 2c. While this changes the total correlation Ctot(p)
of the target distribution, the rescaled curves of Δθ/Ctot(p) vs. τθ col-
lapse almost perfectly onto a single universal curve in the indepen-
dent- and correlation-learning regimes.

The end of the correlation-learning regime and the crossover into
the degradation regime is influenced by various (hyper)parameters. An
absolute limit for the minimal value of Δθ results from the class of
distributions that canbe representedby the RBM.This “expressivity” is
controlledby thenumber of hiddenunitsN. For sufficiently largeN, the
RBM model can approximate any target distribution with arbitrary
accuracy24,38–40; hence there is no absoluteminimum forΔθ in principle.
In practice, however, the number of hidden units is limited by the
available computational resources. Note that the scaling of this
expressivity threshold is analyzed in some detail in ref. 41 for the TFIC
example (cf. Fig. 2).

Ceasing accuracy improvement due to limited expressivity is
exemplified by Fig. 3b in the stable regime (B ≳ 50), wherewe note that
the achievable minimal loss decreases significantly from N = 4 to 16 to
64 (the same behavior can also be observed in Fig. 4b, c). Employing
even more hidden units, however, does not facilitate any significant
gain in accuracy, and the learning characteristics for N = 256 in Fig. 3b
actually signal slightly worse performance in terms of the
accuracy–efficiency tradeoff, i.e., a larger offset from the global lower
bound (blue dashed line).

IfN is sufficiently large, the approximations leading to abias of the
(exact) update step (4) will usually take over eventually and lead into
the degradation regime even if the expressivity threshold has not yet
been reached.

The first of those approximations is the use of the empirical dis-
tribution ~pðx; SÞ in lieu of the unknown true target distribution p(x).
This may result in overfitting, a phenomenon common to many
machine-learning approaches: The RBM may pick up finite-size arti-
facts of ~pðx; SÞ, particularly when the resolution of genuine features in
the model distribution approaches the resolution of those features in
the empirical distribution. Overfitting is the primary reason for
degradation in the fourth column of Fig. 2b, where the size of the
training dataset ∣S∣ is rather small. Comparing the training error ~Δ

ðSÞ
θ

(solid lines, see below (4)) with the test error Δθ (data points, see Eq.
(3)), weobserve that the former continues todecrease even though the
latter actually increases.

In the first three columns of Fig. 2b, by contrast, ~Δ
ðSÞ
θ usually fol-

lows Δθ closely (thus the solid lines are often hidden behind the data
points). Here, degradation is due to the second limiting approximation
of the update step (4), namely the replacement of averages over the
model distribution p̂θðx,hÞ byMarkov-chain samples (5). In fact, this is
directly related to the definition of τθ because larger values imply that
the chain (5) needs to be run for a longer time in order to obtain an
effectively independent sample (see below Eq. (6)). Indeed, smaller
losses can be achieved for larger nCD (second vs. third column). Simi-
larly, at fixed nCD, PCD can reach higher accuracies than CD (first vs.
third column; see also Supplementary Note 5).

Finally, we turn to the smallest example from Fig. 3d, e. In this
case, we can directly integrate the continuous-time (η = 0) update
equations (4) with the full target distribution p(x) (i.e., ∣S∣ =∞) and the
exact model distribution p̂θðx,hÞ (i.e., nCD =∞) for RBMs with N = 2
hidden units (see also Supplementary Note 1). We again observe a
power-law tradeoff between Δθ and τθ with α ’ 1

3 . . .
3
5, limited by the

machine’s expressivity in theM = 5, but not in theM = 4case.Moreover,

by averaging over p̂ð1Þ
θ ðx,hÞ := p̂θðh∣xÞ

P
x0 ,h0 p̂θðx∣h0Þp̂θðh0∣x0Þpðx0Þ instead

of p̂θðx,hÞ in (4), we can adopt the exact CD update of order nCD = 1.
This reintroduces the correlation bias into the updates and indeed
leads to stronger deviations from the power-law behavior for M = 5,
with increasing Δθ in the degradation regime.

Towards applications
All examples discussed so far (Figs. 2, 3 and 4a–c) involved only a small
number of visible units M so that the accuracy measure Δθ could be
evaluated numerically exactly. In practice, this is impossible because
neither the target distribution p(x) nor themodel distribution p̂θðxÞ are
directly accessible. In the following, we will sketch how learning
characteristics and the accuracy–efficiency tradeoff can be analyzed
approximately in applications and apply the ideas, in particular, to the
MNIST dataset42 as a standard machine-learning benchmark of larger
problem size (see Fig. 4d, e).

To approximate the accuracy measure Δθ, the target distribution
p(x) is usually replaced by the empirical distribution ~pðx;TÞ for a
(multi)set of test samples T (independent of the training samples S). If
both M and N become large, p̂θðxÞ must be approximated by an
empirical counterpart as well. To this end, a collection of independent
samples from p̂θðxÞ is needed. Typically, it will be generated approxi-
mately by Markov chains (5), which directly leads back to the auto-
correlation time τθ from (6) as a measure for the number of steps
required in (5) to obtain an effectively independent sample.

Estimating τθ, in turn, should remain feasible along the lines out-
lined inMethods even ifM andN are large. To be precise, if it turns out
to be impossible in practice to reliably estimate τθ, then any conclu-
sions about the model distribution p̂θðxÞ drawn from Markov chains
like (5) are equally unreliable. In other words, if τθ (or, more generally,
the integrated autocorrelation time of the observable of interest)
cannot be computed, the trained model itself becomes useless as a
statistical model of the target distribution. A particular challenge are
metastabilities where the chains spend large amounts of time in a local
regime of the configuration space and only rarely transition between
those regimes. These can be caused, for instance, by a multimodal
structure of the target distribution. If undetected, thosemetastabilities
can lead to vastly underestimated autocorrelation times.

Once a set of (approximately) independent samples T̂ from p̂θðxÞ
is available, the KL divergenceDKLð~pð � ;TÞ∣∣~pð � ; T̂ÞÞ can serve as a proxy
forΔθ in principle. In practice, however, this approachwill not beviable
because this proxy diverges whenever there is a sample ~x in Twhich is
not found in T̂ , meaning that the sample size required for T̂ will often
be out of reach.

We suggest two alternative approaches to mitigate this problem.
First, we consider smoothening the empirical model distribution

~pðx; T̂Þ by convolving it with a Gaussian kernel kðx;μ,σÞ :=
N�1

σ e�ðx�μÞ2=2σ2
, where Nσ :=

PM
d =0

M
d

� �
e�d=2σ2

, leading to ~pσðx,T̂Þ :=
1
∣T̂ ∣

P
x̂2T̂ kðx; x̂,σÞ. The KL divergence ~Δ

ðT ,T̂Þ
σ :=DKLð~pð � ;TÞ∣∣~pσð � ; T̂ÞÞ

then approximates Δθ, where σ is chosen so as to make ~Δ
ðT ,SÞ
σ minimal,

i.e., whenusing the training data S as the empiricalmodel distribution26

(see also Supplementary Note 2). As shown in the first row of Fig. 4b,

ΔðT ,T̂Þ
σ reproduces essentially the same behavior as Δθ and ~Δ

ðTÞ
θ .

Second, we propose coarse-graining the samples in T and T̂ , such
that every ~x = ð~x1, . . . ,~xMÞ 2 T ,T̂ is mapped to a new configuration
~y= ð ~y1, . . . ,~yLÞ with ~yl 2 f0,1g and L <M. Denoting the resulting multi-
sets of reduced configurations by T 0 and T̂ 0, we then consider the KL
divergence ~δθ :=DKLð~pð � ;T 0Þ∣∣~pð � ; T̂ 0ÞÞ of the associated empirical
distributions as a qualitative approximation of Δθ. To be specific, in
Fig. 4, we employ a weighted majority rule for coarse graining using
random or local partitions of the visible units into L subsets, such that
~yl = 1 if a fraction of r or more units in the lth subset is active (see
Methods for details).
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While someof thequantitative details are inevitably lost as a result
of the coarse graining, the results in Fig. 4b show that the accuracy
measure ~δθ still conveys similar learning characteristics as the exact
loss Δθ. Remarkably, even the same exponent α ’ 1

2 is found to
describe the tradeoff between ~δθ and τθ in the correlation-learning
regime. On the other hand, the coarse-grained loss ~δθ appears to
deteriorate somewhat prematurely, especially for the random coarse
grainings, indicating that late improvements of Δθ involve finer, pre-
sumably local correlations that cannot be captured by ~δθ in
these cases.

Furthermore, we also consider the L1 distance ~‘
1
θ :=

P
x ∣~pðx;T 0Þ �

~pðx; T̂ 0Þ∣ between the reduced empirical distributions as an accuracy
measure. Its advantage is that—unlike ~δθ—it does not suffer from
divergences when T 0⊈T̂ 0 (cf. Fig. 4e in particular). As shown in Fig. 4b
ande, the ~‘

1
θ–τθ curves qualitatively agreewith their ~δθ–τθ counterparts

and can thus serve as amore stable way tomonitor the tradeoff in case
of smaller sample sizes.

Inspecting the learning characteristics in theMNIST example from
Fig. 4e, we observe that the relationship between the accuracy mea-
sures ~Δ

ðT ,T̂Þ
σ , ~δθ, ~‘

1
θ and the efficiencymeasure τθ arequalitatively similar

as in the simpler example in Fig. 4b, especially for themore expressive
RBMs with N ≥ 256. Notably, we find an initial regime with decreasing
~Δ
ðT ,T̂Þ
σ and ~‘

1
θ at τθ = 1 (~δθ =1 here due to the aforementioned under-

sampling problem), followed by an approximately power-law-like tra-
deoff between accuracy and efficiency, and finally ceasing
improvement (~Δ

ðT ,T̂Þ
σ ) or deterioration (~δθ, ~‘

1
θ) at increasing τθ. For

N = 32, by contrast, the RBM accuracy does not improvemuch beyond
the independent-learning threshold, except for somewhat unstable
fluctuations at very late training stages. Henceweexpect that the same
tradeoff mechanism identified in the small-scale examples from Figs. 2
through 4a–c also governs the behavior of more realistic, large-scale
learning problems.

Altogether, our present results suggest a couple of approaches to
monitor the accuracy and efficiency in applications with large input
dimensionM. First, we propose estimating the autocorrelation time τθ
at selected epochs during training and stop when it exceeds the
threshold set by the available evaluation resources in the intended use
case. Second, it may be helpful to train RBMs with smaller numbers of
hidden units N so that the test error ~Δ

ðTÞ
θ can be evaluated exactly (see

also Methods), even though those small-N machines will typically not
reach the desired accuracies. Since the onset of the correlation-
learning regime and the subsequent initial progression are essentially
independent of N, the relationship between ~Δ

ðTÞ
θ and τθ for small N can

provide an intuition and perhaps even a cautious extrapolation of the
behavior for larger N. Third, empirical accuracy measures such as
~Δ
ðT ,T̂Þ

, ~δθ and ~‘
1
θ can assure that the machine is still learning and pos-

sibly even map out the beginning of the degradation regime. Fourth,
estimates of τθ can be naturally obtained en passant when using the
PCD algorithm. These estimates can then be employed to adapt the
length nCD of the Markov chains (5) to the current level of correlations
when approximating the model averages in (4). While we leave a
detailed analysis of the resulting “adaptive PCD” algorithm for future
work, preliminary results (see Fig. 4c) suggest that one can indeed
reach better accuracies this way, while the tradeoff (7) remains valid.

Discussion
In summary, the accuracy–efficiency tradeoff is an inherent limitation
of theRBMarchitecture and its reliance onGibbs sampling (5) to assess
themodel distribution p̂θðxÞ. Depending on the eventual application of
the trainedmodel, this limitation should already be taken into account
when planning and performing training: Aiming at higher accuracy
implies that more resources will be required also in the production
stage to evaluate and employ the trainedmodel in anunbiased fashion.

Not least, the tradeoff directly affects the training process itself. It
is well known that common training algorithms like contrastive

divergence and its variants are biased29,43 and that the bias increases
with the magnitude of the weights33,44. Hence there exists an optimal
stopping time for training at which the accuracy becomes maximal,
but unfortunately, no simple criterion in terms of accessible quantities
is known to determine this stopping time44,45. Approximate test errors
like ~Δ

ðT ,T̂Þ
σ , ~δθ or ~‘

1
θ can provide a rough estimate forwhen deterioration

sets in, but are insensitive to finer details by construction. By contrast,
taking the reconstruction error as a measure for the model accuracy,
which is still not uncommon since it is easily accessible, is downright
detrimental from a sampling-efficiency point of view because it
decreases with increasing correlations between samples. Since it is not
correlatedwith the actual loss either44, the reconstruction error should
rather be regarded as an efficiency measure (with larger “error” indi-
cating higher efficiency).

The aforementioned fact that the magnitude of the weights is
closely related to the autocorrelation time τθ (see also Supplementary
Note 5) provides a dynamical understanding of the bias in the sense
that larger τθ calls for more steps in the Markov chain (5) to obtain an
effectively independent sample. Similar conclusions have been drawn
from studies of the mixing time of RBM Gibbs samplers27,33,35,36. The
mixing timequantifies howmany steps in (5) arenecessary to reach the
stationary distribution p̂θðxÞ from an arbitrary initial distribution for
x(0). In CD training, where x(0) is taken from the training data (meaning
that it is a sample drawn from p(x) by assumption), it is particularly
relevant for the early training stages when p̂θðxÞ is possibly far away
from the target. For analyzing a trainedmodel, by contrast, themixing
time is less important because it only provides a constant offset to the
sampling efficiency by quantifying the burn-in steps in (5), i.e., the
number of samples to discard until the stationary regime is reached,
whereafter one will start recording samples to actually assess p̂θðxÞ.
Similarly, correlations in the PCD update steps are better described by
autocorrelation times like τθ, at least if the learning rate is sufficiently
small so that the Markov chains can be considered to operate in the
stationary regime throughout training, and the same applies to
ordinary CD updates at later training stages.

There are a variety of proposals tomodify the sampling process so
that correlations between subsequent samples in an appropriate ana-
log of (5) are reduced, including the above-sketched PCD extension
with τθ-adaptive order of the Markov-chain sampling (see also Fig. 4c),
parallel tempering26,32, mode-assisted training46, or occasional
Metropolis-Hastings updates47,48. However, these adaptations come
with their own caveats and the extent to which correlations are
reduced may depend strongly on the setting35,48. Moreover, the com-
putational complexity of these methods is usually higher because
additional substeps are necessary to produce a new Markov-chain
sample. While a detailed quantitative analysis is missing, the overall
evaluation efficiency (e.g., the required computational resources) will
presumably not be improved in general25, and probably the only
remedy to circumvent the sampling problem could be novel com-
puting hardware such as neuromorphic chips49–53, “memcomputing
machines”54, or quantum annealers55,56.

For a more comprehensive understanding of the tradeoff
mechanism, it would be desirable to elucidate the role of the exponent
α in (7) and how it relates to properties of the target distribution p(x).
As discussed above, α roughly quantifies howapt theRBMarchitecture
is to represent p(x), with larger values of α indicating better suitability.
A related question is what distributions can be represented efficiently
by RBMs in termsof the required number of hiddenunits38,40,57. Besides
the number of “active” states, symmetries that make it possible to
represent the correlations between various visible units with fewer
hidden units could play an important role in affecting α (see also
Supplementary Note 5). Furthermore, observing themarked transition
from independent to correlation learning, one may naturally wonder
whether there exists a hierarchy of how and when correlations are
adopted during the correlation-learning regime40,58–61, particularly
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when α is ambiguous (e.g., in Fig. 2d; see also Supplementary Note 5).
In any case, it is remarkable that in most of the examples we explored,
α turns out to be approximately 1

2, particularly at the initial stage of the
correlation-learning regime. Whether this is a coincidence or a hint at
some deeper universality principle is an intriguing open question.

Methods
Conditional RBM distributions
The approach to use alternating Gibbs sampling of visible and hidden
units via Markov chains of the form (5) is viable in practice only due to
the bipartite structure of the RBM with direct coupling exclusively
between one visible and one hidden unit. Consequently, the visible
units are conditionally independent given the hidden ones and vice
versa, e.g., p̂θðh∣xÞ=

Q
j p̂θðhj ∣xÞ with

p̂θðhj ∣xÞ=
e
P

i
wijxi +bj

� �
hj

1 + e
P

i
wijxi +bj

, ð9Þ

and similarly p̂θðx∣hÞ can be obtained by replacing xi↔ hj and ai↔ bj
and by summing over i in the exponents and taking the product over j.
Sampling from p̂θðh∣xÞ and p̂θðx∣hÞ is thus of polynomial complexity in
the number of units and can be carried out efficiently. Likewise, this
explains why the first average on the right-hand side of (4) with ~pðx; SÞ
in lieu of p(x) (sometimes called the “data average;” see also below Eq.
(4)) can be readily evaluated. For θk =wij, for example, one finds

∂Eθðx,hÞ
∂wij

* +
p̂θðh∣xÞ~pðx;SÞ

= � 1
∣S∣

X
x2S

xi p̂θðhj = 1∣xÞ, ð10Þ

and similarly for ai and bj.
The variability of samples obtained from those conditional dis-

tributions can be assessed in terms of their Shannon entropy, defined
for an arbitrary probability distribution p(x) as
SðpÞ := �P

xpðxÞ logpðxÞ. Specifically,

Sðp̂θðh∣xÞÞ=
X
j

log 1 + e
P

i
wijxi +bj

� �
�

P
iwijxi +bj

1 + e�
P

i
wijxi�bj

� 	
, ð11Þ

and, again, similarly for p̂θðx∣hÞ. The entropy is maximal for the uni-
formdistributionwith θk =0 for all parameters. It remains large as long
as the θk’s are small in magnitude and tends to decrease towards zero
as ∣θk∣ increases unless there is a special fine-tuning for specific
configurations h that leads to exact cancelations. Over multiple steps
of the Markov chain (5), the samples will thus generically show more
variability for small weights, whereas they develop stronger correla-
tions as the weights grow33,44 (see also Supplementary Note 5).

Details on Δθ, Ctotðp̂θÞ and related quantities
The measure of accuracy Δθ (exact loss, ideal test error) is calculated
numerically exactly by carrying out the sums in Eqs. (2) and (3). Simi-
larly, the total correlationsCtot(p) of the target andmodel distributions
are computed exactly according to (8) as a sum over all states that
keeps track of the contributions from both the full distribution p(x)
and the marginal ones pi(xi).

For the partition function (2), we can exploit the bipartite struc-
ture of the RBM’s interaction graph, such that one of the sums can be
factorized and thus be evaluated efficiently. For example, if N ≤M, we
rewrite (2) as

Zθ =
X
h

e
P

j
bjhj

Y
i

1 + e
P

j
wijhj + ai

� �
, ð12Þ

and similarly ifM <N. The sum over h in (12) involves 2N terms, but the
product over i in each summand consists of justM factors. Therefore,

the computational complexity scales exponentially with minfM,Ng
only. For the sum in Eq. (3), we can exploit the sparsity of the target
distribution p(x) and restrict the (costly) evaluations of p̂θðxÞ to those
states with p(x) > 0. Notwithstanding, the system sizes for which the
computation of Δθ remains viable is relatively small; see also refs.
26,44–46,62 for studies of the exact RBM loss in small examples.

In practical applications, one does not have access to p(x), but
only to a collection of samples S := f~xð1Þ, . . . ,~xð∣S∣Þg (training and/or test
data). The empirical counterpart of Δθ for such a dataset S is

~Δ
ðSÞ
θ = � 1

∣S∣

X
x2S

X
i

aixi +
X
j

log 1 + e
P

i
wijxi +bj

� �" #
+ logZθ � log ∣S∣;

ð13Þ

see also below Eq. (4). The critical part is again the partition function
Zθ. Due to the aforementioned factorization (cf. Eq. (12)), evaluating
(13) remains feasible as long as the number of hidden units N is suffi-
ciently small, even if M is large. Similarly, for small N, we can draw
independent samples from p̂θðxÞ=

P
hp̂θðx∣hÞ p̂θðhÞ, without reverting

to Markov chains and Gibbs sampling: We first generate independent
samples f~hðμÞg of the hidden units, using the fact that p̂θðhÞ remains
accessible for small N. Subsequently, we sample configurations of the
visible units using p̂θðx∣h= ~h

ðμÞÞ. This scheme was utilized to obtain the
model test samples T̂ for the N ≤ 32 examples in Fig. 4. For the exam-
ples with N > 32, the samples in T̂ were instead generated via Gibbs
sampling according to (5), using 10 parallel chains and storing every τθ-
th sample after 2 × 106 burn-in steps.

The accuracy measures ~δθ and ~‘
1
θ involve empirical distributions

of coarse-grained visible-unit samples. These reduced samples are
obtained by using aweightedmajority rule: For a partition {L1,…, LL} of
the visible-unit indices {1,…,M} and a threshold r∈ [0, 1], we define

f αðxÞ :=
1 if

P
i2Lαxi ≥ r ∣Lα ∣;

0 otherwise:

(
ð14Þ

For every sample ~x in a givenmultiset S, the associated coarse-grained
sample is ~y= ð~y1, . . . ,~yLÞ with ~yα := f αð~xÞ.

Details on τθ
To measure the efficiency of Gibbs sampling according to the Markov
chain (5), we evaluate the integrated autocorrelation time τθ from (6).
The general purpose of Gibbs sampling is to estimate the model
average h f ðxÞi � h f ðxÞip̂θðxÞ of some observable f(x), i.e., a function of
the visible units. The samplemean �f := 1

R

PR�1
n =0 f ðxðnÞÞ over a chain of R

samples is an unbiased estimator of 〈 f(x)〉 if the chain is initialized and
thus remains in the stationary regime, xð0Þ ~ p̂θðxÞ (see also below Eq.
(6)). The correlation function associated with f(x) and the Markov
chain (5) is

gðf Þ
θ ðnÞ := h f ðxð0ÞÞ f ðxðnÞÞi � h f ðxÞi2: ð15Þ

For any suchcorrelation functiongðf Þ
θ ðnÞ, the corresponding integrated

autocorrelation time is defined similarly to Eq. (6),

τð f Þθ := 1 + 2
X1
n= 1

gð f Þ
θ ðnÞ

gð f Þ
θ ð0Þ

: ð16Þ

To assess the reliability of the estimator �f , we inspect its variance

h �f 2i � h �f i2 = gð f Þ
θ ð0Þ
R

1 + 2
XR�1

n= 1

1� n
R

� � gð f Þ
θ ðnÞ

gð f Þ
θ ð0Þ

" #
: ð17Þ

If the number of samplesR ismuch larger than thedecay scaleof gðf Þ
θ ðnÞ

with n (which is a prerequisite for estimating �f reliably), the
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contribution proportional to n
R becomes negligible in the sum and the

term in brackets reduces to τðf Þθ from (16); see also Sec. 2 of ref. 34.
Observing that gðf Þ

θ ð0Þ is the variance of f(x), the variance of the esti-
mator �f from correlated Markov-chain samples is thus a factor of τðf Þθ
larger than the variance of the mean over independent samples. In
other words, sampling via the Markov chain (5) requires τðf Þθ more
samples than independent sampling to reach the same standard error
and is thus less efficient the larger τθ becomes.

In general, the integrated autocorrelation times τðf Þθ can andwill be
different for different observables f(x). The specific choice τθ from (6)
is supposed to capture the generic behavior of typical observables. It
focuses on the individual visible units xi as the elementary building
blocks. However, instead of taking the mean over the autocorrelation
times τðxiÞθ for each unit f(x) = xi, the averaging is performed at the level
of the correlation functions gðxiÞ

θ ðnÞ; cf. below Eq. (6). The effect is a
weighted average

τθ =

P
ig

ðxiÞ
θ ð0Þ τðxiÞθP
ig

ðxiÞ
θ ð0Þ

ð18Þ

that gives higher importance to strongly fluctuating units with a large
variance gðxiÞ

θ ð0Þ. This accounts for the fact that variability of the
Markov-chain samples is more important for those units and reduces
the risk of underestimating correlationswhen there are certain regions
in the data that behave essentially deterministically, e.g., background
pixels at the boundary of an image distribution.

In practice, if one is interested in a specific observable f(x), the
associated autocorrelation time τðf Þθ should be monitored directly
instead of (or along with) the generic τθ. While the quantitative details
may differ, we expect that the scaling behavior and the tradeoff
mechanism remain qualitatively the same. A comparison for different
observables in the TFIC example from Fig. 2 and in the digit-pattern
images from Fig. 4a–c can be found in Supplementary Note 4. We
indeed observe that τðf Þθ is usually largely proportional to τθ.

In our numerical experiments, we estimate τθ statistically from
long Markov chains of the form (5) with ntot samples. Due to sampling
noise, the sum over time lags n in (6) must be truncated at a properly
chosen threshold nmax to balance the bias and variance of the esti-
mator. Following ref. 34, we choose nmax as the smallest integer such
that nmax ≥ γ ~τθðnmaxÞ, where γ is a constant and ~τθðnmaxÞ is the value
obtained from truncating (6) at nmax using empirical averages to esti-
mate the correlation function gθ(n) (see below Eq. (6)) and exploiting
translational invariance of the stationary state (i.e., hxð0Þi xðnÞ

i i=
hxðkÞi xðn + kÞ

i i). If gθ(n) follows an exponential decay, the bias of the
estimator is of order e−γ, and we use γ = 5 in Figs. 2 and 3 and γ = 8 in
Fig. 4. To reach the stationary regime, we initialize the chain (5) in a
state sampled uniformly at random and thermalize it by discarding a
large number of samples, at least on the order of 100τθ, providing a
reasonable buffer to account formixing times that may exceed τθ (and
would thus increase the bias if the number of discarded samples was
too small).

In Fig. 4, we additionally maintain rg independently initialized
chains to estimate gθ(n) and calculate τθ as described above, using the
average over the rg chains for gθ(n). The estimates are considered to be
reliable only if the variations between the means of the rg chains are
below 5%; otherwise the data points are discarded. Furthermore, we
repeat the entire procedure rτ times, leading to rτ independent esti-
mates of τθ. The error bars in Fig. 4 indicate the min-max spread
between those rτ estimates.

Power-law bound
In the examples from Figs. 2–4, the blue dashed lines indicate the
power-law bound (7) for the accuracy–efficiency tradeoff. The
constants c and α in this bound as stated in the respective figure
panels were determined as follows: The exponent α is chosen to

roughly match the average slope � ∂ logΔθ
∂ log τθ

for the data points in the
correlation-learning regime over all hyperparameter configura-
tions (nCD, η, B, ∣S∣) for any specific target distribution p(x). If this
choice is ambiguous (e.g., in Fig. 2d), the behavior in the beginning
of the correlation-learning regime (τθ ≃ 1, Δθ ≃ Ctot(p)) is decisive.
Once α is fixed, c is chosen as the maximum value such that Δθτ

α
θ ≥ c

holds for all data points of all hyperparameter configurations
simultaneously.

Examples
The first examplary task (cf. Fig. 2) is quantum-state tomography,
namely to learn the ground-state wave function of the TFIC based
on measurements of the magnetization in a fixed spin basis
f∣x1 � � � xM


g, where xi = 0 (xi = 1) indicates that the ith spin points in
the “up” (“down”) direction in the chosen basis. The Hamiltonian
is H = � 1

2

PM
i= 1ðσx

i σ
x
i+ 1 + g σz

i Þ with periodic boundary conditions
and Pauli matrices σγ

i (γ = x, y, z) acting on site i. The model
exhibits a quantum critical point at ∣g∣ = 1 and is integrable, such
that the ground state ∣ψ



=
P

xψðxÞ∣x1 � � � xM


can be constructed

explicitly63,64 (see also Supplementary Note 2A). As we consider
measurements in the σz and σx directions only, the basis states
∣x1 � � � xM



can be chosen such that ψ(x) is real-valued and non-

negative, which allows us to employ the standard RBM archi-
tecture (1). (Generalizations for complex-valued wave function
are possible10,51). The target distribution is thus p(x) = ψ(x)2.

Our second example (cf. Fig. 3) is closer in spirit to traditional
machine-learning applications and involves pattern recognition and
artificial image generation. The target distribution p(x) generates 5 × 5
pixel images with a “hook” pattern comprised of 15 pixels (see Fig. 3a)
implanted at a random position in a background of noisy pixels that
are independently activated (white, xi = 1) with probability q =0.1 (see
also Supplementary Note 2B for more details). Periodic boundary
conditions are assumed, meaning that p(x) is translationally invariant
along the two image dimensions.

We also consider a one-dimensional variant of this example with
only M = 4 (M = 5) visible units and an implanted “010” (“0110”) pat-
tern, cf. Fig. 3d. In this case, we can solve the continuous-time
learning dynamics (η→0 limit of (4)) for the exact target and model
distributions p(x) and p̂θðx,hÞ, obviating artifacts caused by insuffi-
cient training data or biased gradient approximations, see also
Supplementary Note 1.

Our third example (cf. Fig. 4a–c) is a simplified digit reproduction
task. Patterns of the tendigits 0 through9 (see Fig. 4a) are selected and
inserted uniformly at random into image frames of 5 × 7 pixels, with
the remaining pixels outside of the pattern again activated with
probability q =0.1 (see Supplementary Note 2C for details). No peri-
odic boundary conditions are imposed, i.e., the input comprises
proper, ordinary images.

In our fourth example (cf. Fig. 4d, e), we train RBMs on theMNIST
dataset42, which consists of 28 × 28-pixel grayscale images of hand-
written digits. It comprises a training set of 60,000 and a test set of
10,000 images. We convert the grayscale images with pixel values
between 0 and 255 to binary data by mapping values 0…127 to 0 and
128…255 to 1 (see also Supplementary Note 2D).

Data availability
The source data of Figs. 2–4 are provided with this paper in the Source
Datafile. Owing to the largefile size of the full dataset, the rawdata that
support the findings of this study are available as needed from the
corresponding author upon reasonable request. Source data are pro-
vided with this paper.

Code availability
The computer code for the numerical experiments can be accessed
from the public repository https://gitlab.com/lennartdw/xminirbm.
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