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ABSTRACT

A fundamental question appears in many bioinfor-
matics applications: Does a sequencing read belong
to a large dataset of genomes from some broad taxo-
nomic group, even when the closest match in the set
is evolutionarily divergent from the query? For exam-
ple, low-coverage genome sequencing (skimming)
projects either assemble the organelle genome or
compute genomic distances directly from unassem-
bled reads. Using unassembled reads needs con-
tamination detection because samples often include
reads from unintended groups of species. Similarly,
assembling the organelle genome needs distinguish-
ing organelle and nuclear reads. While k-mer-based
methods have shown promise in read-matching,
prior studies have shown that existing methods
are insufficiently sensitive for contamination detec-
tion. Here, we introduce a new read-matching tool
called CONSULT that tests whether k-mers from a
query fall within a user-specified distance of the
reference dataset using locality-sensitive hashing.
Taking advantage of large memory machines avail-
able nowadays, CONSULT libraries accommodate
tens of thousands of microbial species. Our results
show that CONSULT has higher true-positive and
lower false-positive rates of contamination detec-
tion than leading methods such as Kraken-II and im-
proves distance calculation from genome skims. We
also demonstrate that CONSULT can distinguish or-
ganelle reads from nuclear reads, leading to dramatic
improvements in skim-based mitochondrial assem-
blies.

INTRODUCTION

Despite the decreased cost of whole-genome sequenc-
ing, carrying out large-scale cohort studies of non-human
species using assembled genomes is still daunting (1). Low-

cost sequencing projects remain an attractive alternative
in biodiversity and ecological research (2,3). Such stud-
ies can include a large number of samples sequenced at 1-
2× read coverage, often called genome skims (4–6). Tradi-
tionally, genome-skimming data were used for assembling
the over-represented organelle genome using one of sev-
eral approaches that have been developed (7–13). More re-
cently, noting that skimming also produces a large number
of unassembled reads from the nuclear genome, researchers
have been inspired to use those unassembled reads to answer
biodiversity-related questions, including sample identifica-
tion and population genetics (14). This vision can be real-
ized using assembly-free and alignment-free methods where
bags of unassembled reads represent both the labeled species
(i.e. reference) and the new sample that need to be identified
(i.e. query), and these bags of reads are directly compared.
This vision has been pursued by several methods that enable
computing distances among skims (15–19) and using those
distances for phylogenetic placement (20,21).

The broad use of skimming data for biodiversity is within
reach, but a significant hurdle remains: contamination. An-
alyzing raw unassembled reads without mapping to ref-
erence genomes is particularly vulnerable to the presence
of extraneous sequencing reads that do not belong to the
species of interest (22,23). Foreign DNA originating from
parasites, symbionts, diet, bacteria and human are often
mixed in with supposedly single-species genome skims with
the sequencing step further contributing to the contamina-
tion (24–26). With a slight abuse of terminology, we broadly
refer to all external DNA outside of the genomes of interest
as contaminants. Such contamination has the potential to
reduce accuracy of distances estimated from genome skims.
Using theoretical modeling and experimental studies, we
have shown (27) that contamination can lead to over and
underestimation of distances between genome skims using
assembly-free methods such as Skmer.

Examination of raw reads for contamination detection
is not a new challenge. Early filtering techniques that re-
lied on k-mer-coverage or GC content (28–30) missed
contaminants frequently and were replaced by methods
that use sequence similarity to search against libraries of
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potential contaminants (31). The current practice is to re-
purpose classification methods used in the taxonomic char-
acterization of microbial metagenomes to identify extra-
neous reads in genomic datasets (31). Metagenome clas-
sifiers use a variety of approaches, including read align-
ment as nucleotide or protein, k-mer mapping, and align-
ment of marker genes (32–34). Among these, marker-based
and protein-based methods cannot be used for contami-
nation removal as they will only detect reads from mark-
ers or coding sequence (CDS) regions. Among the re-
maining methods, k-mer-based methods (35–39) are widely
used and present a reasonable compromise between speed
and sensitivity. In particular, thanks to its speed, accuracy
and user-friendly implementation, Kraken-II (36) is widely
used.

For contamination removal, unlike taxonomic classifica-
tion, we are interested in detecting the broad taxonomic
group of a read. For example, given a genome skim from
an insect, we seek to find reads that can be rejected as be-
longing to Arthropoda. Thus, reads clearly belonging to
prokaryotes, fungi or plants would be judged as contami-
nation. Metagenomic classification tools do classify reads
at high levels but have not necessarily been optimized for
higher level classification. Instead, their goal has been in-
creasing specificity (e.g. detecting species). While detecting
higher levels should be easier in principle, methods remain
inadequate.

A shortcoming of metagenomic tools is their reduced
ability to match reads when evolutionary close species are
not available in the reference set (40–43). Much of the mi-
crobial diversity on earth is not reflected with close rep-
resentatives in the reference datasets (44,45). Thus, con-
tamination removal tools should ideally identify the broad
group of species generating a read even when the refer-
ence is sparse. Current methods are not sensitive enough.
For instance, the phylum level classification lacks sensitiv-
ity when tested on novel data (43). We recently showed (27)
that even at the domain-level, the sensitivity of the leading
method Kraken-II (36) degrades dramatically as the dis-
tance to the closest match in the database increases above
≈8% demonstrating that even leading metagenomic meth-
ods have serious limitations for contamination removal.
The limited sensitivity of methods has spurred the devel-
opment of many reference sets (46–49), including recent
whole-genome databases with up to 25000 genomes (50–
52). However, despite their substantial size, these databases
(or close to a million prokaryotic genomes available on Ref-
Seq and GenBank databases) include only a fraction of the
estimated 1012 extant microbial species (53). Thus, better
reference datasets are not enough; we need more sensitive
sequence matching methods.

Sensitive read matching tools can also help the organelle-
based use of genome skims. Assembling organelle genomes
needs some way of telling apart nuclear and organelle reads.
Existing methods rely on either a seed-and-extend method
where a seed (e.g. COI barcodes, available for millions of
species) is used to find a part of the organelle genome and
seek neighboring regions in the assembly graphs (9,10). An
alternative is to rely on differential coverage of organelle
and nuclear genomes to distinguish the two (11,12). Fi-

nally, when a close reference genome is available, using that
genome and read mapping can be used (e.g. (8)). However,
given that >10 000 organelle genomes from across the tree
of life are already available in RefSeq, an alternative ap-
proach seems fruitful. We can build a database of all existing
organelle genomes and use a sensitive read matching tool
to find which reads look like they belong to the organelle
genome. The assembly can then proceed simply using reads
that match the database at some distance.

In this paper, we introduce a read matching method
and apply it to both contamination removal and organelle
read detection. Our method, called CONSULT (CONtam-
ination Spotting Using Locality-sensitive hashing Tech-
niques), uses k-mers in a query sequence to search a refer-
ence database and detects whether any of the k-mers match
any sequence in the database allowing for inexact matches
up to a user-defined threshold. The general strategy is simi-
lar to Kraken-II, except CONSULT allows mismatches us-
ing the Locality-sensitive hashing (LSH) technique; how-
ever, unlike Kraken-II, CONSULT does not currently pro-
duce taxonomic assignments. We compare CONSULT to
leading methods both as a contamination removal tool and
as a pre-processing step to help organelle assembly and
show its superior accuracy in both settings.

MATERIALS AND METHODS

CONSULT

Background: LSH and the motivation to use it. Exact k-
mer matching is not sufficient for matching reads to a
database when the closest species in the reference set is evo-
lutionary distant. Here, we always chose k > 20 so that
k-mers are expected to be unique except when they derive
from a common ancestor (e.g., repeats). Let us examine an
example. Consider a case where the query genome is at dis-
tance d = 0.15 to its closest match M in the reference set.
While due to lack of independence among adjacent k-mers,
the probability of shared k-mers is hard to compute, we
can still compute the expected number of k-mers shared be-
tween a read of length L = 150 and M, which is only (L − k
+ 1)(1 − d)k = 0.4 for k = 35 (default in Kraken-II). Thus,
most reads would not match the reference dataset. Existing
methods have recognized the need for inexact k-mer match-
ing. For example, Kraken-II masks 7 positions from each
k-mer to increase the expected number of matches (1.3 in
the previous scenario), allowing many but not all reads to
match. Note that most methods avoid keeping all k-mers of
reference genomes in the reference set, further reducing the
expected number of matches per read.

We approach inexact matching using LSH, which is a
widely used hashing technique for clustering similar items
or finding neighbors of a data points within a distance
threshold (54). LSH uses a family of functions that hash
data points into buckets so that data points near each other,
and only such data points, are located in the same buckets
with high probability. An LSH requires hashing functions
that guarantee the probability of two items with distance
below a desired threshold p falling in the same bucket is
higher than that of two items with distances greater than a
× p for some approximation factor a > 1. LSH schemes are
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known for many distances (55–61). Among these, Hamming
distance (HD) allows a straight-forward hashing scheme,
described below, that is also fast to compute. Moreover,
HD has a natural interpretation in terms of evolutionary
distances and is readily defined between two k-mers. With
more complex schemes such as MinHash (corresponding to
Jaccard index) and edit distance, the interpretation of dis-
tances for k-mers is not immediately clear. Thus, here, we
focus on HD.

To design a LSH for HD, we hash a k-mer by simply
picking a random (but fixed) position in that k-mer, which
would put two sequences of Hamming distance d in the
same bucket with probability 1 − d

k . While this probability
decreases with d (thus, forms a valid LSH), the probabil-
ity reduces only linearly with d and is not expected to be
effective. However, this simple hash function can be am-
plified using AND and OR constructions. Given two k-
mers represented by l hash functions each constructed us-
ing h randomly-positioned bits (i.e. AND construction), the
probability that at least one of the hash functions (i.e. OR
construction) fall in the same bucket is:

ρ(d) = 1 −
(

1 −
(

1 − d
k

)h
)l

(1)

By varying k, l and h, we can control � (d). Note that l =
1 and h = k − s reproduces the masking strategy used by
Kraken-II (s is the number of masked bits). Ideally, � (d)
should be close to 1 for d ≤ p and should quickly drop close
to zero for d � p. As shown in Supplementary Figure S1,
� (d) can produce an inverted S-shaped figure, and fixing k,
many settings of l and h can lead to high � (d) for low dis-
tances (e.g. d ≤ p = 3) and much lower � (d) for higher dis-
tances (e.g. d > 6).

CONSULT algorithm. The inputs to CONSULT is set of
reference genomes, represented as a set of k-mers, one or
more query reads, and two adjustable parameter: c and p. It
seeks to address the following problem: Are there at least c
k-mers in a given read that each have at most distance p to
some k-mer in the reference library? While the naive solu-
tion to this problem requires comparing each k-mer in each
query read to each k-mer in the library, CONSULT uses
LSH to circumvent that need. To build its library, CON-
SULT saves reference k-mers in a LSH-based lookup table
(Figure 1A), further described below. At the query time, the
lookup table enables CONSULT to compare a given k-mer
to a small (bounded) number of reference library k-mers to
compute the HD between the query and the reference k-
mers. A read is called a match as soon as at least c reference
k-mers are found that match the query k-mer, meaning that
their HD is no larger than p (algorithm 1).

Encoding k-mers. Let us assume we have up to 2g k-mers
in the reference set. Every reference k-mer is encoded in a
2k-bit number and is kept in an encoding array of maximum
size 2g (Figure 1A). We use a specific Left/Right encoding
that allows very fast calculation of HD using a native pop-
count instruction, an XOR, an OR, and a shift (see proce-
dures LeftRightEncode and HD in Algorithm 1).

Algorithm 1 CONSULT algorithm. Here, we omit the set-
associative design and tags and the fast SHLD-based com-
putation of signatures for simplicity; for the more complete
pseudocode, see Algorithm S1 in Supplementary Material.
Notations: S: all reference sequences. Defaults: m = 35,
k = 32, h = 15, l = 2, b = 7, p = 3, c = 1, g = 33. [a] denotes
{0,. . . , a−1}.

Lookup Table. To find a constant-size subset of k-mers for
computing HD, we use LSH. Hash values are generated by
randomly selecting h 2-bits at randomly chosen (but fixed)
positions from the 2k-bit encodings, repeating the process
l times to produce l signatures. When building the reference
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Figure 1. (A) A set-associative lookup table is indexed by h randomly selected LSH signatures extracted from each k-mer and points to the encoding array.
(B) We show (L − k + 1)� (d): the expected number of k-mers that match a k-mer in a reference genome at distance d from the read for various h, l settings;
k = 32. Black line: k = 35, h = 35 − 7 and l = 1, similar to default Kraken-II.

library, we save l one-to-many mappings from each k-mer
signature to at most b encodings, implemented as a lookup
table (Figure 1A). When a k-mer is added to the encoding
array, each of the l lookup tables is updated to point to its
position, skipping a table if the corresponding row is full.
The lookup tables should ideally allow around 2g elements
to accommodate all encodings, which can be achieved by
setting b ≈ 2g − 2h. At the query time, for each k-mer of a
read and its reverse complement, we generate its l signatures
(using a trick enabled by x86 instruction ‘extended shift’
(shld); see Signature in Algorithm 2, Supplementary
Material), which we use as index to a row of the lookup ta-
ble; thus, the maximum number of k-mers we will test equals
b × l.

Note that there is no guarantee that signatures will ap-
pear uniformly in the reference set (Supplementary Figure
S2) and so some rows can fill up sooner than others. To
avoid losing k-mers to imbalances (Supplementary Table
S1), we use a set-associative lookup: The most significant
t bits (default = 2) of a signature are used as a tag and the
remaining 2h − t bits as the index to the lookup table. Thus,
the table has 22h − t rows, and each signature can have be-
tween 0 and b × 2t entries. This design improves utilization
of the table (Supplementary Figures S2 and S3). We sort el-
ements in each row by the tag and save tag boundaries.

HD calculation. Given that we use LSH, one may wonder
why computing HD explicitly is necessary. LSH can only
provide probabilistic guarantees: k-mers from very distant
genomes have small but non-negligible chances of match-
ing. Modern reference libraries for prokaryotes include >10
000 representatives genomes (50,52), leading to 8 to 20 bil-
lion unique k-mers after minimization (Table 1). Against
such huge reference libraries, small probabilities of incorrect
matches blow up. To guard against false positives, CON-
SULT makes sure a k-mer is called a match only if its actual
hamming distance to a k-mer in the library is below p. Thus,

LSH is not the final arbitrator of distance; it only helps re-
duce hamming distance calculations. A side-effect of com-
puting HD is that it requires keeping reference library k-
mers in memory. For example, to keep 8 billion 32-mers in
memory (our target in this study), we need 8 × 233 = 64 G
bytes for encodings. Luckily, modern server nodes have up-
wards of 128 GB RAM, allowing this high memory usage.

Parameter settings. We will explore the parameters c and p
in our experiments and will select default values. The choice
of k, l and h presents intricate trade-offs between memory,
running time, recall and precision. The total memory usage
is roughly 2g − 3 × (2k + g × l) bytes. Fixing g = 33, to fit
the entire library in a 128GB memory machine, we need 2k
+ 33 × l ≤ 128. Since k > 20 is needed for uniqueness of k-
mers, we find l < 3. When the true distance of a read from a
species in the database is d, the expected number of k-mers
matching is Ed = (L − k + 1)� (d). Despite dependencies, the
number of k-mer matches is distributed around the mean.
To avoid false positive matches, we want Ed to be far below
1 for high distances (e.g. d > 40%) and to be high for small
distances (e.g. d < 15%). As Figure 1B suggests, both l = 1
or l = 2 allow this goal in theory. The expected number of
matching k-mers is substantially lower for l = 1 than l = 2;
for example, with k = 32, h = 15, and d = 3, we expect 48
and 27 k-mers matches, respectively. Since CONSULT stops
looking for matches as soon c k-mers match, fewer expected
matches translate to longer running times. Moreover, the
equation shown in Figure 1B is an over-estimate because
not all k-mers in the reference library are in the memory.
In preliminary experiments, we observed that l = 1 could
reduce sensitivity (Supplementary Table S2). Thus, we set l
= 2 by default.

We set k = 32 to reduce the chances of non-homologous
k-mer matches. As Figure 1B shows, h = 11 and h = 13 lead
to many matches at a high distance, which would increase
the running time. We found that h = 15 balances memory
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Table 1. k-mer counts (in billions) for reference datasets before and after minimization. Number of k-mers corresponds to CONSULT databases con-
structed with default settings of the tool. Number of 35-mers indicated for Kraken before minimization computed as a sum of unique canonical k-mers
extracted for Bacterial (20 billion) and Archaeal (0.5 billion) portion of the database. Subsequently, Bacterial and Archaeal Kraken k-mer lists were concate-
nated and minimized. Mitochondrial k-mer set included all canonical 32-bp k-mers that were extracted without minimization. TOL (50) and GTDB (52)
databases are from previous publications

Dataset Species count
35-bp k-mer
count(bln)

32-bp minimizer
count(bln)

k-mers included in
database

Bacteria/Archaea Kraken 159 509 20.562188135 8.173628125 6.210280798
Tree of Life (TOL) (50) 10 470 26.634996609 14.026601864 7.999975120
Genome Taxonomy Database (GTDB) (52) 31 910 22.840757178 19.376574640 7.999986111
Mitochondrial RefSeq 11 138 NA 0.201551248 0.194863421

usage, running time, and accuracy well (Supplementary Ta-
ble S2). Given this choice, since our goal is to allow g = 33,
we should ideally set b = 233 − 2h = 8, which unfortunately
leads the library to be slightly bigger than 128 GB. Instead,
we set b = 7, making our total memory usage close to 122
GB for 8 billion k-mers (Supplementary Table S2). Note
that indices of the encoding array become 33-bits, but us-
ing a simple trick (keeping two encoding arrays along with
an indicator bit), we can keep them as words.

Library construction. To build CONSULT databases, we
first find all canonical 35-mers from all genomes in the ref-
erence set using Jellyfish (62) and then minimize (63) them
down to 32-mers; this step reduced the k-mer count to in-
clude in a reference library (Table 1). We skip the minimiza-
tion step for small reference datasets with <1030 32-mers.
Since the Jellyfish output is pseudo-randomly ordered (64),
further randomization is not needed.

Experimental validation

We test CONSULT in two applications: (i) as an exclusion-
filtering method that seeks to find and remove contami-
nants among nuclear reads and (ii) as an inclusion-filtering
method that seeks to detect mitochondrial reads in a
genome skim to facilitate better mitochondrial assembly.

Exclusion filtering of contaminants.

Reference libraries. For software validation and contam-
ination removal testing, we constructed reference libraries
from three available microbial genomic datasets: Tree of
Life (TOL) (50), Genome Taxonomy Database (GTDB)
R05-RS95 (52) and bacterial and archaeal species present in
standard Kraken-II (35,36) (Table 1). TOL was composed
of 10 575 microbial species and a reference phylogeny. Five
genomes had IDs that did not exist in NCBI and were ex-
cluded from this set. The remaining genomes were assigned
to the reference set (10 460 genomes), the query set (100)
or both (10). GTDB included 30 238 bacterial and 1672
archaeal genomes that were selected to represent 194 600
samples clustered at 95% nucleotide identity. The Kraken li-
brary consisted of 158 627 Bacterial and 882 Archaeal sam-
ples available in RefSeq (as of July 2019). Kraken reference
sets were used without modification. When building the ref-
erence library for the TOL and GTDB libraries, Kraken-II
removes genomes that can not be assigned a taxonomic ID
using its automatic detection methods (36). We have taken
care to add these genomes to the library by assigning them

to the root of the taxonomic tree (but also show results with-
out them).

Experiments. We performed three experiments to test ex-
clusion filtering of contaminants.

(i) Controlled distances. Similar to our previous
study (27), we first evaluated the ability of CON-
SULT to find a match when the query is within a
range of phylogenetic distances to the closest species
present in a database. To control the proximity of
the query to its closest match in the reference library,
we selected 100 genomes from TOL such that their
distances to their closest species in the tree uniformly
covered a broad range of (0.0-0.3). These queries were
removed from the reference set and remaining TOL
genomes were used to construct CONSULT database.
We also randomly selected 10 genomes to keep in
both the query set and reference set which allowed us
to evaluate accuracy of exact matches. Subsequently,
all queries were divided into bins based on their
distances to the closest match in a reference database
(Supplementary Table S3) and 10 plant genomes
(Supplementary Table S4) were added to the set of
queries in every bin. Plant species are from a different
domain of life compared to the TOL reference set
and should not match the library; thus, they allowed
us to measure FP and TN. All distance values in this
experiment were computed using Mash (65). Reads
for the TOL query set were simulated at 10 MB using
ART (66) (see Appendix C).

(ii) Novel genomes. We next assessed the ability of CON-
SULT to match genomic reads that belonged to novel
microorganisms not observed in reference sets. To gen-
erate queries we used samples from Global Ocean Ref-
erence Genomes (GORG), a collection of 12 715 ma-
rine Bacterial and Archaeal single-cell assembled or-
ganisms (43). Marine microbial species are known to
be poorly represented in public repositories (67). Since
very few reads from these samples are expected to map
to the reference genomes, they represent a particularly
challenging classification case for databases with stan-
dard compositions and provide a suitable test case.
To generate queries, we obtained GORG assemblies
from NCBI (project PRJEB33281; five assemblies were
missing) and simulated query reads for every sample at
1× coverage using ART with the same settings as TOL
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(see Appendix C). We also included the same 10 plant
species as TOL to compute the FP rates.

(iii) Real skims. We tested the ability of CONSULT to
remove contaminants from real genomic sequenc-
ing reads. For studying real genome skims, we ob-
tained high-coverage raw SRA’s of 14 Drosophila
species (Supplementary Table S5) from NCBI (PR-
JNA427774) and subsampled them down to 200 MB
using seqtk (68). We removed adapters, deduplicated
these samples and merged paired-end reads using
BBTools (69) (see Appendix C). To filter out hu-
man reads, we queried Drosophila samples against the
Kraken database that included only the human ref-
erence genome, and subsequently extracted unclassi-
fied reads to use in contamination removal experi-
ment. Drosophila reference assemblies available from
the original study (70) were used to compute true dis-
tances.

Tools compared. We compared performance of CON-
SULT with Kraken-II (35,36), CLARK (37), CLARK-S
(38) and Bowtie2 (71,72). These are among leading identifi-
cation tools based on recent benchmarking studies (73–76).
Kraken-II is a taxonomic sequence classifier that maps k-
mers of the query to the lowest common ancestor (LCA)
of all genomes known to contain a given k-mer. We con-
structed Kraken reference libraries for genomes that be-
longed to TOL, GTDB and Bacterial/Archaeal portion of
the standard Kraken database. Kraken reference libraries
were built without masking low-complexity sequences but
using default settings otherwise. We previously (27) found
defaults were the most effective setting for contamination
removal. CLARK, CLARK-S and Bowtie2 are tested only
in the experiment (i), and thus, their reference databases
were built using the TOL dataset. CLARK is a method that
does supervised sequence classification based on discrim-
inative k-mers. We constructed the CLARK database us-
ing standard parameters (e.g. k = 31 default, classification
mode). We set taxonomy rank to phylum (default is species)
to achieve better sensitivity for contamination removal (see
Appendix C for details). CLARK-S is a CLARK version
that exploits multiple spaced k-mers and offers higher sensi-
tivity at the expense of more RAM and slower classification
speed. The CLARK-S database was constructed on top of
the custom CLARK database described above and query-
ing was performed using default full mode of classification
(see Appendix C). Bowtie2 is a standard general-purpose
alignment tool. We built the Bowtie index reference for TOL
genomes and performed local alignment of the queries us-
ing its highest sensitivity setting (see Appendix C).

Evaluation. In experiments (i) and (ii), we report the recall
and false positive rate: matched (unmatched) prokaryotic
reads are TPs (FNs) and matched (unmatched) plant read
are FPs (TNs). On the TOL dataset, we also compared run-
ning time and memory consumption of all tools for running
a randomly sampled set of 30 small 10 Mb queries from the
TOL query set (Supplementary Table S7). To reduce the im-
pacts of database loading on running time, we report results
when the query is a single file concatenating 15 Drosophila
skims sampled at 2G bp (Supplementary Table S8). In ex-

periment (ii), we also report the percentage of reads from
each microbial genome that match.

In experiment (iii), based on the results of the first two
experiments, Drosophila genome skims were filtered against
GTDB database, and Skmer was used to compute distances
between all pairs of samples before and after filtering. Dis-
tance values obtained from Drosophila assemblies were
considered the ground truth. We computed relative distance
error for every sample before and after filtering in order to
identify whether contamination removal improved distance
estimates.

Inclusion-filtering of mitochondrial reads to help organelle
assembly. We test whether CONSULT can help improve
the quality of mitochondrial assembly by finding mitochon-
drial reads in a genome skim without a need for the stan-
dard seed-and-extend approach, the use of a very close ref-
erence genome, or reliance on coverage differences. To do
so, we constructed a CONSULT reference database out of
all 11,138 mitochondrial genomes available in NCBI (Ref-
Seq release 204), which included ≈ 200 million 32-mers
(Table 1). We then asked whether CONSULT can use this
broadly sampled database to identify mitochondrial reads
in SRA files, including from species not present in the ref-
erence set.

We based our experiment on data from the DNAMark
project that skimmed 210 vertebrate species (NCBI project
PRJNA607895) and attempted to assemble their mitochon-
drial genomes (77). We selected 42 (Supplementary Table
S6) out of 210 samples as follows. We included all 18 sam-
ples where the original study failed to assemble mitochon-
drial genomes, all 6 samples that produced poor quality
short contigs (3–10.5 kbp), and 18 randomly selected good
samples with contig length >12 kbp, used as a positive con-
trol. Our SRAs include 24 species not present in the CON-
SULT reference dataset and 14 species not represented at
the genus level (Supplementary Table S6).

We compare three assembly pipelines. (i) We include as-
semblies generated using Novoplasty (10) made available
by Margaryan et al. (77). (ii) For each of the 42 samples,
we preprocessed the raw SRA files by removing adapters
using AdapterRemoval (78) and merging paired-end reads
with BBTools (69) (see Appendix C). We assembled these
unfiltered reads using plasmidSPAdes (12), which relies on
read coverage to distinguish nuclear and organelle genomes.
(iii) We first used CONSULT to search preprocessed reads
against the reference mitochondrial database and then used
only the matching reads as input to SPAdes with default
settings (79) to obtain the assembly.

To assess the completeness of the assemblies, we first
annotated all three assemblies (original, unfiltered and fil-
tered) using MITOS (80) to find the known mitochondrial
genes. We report the total length of the largest mitochon-
drial contig, gene counts for different gene groups (protein
coding genes [PCG], rRNA, tRNA), and identities of anno-
tated genes for PCG and rRNA. The length of mitochon-
drial genomes should be ∼16 kbp in size and the number
of genes should be close to 37 (81).

Finally, note that we select one contig as the final mito-
chondrial assembly for each of the three methods. For orig-
inal assemblies, only a single contig is available. For new as-
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Figure 2. Results on the data simulated based on the TOL dataset. (A) Lines show recall for different query bins for five tools run in default settings (see
Materials and Methods section). Each line is labeled with its associated FPR, computed using plant genomes added to the query set, which are identical
across bins; thus, FPR is identical in all bins. (B) Processing speed (bars) and memory consumption (dotted line) for different tools searched against the
TOL library using the same settings as part (A). Drosophila benchmark set included a single 30G Drosophila query. TOL set was composed of 30 10 MB
microbial queries. Computation on a machine with Intel Xeon 2.2 GHz CPU using 24 threads and 350G of RAM.

semblies, we mostly take the the longest contig (as long as
it is ≥200 bp) as the assembly. However, in assemblies pro-
duced from unfiltered reads, the largest contigs sometimes
had nuclear origin. In such cases, we instead use the longest
annotated contig with at least one annotated mitochondrial
PCG or rRNA gene. The identity of mitochondrial con-
tigs was additionally verified by MitoZ (82). If no PCG or
rRNA genes were assigned to any contigs in assembly, the
generated reference is considered as having failed annota-
tion.

RESULTS

Exclusion filtering of contamination from nuclear reads

Controlled distances. In the controlled distance experi-
ment, CONSULT has the best recall among the methods
that are able to control the FP rate (Figure 2A). CLARK-
S, which is specifically designed to match species absent
from a reference database, has the highest sensitivity but
FP rates close to 62%, making it ineffective for contam-
ination removal. CLARK has very low FP rates (0.5%)
but also much lower recall than other methods. Overall,
Bowtie has a similar recall to Kraken-II with a substan-
tially lower FP rate (1.2% versus 4.9%). CONSULT is
slightly better than Kraken-II in terms of FP (4.3%) but
improves recall over Kraken-II and all other tools substan-
tially. All the tools are able to match almost all prokary-
otic reads to the database when the query has an exact
match in the database, and all tools have at least 91% re-
call when the closest match in the reference library is up
to 5% distant from the query. Substantial differences be-
tween methods appear when the closest match is >5% dis-
tant to its closest match. For example, for queries at 5–15%
distance to the reference set, CONSULT matches 78% of
reads while Bowtie and Kraken-II match 66% and 61%,
respectively.

The running time of CONSULT on the TOL DB is com-
parable to Bowtie but slower than CLARK and Kraken-II
when tested on large query files (Figure 2B). With multi-
ple small query files, while CONSULT is the fastest, timing
is hard to interpret because CONSULT analyzes all inputs
in a run, amortizing the DB load time, while others need
to be run per query file (a simple issue to fix). Bowtie and
Kraken-II have the lowest memory footprint, followed by
CONSULT, which uses 120GB.

Novel genomes. Next, we turn to the GORG dataset,
where CONSULT matches a far larger number of micro-
bial reads to the reference libraries compared to Kraken-
II, regardless of the reference database (Figure 3). Not
only does CONSULT match more reads (has higher re-
call), it has fewer false positives, especially for GTDB (Fig-
ure 3A). We thus tested both methods with several settings
that had reduced false positive rates compared to their de-
faults, achieved for CONSULT by changing the (c, p) set-
tings and for Kraken-II by increasing its � (i.e. percent-
age of k-mers in query sequence required for classifica-
tion). For all levels of FP rate, CONSULT had better re-
call than Kraken-II for all databases tested (Figure 3A). In
default settings, CONSULT controls the FP rate at 7.0%
on the large GTDB dataset, whereas Kraken-II has 13.5%
FP. Recall that Kraken-II removed genomes without tax-
onomic assignment, and we added those back. If these
genomes are not added to the library, the recall of Kraken
degrades substantially but its precision improves (Supple-
mentary Figure S4). To enable a better comparison between
Kraken-II and CONSULT, we chose the � = 0.04 setting
of Kraken-II that had 8% FP rate, which is only slightly
higher than CONSULT. With these settings, CONSULT
matched more reads than Kraken-II for 95% of the micro-
bial species when searched against GTDB (Supplementary
Figure S5). CONSULT and Kraken-II match at least 3/4 of
reads for 61% and 44% of genomes, respectively. Compar-
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Figure 3. CONSULT versus Kraken-II on the GORG dataset. (A) The ROC curve showing the mean of recall versus FP rate (i.e. plant queries matched
to a DB) with various settings for each method and searching against three libraries (GTDB, TOL, and the default Bac/Arch Kraken DB). Kraken-II was
run with confidence level � ∈ {0.00, 0.02, 0.05}. Additionally, � = 0.04 was included on the GTDB database to better control FP rate. CONSULT libraries
were searched using P ∈ {3, 4, 5, 6} and c ∈ {1, 2, 3, 4}; see Supplementary Figure S6 for all combinations. (B) The empirical cumulative distribution of
the percentage of reads in each microbial GORG genome matched to each of the three reference databases; a point (x%, y%) means for y% of GORG
genomes, ≥ x% of the reads matched the DB. Here, we show default settings for CONSULT and Kraken-II on TOL and Bac/Arch databases but � = 0.04
for Kraken-II GTDB to control its FP rate.

ing the three databases, GTDB results in the most matches
for both methods, followed by TOL and Kraken.

Adjusting the (c, p) setting of CONSULT trades off recall
and FP rate (Supplementary Figure S6). For example, al-
lowing up to 4 mismatches between k-mers in query and ref-
erence library produces more liberal (c = 1) or more conser-
vative (c = 2) settings compared to the default where three
mismatches are allowed. These combinations of parameters
might be recommended for situations where a stricter FP
control is required (c = 2) or when FP is less damaging (c =
1). All p ≥ 5 and c ≤ 2 lead to very high FP; e.g., p = 6, c =
1 leads to 100% recall but also 90% FP rate (Supplementary
Figure S6).

Kraken takes around 3 min to load 166GB GTDB
database (on a machine with 350 GB of RAM), which
is substantially larger than the load time of 45G TOL
database (half a minute). CONSULT loads databases once
for all query genomes and the loading time does not exceed
3 min. Recall that CONSULT keeps the library size fixed
at 128 GB while Kraken-II keeps all k-mers; thus, when the
number of species added to the database grows, CONSULT
becomes more memory-efficient. Once the library is loaded,
Kraken-II takes 0.18 seconds on average per query genome
and CONSULT takes 0.09 s.

Real skims. Testing CONSULT on real genome skims
from Drosophila demonstrates that Skmer distance calcu-
lation can improve dramatically as a result of filtering (Fig-
ure 4A). Errors are reduced by as much as 44% between
pairs of species (Figure 4B). While distances tend to be un-
derestimated before filtering, they tend to be slightly over-
estimated after filtering (Figure 4A). CONSULT removes
between 3.9% and 10.2% of reads from these Drosophila
genomes, and there is a positive correlation between the
amount of data removed and the improvement in the es-

timated distances (Figure 4B). In the most extreme case,
distances are improved by >40% when <9% of reads are
removed.

Inclusion-filtering of organelle reads

Using CONSULT to find organelle reads before assembly
dramatically improves the quality of the assembly, both
compared to the unfiltered approach that relies on cover-
age and seed-and-extend method used in the original study
(Figure 5).

When using raw reads we obtained complete or partial
mitochondrial assemblies for 25 out of 39 assembled sam-
ples. Three samples did not generate any contigs. Remaining
14 samples produced contigs of variable size but failed in
annotation since estimated length of PCG and rRNA genes
appeared shorter than expected. In contrast, when preceded
by CONSULT filtering, reads were successfully assembled
for all 42 samples, including the 18 samples that were left
unassembled in the original study and 6 that had poor as-
semblies.

Assemblies produced by filtered reads were in all but one
case either longer or comparable in size in comparison to
assemblies generated by unfiltered reads (Figure 5A). Simi-
larly, they had a higher number of mitochondrial genes an-
notated in all but one case (Figure 5B). The exception is the
sample SRR12432391 that leads to a 35 920 bp contig when
assembled from raw reads. This length is almost twice the
average length of the mitochondrial genomes, which indi-
cates a possible mis-assembly or chimeric contig. After fil-
tering, 29 of the 42 samples had at least 27 out of 37 genes
and 12 out of 15 non-tRNA genes annotated.

The completeness of an assembly after CONSULT filter-
ing was not impacted by the presence of the correspond-
ing species or genus in the RefSeq reference set (Figure 5
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Figure 4. CONSULT on Drosophila skimming data. (A) Relative distance error before (upper triangle) and after (lower triangle) filtering per pair of
Drosophila species. (B) Change in the distance error after filtering compared to the error before filtering versus amount filtered (mean of both species);
positive values indicate reduction in error. Each dot represents a pair of species.

A,B). Cases where assemblies after filtering remain incom-
plete include both novel and observed samples. For exam-
ple, of the 13 assemblies with <12 non-tRNA genes, four
were represented exactly in the database, five had genomes
from the same genus and four were not present at either
level. Among the nine samples with no representation from
the same genus, in five cases, CONSULT filtering improved
gene recovery between 11 and 33 genes, made no difference
in one case with an incomplete assembly, and recovered full
assemblies in three remaining cases. Thus, effective filter-
ing did not require representation from the same species or
genus in the CONSULT reference library.

Comparison of gene annotations between newly gener-
ated and original assemblies (Figure 5C) demonstrated that
filtering enabled successful assembly for the most challeng-
ing low coverage samples. Thus, for samples that failed in
the original study, we generated complete or nearly com-
plete assemblies with up to 10 PCG identified and contig
length ≥8719 bp for eight samples. Six samples produced
partial assemblies and only four samples had contig length
≤3003 bp; even for them, we had some mitochondrial genes
identified. For poorly preserved samples, we generated near-
complete references for five out of six samples. In one case
(SRR11679474), the main contig had only three PCGs and
rRNAs genes, but even this sample contained all remain-
ing genes scattered across five smaller contigs that the as-
sembler did not merge with the longest contig (Supplemen-
tary Figure S9). More generally, any gene found in the orig-
inal assembly not found in the main contig of the filtered
assembly was found in one of the smaller contigs (Sup-
plementary Figure S9). Unsurprisingly, the original seed-
and-extend approach is biased toward the region including
COX1, which is the seed, whereas filtered and unfiltered as-
semblies show no such bias. For the set of good quality sam-
ples, filtering improved gene recovery in three cases com-
pared to unfiltered ones and five samples compared to the
original assemblies; only one gene was recovered by one of
original assemblies but not the filtered ones.

Additionally, since filtering reduced the number of se-
quencing reads that are being assembled, we observed
≈7 × running time improvement with filtered versus unfil-
tered reads (estimate includes CONSULT time), going from
≈ 65 min to ≈ 9.7 min per sample. This speed-up was calcu-
lated for 24 SRR that belonged to poor and good assembly
groups (120G of RAM, 24 threads).

DISCUSSION

We introduced CONSULT, a general purpose k-mer based
read matching tool that might help in a variety of appli-
cations where there is a need to separate sequencing reads
of interest from extraneous reads outside of the group. By
careful engineering of the software, we have made it pos-
sible to run CONSULT on large reference datasets (e.g.
tens of thousands of prokaryotic species) and large num-
bers of queries (e.g. hundreds of millions; see Supplemen-
tary Table S10). Our results on contamination removal
showed that when the closest species in the reference set
was substantially distant (≈15–20%) from the query, CON-
SULT improved upon existing methods such as Kraken-II,
CLARK(-S), and Bowtie2 both in terms of sensitivity and
specificity.

The use of LSH paired with hamming distance or other
distances is not novel to CONSULT. Several methods in
various domains of sequence analysis have used LSH (83–
89). These earlier uses all boil down to finding the near-
est neighbors of a sequence without actually computing dis-
tances but accepting that some matches will not be within
the desired radius. CONSULT uses LSH in a different way.
Unlike earlier methods, CONSULT actually computes dis-
tances from each k-mer to a fixed-size number of potential
matches. In doing so, it takes advantage of the large memory
available on modern machines, which were traditionally not
available; nowadays, we can easily afford to keep billions of
32-mers in memory. Thus, we use LSH only to find a small
set of k-mers for which we compute distances exactly. As
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Figure 5. Mitochondrial assembly results. (A) Comparison of contig length between filtered and unfiltered samples. Dot shapes indicate whether any
assembly from the same species or the same genus was a part of the RefSeq reference set that was used to construct CONSULT database. From left
to right: sample that belonged to previously unassembled, poorly assembled, or good quality assemblies (boundaries indicated by vertical dots). The
horizontal line is at expected lengths: 16 Kbp. (B) Total mitochondrial gene count for filtered and not filtered samples (counting unique PCG, rRNA and
tRNA genes). Vertical line at expected number of genes: 37. (C) Mitochondrial genes identified in assemblies for filtered, unfiltered and original references.
The COI (COX1) gene that was used as a seed sequence for assemblies generated by the DNAMark project is shown in a different shade. In the unfiltered
case, three samples (SRR12432370, SRR12432371 and SRR12432397) did not generate any contigs while 14 others generated contigs but did not have any
genes annotated.

such, CONSULT does not have false positives (in the sense
that it guarantees every match is below the desired thresh-
old). It only can have false negatives. However, missing some
k-mer matches is tolerable because if a read truly belongs,
its other k-mers can match. Consistent with this observa-
tion, our data show that even when we include half or one-
third of k-mers from a reference dataset in the memory

(e.g. for the GTDB database; Table 1), the accuracy remains
high.

Beyond algorithmic design, our application is quite dif-
ferent from these earlier adoptions of LSH. We use LSH
to test whether reads belongs to a large taxonomic group
allowing substantial number of mismatches to the near-
est neighbor. The past work has used LSH for guiding as-
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sembly (87), near-duplicate sequence removal (89), phylo-
genetic placement (86), homology detection between two
genomes (83), and sequence clustering for OTU binning
(84,85) and metagenomic binning (88). Many of these ex-
isting applications deal with far fewer and less diverse
sets of sequences. In contrast, our methodology works on
databases that span across entire domains of life and con-
tain many billions of k-mers. Among methods designed for
our application, Kraken adopts an approach that can be
considered LSH due to its masking step.

CONSULT is more effective than existing methods such
as Kraken-II and Bowtie when the queries are phyloge-
netically distant from their closest match in the reference
dataset. While one may hope that denser reference sets will
diminish the need for such distant matching, our results on
the GORG dataset demonstrate that state-of-the-art micro-
bial datasets are far from capturing the diversity of life with
the ≈8% distant where existing methods are accurate. Note
that every genome in GORG is a single-cell assembled bac-
terial genome sampled randomly from the ocean; thus, these
data are not exotic species put together just to challenge
methods. Our results indicate that detecting even the do-
main of a read will require allowing many mismatches for
the foreseeable future.

While we tested contamination in the context of genome
skimming, we note that contamination in sequencing reads
is a pervasive problem that can impact other analyses as
well (90–92). It can lead to inaccurate characterization of
gene content and metabolic functions (93,94), improper in-
ference of phylogenetic relationships (95,96), and biases in
genotype calling and population genomics (97,98). Con-
tamination is also known to infiltrate reference genomes
stored in public databases (99) and is particularly prob-
lematic when endogenous DNA is scarce (100–103). Thus,
CONSULT may find applications outside the settings tested
here.

Our results showed that inclusion filtering of mitochon-
drial reads using CONSULT enabled generating complete
and accurate assemblies for very poorly preserved samples
where read coverage is not sufficient to use other meth-
ods. Our workflow is an example of what has been called
a ‘hybrid assembly method’ for taking advantage of ref-
erences (104). By searching reads against all available or-
ganelle genomes and allowing mismatches, it eliminates the
bias associated with template based assembly using a single
reference; at the same time, it permits flexibility of de novo
assembly. Using CONSULT for this application is reference
agnostic and thus can be utilized on mislabelled samples or
samples of unknown identity. Importantly, our data clearly
show that there is no need to have the same species or even
any representative from the same genus in the reference set
for the filtering to work successfully. These strong results
lead one to ask whether the assembly of the more complex
plastid genomes is similarly improved by pre-filtering.

While we leave a full exploration of plastome applications
to the future work, our preliminary results are encouraging
(Supplementary Table S9). We built a reference database
from 6537 plastid genomes available from NCBI (RefSeq
release 206) and reanalyzed 60 samples obtained from a re-
cent chloroplast assembly benchmark study (105). These re-
sults suggest that filtering reads with CONSULT before as-

sembly is as effective for chloroplast as it was for mitochon-
dria (Supplementary Table S9). Using GetOrganelle (7) as
the assembler, we produced complete or nearly complete
chloroplast assemblies for eight samples that failed to be
assembled fully without filtering (similar to the original
study (105), an assembly with a contig of length at least
130 kbp was considered successful). Annotation of these
assemblies showed that these complete assemblies capture
many more of the expected plastid genes than the assemblies
from unfiltered reads (Supplementary Figure S7). Over-
all, contig length of assemblies produced from CONSULT-
filtered reads was either comparable or longer (Supplemen-
tary Table S9) in comparison to unfiltered ones (increase in
total genome length: 29% for successfully assembled sam-
ples). In a handful of cases, assemblies from unfiltered reads
were substantially longer than those from filtered sequences.
However, gene annotation using GeSeq (106) identified very
few chloroplast genes in the long unfiltered assemblies, indi-
cating that they were most likely spurious (Supplementary
Figure S8).

In all applications we explored, sequences from very di-
verse groups were included in the reference library. As a re-
sult, these reference sets included hundreds of millions to
tens of billions of 32-mers, of which, up to 8 billion were
kept in the final library (Table 1). While the results clearly
show that not every k-mer in the reference set has to be in
the library to achieve high accuracy, there must be limits to
the amount of subsampling tolerated. For example, if we
consider a large and diverse set of vertebrate genomes, the
number of k-mers may grow by orders of magnitude. Ac-
commodating much larger databases will either require ma-
chines with larger memory, or more smart techniques for
deciding which k-mers make it into the library.

Finally, at its core, CONSULT is simply a read matching
method. Thus, while we focused on contamination detec-
tion and organelle read detection, our algorithm can also
be adopted for other applications such as metagenomic pro-
filing, OTU picking, and any question where inexact read
matching is needed. Moreover, here, we performed contam-
ination filtering using an exclusion-filter; however, a tanta-
lizing opportunity that CONSULT may enable by allowing
distant matches is inclusion filtering: find reads that seem
to belong to the group of interest if assembled genomes
from that phylogenetic group are available. Our results on
organelle genomes, which used CONSULT as an inclusion
filter, support the viability of this approach. Applying in-
clusion filters to nuclear genomes will have to contend with
contamination in the reference assemblies, perhaps using
further algorithmic innovations. We leave the exploration
of such applications to future work.

DATA AVAILABILITY

CONSULT is implemented in C++11 with some x86 as-
sembly code; it is (trivially) parallelized using OpenMP
to read the library and perform the search. The soft-
ware is available publicly at https://github.com/noraracht/
CONSULT. Scripts and summary data tables are publicly
available on https://github.com/noraracht/lsh scripts. Raw
data used in the manuscript is deposited in https://github.
com/noraracht/lsh raw data. The detailed description of

https://github.com/noraracht/CONSULT
https://github.com/noraracht/lsh_scripts
https://github.com/noraracht/lsh_raw_data
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genomic datasets used in our experiments, accession num-
bers of the assemblies and the exact commands used to sim-
ulate genome skims and analyze data are provided in Sup-
plemental Material.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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