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ABSTRACT

Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which
hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns,
researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the
CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types
of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T
therapy one step closer to safer and wider applications, especially for solid tumors.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0073746

INTRODUCTION

Chimeric antigen receptor (CAR) T cell therapy has advanced as
one of the most promising cancer treatments during the past decade
especially for blood tumors.1–5 CAR T therapy involves ex vivo genetic
engineering of the patients’ T cells with the CAR molecule, which
equips the T cells with redirected specificity against target tumor cells,
and the subsequent infusion of the CAR T cells back into the patients
for cancer treatment. As of September 2021, five CAR T products have
been approved by the Food and Drug Administration (FDA) in the
United States, targeting leukemia, lymphoma, and multiple myeloma.

In fact, synthetic chimeric molecules composed of antibody-like
variable regions fused to T cell receptor (TCR)-derived constant regions
were first reported approximately three decades ago.6–9 These were later
referred to as the first generation CAR, typically containing an extracel-
lular single-chain variable fragment (scFv) for antigen recognition, hinge
(H), and transmembrane (TM) domains for signal transduction, and an
intracellular CD3z for activation (Fig. 1). Despite the antigen-specific
activation and cytotoxicity, the first generation CAR T cells showed low
proliferation in vivo. This led to the development of the second genera-
tion CAR,10–12 where a co-stimulatory domain (e.g., CD28) was added
between the transmembrane and the CD3z domains and was shown to
resolve low proliferation issues associated with the first generation CAR
T cells (Fig. 1).13–16 In 2011, clinical trials of second generation CAR T

cells in chronic lymphocytic leukemia (CLL) and B-cell acute lympho-
blastic leukemia (B-ALL) patients achieved unprecedented results
including complete remission.1,2,17 Since then, CAR T therapy has revo-
lutionized the field of cell-based immunotherapy, especially for hemato-
logic malignances. The third generation CAR, characterized by the
incorporation of two co-stimulatory domains (e.g., CD28 and OX40)
between the transmembrane and the CD3z domains, was also developed
and shown to further augment CAR T cell performance (Fig. 1).18,19

However, most of CAR T therapy’s successes were in hemato-
logic cancers. When facing solid tumors, CAR T cells exhibited limited
therapeutic efficacies, mostly attributed to difficulties in homing, infil-
tration, and survival in the immune-suppressive tumor microenviron-
ment (TME), as well as tumor antigen escape and heterogeneity.20–22

Additionally, side effects associated with CAR T therapy have been
reported, including on-target off-tumor toxicity, neurologic toxicity,
cytokine release syndrome (CRS), etc.23–25 There is hence an urgent
need for the development of the so-called next generation CAR T cells,
with the engineering objectives to (a) enhance the efficacy of CAR
T cells to overcome issues regarding the ineffectiveness of CAR T ther-
apy in solid tumors, and (b) improve the safety of CAR T cells to miti-
gate and/or minimize the adverse toxicities associated with previous
CAR T products.26–29 Tremendous efforts have been made toward
these directions. Herein, we provide a review of recent novel strategies
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in CAR T cell designs that aim to improve the efficacy and safety of
CAR T therapy. First, we discuss modifications on the CAR molecule
at the ectodomain, transmembrane domain, and endodomain, as well
as those involving multiple domains. We then review modifications on
non-CAR molecules, either as “add-ons” to enhance CAR T cell per-
formance, or as knock-out of negative regulators. In addition, we
introduce inducible CAR T designs that allow spatial and temporal
control over CAR expression or T cell activation. Finally, we discuss
the applications of CAR in other types of immune cells. These innova-
tions should aid the advancement of CAR T therapy particularly for
treating solid tumors.

MODIFICATIONS ON THE CAR MOLECULE

The CAR molecule typically consists of the ectodomain, the
hinge (H) and transmembrane (TM) domains, and the endodomain.
The ectodomain is a key region responsible for the recognition of tar-
get antigens; the H/TM domains transmit antigen recognition signals
to the endodomain where signaling occurs; and the endodomain is
responsible for co-stimulatory signals that promote T cell survival and
proliferation and stimulatory signals required for cytotoxic T cell
responses. Multiple strategies of modifications and optimizations have
been developed and applied to a constitutively expressed CAR. This
section focuses on enhancements that occur in one or more domains
in the CARmolecule [Fig. 2(a)].

The ectodomain

Researchers have developed strategies to engineer antigen recog-
nition to enhance CAR T targeting. For example, bispecific CARs con-
taining two tandem ligand-binding domains have been shown to
effectively implement an OR logic gate in CAR T signaling, where
only two different types of antigens are capable of activating the CAR
receptor [Fig. 2(b)]. A BCMA/CS1 bispecific CAR was shown to out-
perform T cells co-expressing separate BCMA and CS1 monospecific
CARs.30 Thus, the enhanced avidity for the targeted cancer cells
imparted by the bispecific CAR appears to enhance the immunother-
apy and help avoid antigen escape that can occur with heterogeneous
tumors. This strategy is generalizable to other combinations of anti-
gens as shown by ongoing research in the area that reports comparable
results.31–33 Some researchers have also explored universal CAR
designs that utilize bispecific T cell engagers (BiTEs) as a bridge
between CAR T and tumor cells [Fig. 2(c)]. For example, Kim et al.

developed CAR T cells targeting fluorescein isothiocyanate (FITC),
and used bispecific adapters consisting of FITC-conjugated folate to
redirect the anti-FITC CAR T cells to tumor cells expressing folate
receptors.34 Lee et al. further characterized FITC-folate mediated CAR
T cells in vivo and demonstrated their ability in mitigating CRS.35

Rodgers et al. developed peptide-specific switchable CAR T cells
(sCAR-T) recognizing peptide neo-epitopes (PNE) inserted in a
tumor-antigen-specific antibody and demonstrated PNE dose-
dependent activation of sCAR-T.36 Viaud et al. further optimized
sCAR-T and characterized their antitumor ability in a syngeneic
murine tumor model.37 Using similar principles, Paul et al. showed
that a bispecific antibody targeting TRB5–5 and TRBV12 could specif-
ically lyse malignant T cell lines in mouse models.38 Cho et al. devel-
oped a split, universal, and programmable (SUPRA) CAR system
composed of a universal receptor (zipCAR) expressed on T cells,
where a tumor-targeting scFv adaptor (zipFv) enabled the switch of
targets in tumor cells and the response to multiple antigens using dif-
ferent adaptors without reengineering the T cells.39 These innovations
provide solutions to antigen limitations in conventional CARs.

Despite the enhanced performance of bispecific CARs, for some
applications, an OR-gate contributes to increased levels of on-target
off-tumor toxicity leading to a lower therapeutic index. As it is difficult
to identify surface antigens unique to cancer cells, CAR T cells are
expected to kill normal cells expressing target antigens. For applica-
tions where such overlap in antigen expression occurs between cancer-
ous and healthy tissues, more complex logic gates may be required.
AND logic gates can require multiple antigens to be expressed on a
cell before a T cell response can be triggered, and NOT logic gates can
prevent CAR T activation when certain antigens are expressed on nor-
mal tissues/organs. Toward the implementation of more complex logic
gates, Lajoie et al. developed a CAR that targets a non-native epitope
that exists in a colocalization-dependent protein switch called Co-
LOCKR [Fig. 2(d)].40 This switch can be toggled between a conforma-
tion where the epitope is exposed and another conformation where
the epitope is hidden depending on co-localization of switch compo-
nents. While this strategy has been shown to work in vitro to imple-
ment complex combinations of AND, OR, and NOT logic gates, such
a strategy would require intravenous administration of the switch
components.40 Thus, pharmacokinetics and immunogenicity of the
colocalization-dependent protein switch may present future challenges
for this approach. Other groups have also worked toward introducing
Boolean logic gates in CAR T cells. For example, Salzer et al. have
developed an avidity-based system where T cells are transduced with
multiple CARs that bind weakly to targeted antigen. Thus, on their
own, an individual CAR will be insufficient to mount a significant
immune response. Then, by further engineering intermolecular inter-
actions between such low-affinity CARs, the researchers were able to
develop AND logic gates by introducing a dimerization domain.41

The hinge and transmembrane domains

CARs can also benefit from optimizations in the H/TM domains.
It has been shown that different H/TM domains can affect the expres-
sion and stability of the CAR molecules as well as the efficiency of sig-
nal transmitting.42 Some H/TM domains also appear associated with
neurologic toxicity in CAR T therapies. Brudno et al. reported that the
occurrence of neurologic toxicity is significantly lower in patients
treated with Hu19-CD828Z CAR T cells than those treated with

FIG. 1. Evolution of different generations of CARs. Structures of the first, second,
and third generations of CARs.
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FMC63-28Z CAR T cells.43 As Hu19-CD828Z CAR differs from
FMC63-28Z CAR in that it contains a human scFv as opposed to a
mouse scFv, and H/TM domains from CD8a as opposed to from
CD28, the authors hypothesized that the structural characteristics and
the intramolecular and intermolecular binding of the H/TM domains
caused the differences in cytokine release and neurologic toxicity
between the two types of CAR T cells.43 Muller et al. also noted that
the CD28 TM domain can promote heterodimerization with endoge-
nous integrins.44 In another study, Ying et al. set off to optimize the
CD19-BBz CAR used in the FDA-approved CAR T therapy medica-
tion CTL019 (Kymriah), as CTL019 was shown to cause toxic side

effects in patients.45 By varying the length of the H/TM domains, they
identified CD19-BBz(86) CAR as the top candidate and showed that
CD19-BBz(86) CAR T cells were of similar potency but significantly
reduced toxicities in a phase 1 trial.45 Thus, optimization of the H/TM
domains can enhance the function and safety of CAR T cells.

The endodomain

As the CAR endodomain is responsible for intracellular signaling,
CAR function will be very dependent on the design of the endodo-
main. For example, Li et al. noticed that upon tumor engagement,

FIG. 2. Engineering the CAR molecule. (a) Modifications on the ectodomain, hinge (H), and transmembrane (TM) domains, and endodomain of the CAR molecule. (b) Design
of bispecific CARs. (c) Design of CARs utilizing bispecific T cell engagers (BiTEs) as adaptors between CAR T and tumor cells. (d) Design of CARs implementing protein
switch-based logic gates to incorporate inputs from two or more tumor antigens.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 6, 011502 (2022); doi: 10.1063/5.0073746 6, 011502-3

VC Author(s) 2022

https://scitation.org/journal/apb


expression of CARs in T cells would decrease over time.
Specifically, they noticed that ubiquitination of the CAR led to
endosomal recycling and loss of CAR expression.46 To counteract
this observation, Li et al. mutated lysines in the endodomain to
prevent ubiquitination. The end result was a CAR that outper-
formed the un-optimized CAR. Surprisingly, the ubiquitination-
resistant CAR was able to achieve this with lower surface expres-
sion than the ubiquitination-susceptible CAR.46 Other researchers
have taken a reductionist approach to remove components from
the CAR and determine which domains are required for a T cell
response. For example, Feucht et al. mutated immunoreceptor
tyrosine-based activation motifs (ITAM) in CD3f to evaluate
which ITAMs are essential for cytotoxicity. The results revealed
that mutating the tyrosines to phenylalanines in ITAMs 2–3
resulted in strong effector responses and outperformed the stan-
dard 1928z CAR.47 This optimization enhanced the persistence of
the CAR while retaining CAR function. Further still, Wu et al.
have identified additional CD3 domains that may be useful for
CAR T immunotherapy. Specifically, they showed that a CD3e
domain with its intracellular tail and the potential binding partners
was capable of improving the cytotoxic activity of a second genera-
tion CAR.48

Other modifications

Some researchers proposed to compartmentalize the co-
stimulatory and activation signaling domains, which are commonly
integrated into the same CARmolecule in second and third generation
CAR designs. By separating CD3z signaling and CD28-mediated co-
stimulatory signaling, Wilkie et al. developed dual antigen targeting
CAR T cells whose proliferation required stimulation of both tumor
antigens 1 and 2 (ErbB and MUC1).49 Kloss et al. engineered T cells
expressing a CAR that only provides suboptimal activation signaling
upon target antigen binding of prostate stem cell antigen (PSCA), and
a chimeric co-stimulatory receptor that recognizes a different tumor
antigen prostate-specific membrane antigen (PSMA). These engi-
neered T cells only destroy prostate tumors expressing both PSCA and
PSMA antigens but not single-antigen positive tumors.50 These combi-
natorial strategies that require the presence of dual or multiple tumor
antigens to unleash the full potentials of engineered T cells can greatly
reduce the on-target off-tumor side effects and broaden the applicabil-
ity of tumor-associated antigen (TAA)-targeted T cell therapies.51,52

Some researchers have decided to forgo the typical CAR architec-
ture altogether. For example, Liu et al. developed a chimeric receptor
that utilizes an immunoglobulin heavy chain fused to TCR-Ca and an
immunoglobulin light chain fused to TCR-Cb.53 They showed that
this double chain design mimicking the TCR architecture lacks the
tonic signaling that poses challenges for some CAR designs.
Additionally, the TCR-like scheme showed higher sensitivity toward
targeted antigens than traditional CAR designs.53 Walseng et al.
showed similar results in T cells and natural killer (NK) cells with their
version of a TCR CAR that introduced a cysteine to enhance TCR
dimer stability.54 Although promising in mouse models, safety con-
cerns still exist for both TCR-based and CAR-based designs. In gen-
eral, improving sensitivity toward a targeted antigen may result in a
therapy with excessive on-target off-tumor toxicity due to overlap in
antigen expression between healthy and cancerous tissues.

MODIFICATIONS ON NON-CAR MOLECULES

Although CAR T cells have shown great success in the treatment
of hematological malignancies, this approach has limited efficacy
toward solid tumors. The immunosuppressive TME hinders the infil-
tration of the T cells, accelerates their exhaustion, and threatens their
survival [Fig. 3(a)].20 For instance, the TME of solid tumors is
enriched with extracellular matrix (ECM) proteins blocking the infil-
tration of T cells from blood vessels following intravenous administra-
tion. Another prominent example is the elevated expression of
inhibitory ligands (e.g., PD-L1) on tumor cell surface that triggers
inhibitory signaling pathways in T cells to compromise T cell function.
Other challenges such as tumor antigen escape and antigen heteroge-
neity remain as well. Efforts have been attempted to engineer the so-
called armored CAR T cells which can enhance the CAR T cell func-
tion in TME via the co-expression or knock-out of non-CAR mole-
cules (see review in Ref. 39).55 Below we highlight some examples of
these modifications [Fig. 3(b)].

Cytokine secretion

Recombinant interleukin (IL)-12 has been used clinically to
treat multiple types of solid tumors. Yeku et al. developed
anti-ovarian tumor CAR T cells capable of constitutively secreting
IL-12, and observed enhanced survival of these armored CAR
T cells in the inhibitory TME of murine ovarian peritoneal
carcinomatosis.56 It has also been reported that CAR T cells cul-
tured in IL-15 can preserve a less-differentiated stem cell memory
(Tscm) phenotype with reduced exhaustion and enhanced prolif-
eration upon antigen engagement.57 In fact, multiple cell types,
including macrophages and dendritic cells, can produce IL-15,
which can stimulate CD8þ T cells and NK cells with increased
proliferation and tumor cytotoxicity.58 Incorporating IL-15 pro-
duction within GD2-targeting CAR T cells has demonstrated supe-
rior antitumor activity both in vitro and in vivo compared to
conventional CAR T cells.59 Cytokines that are essential for T cell
zone formation and maintenance in lymphoid organs can also be
incorporated to enhance the therapeutic effects of CAR T cells.
Adachi et al. engineered CAR T cells expressing both IL-7 and
CCL19 (7 � 19 CAR T) and demonstrated complete regression of
solid tumors in mice with prolonged survival as compared to con-
ventional CAR T therapy.60 More recently, Luo et al. further engi-
neered CAR T cells expressing IL-7 and CCL21 (7 � 21 CAR T),
which revealed superior therapeutic efficacy against solid tumors
to conventional CAR or 7 � 19 CAR.61

Chemokine receptor

Insufficient tumor-directed trafficking is another key factor that
limits cell-based immunotherapy against solid tumors. To overcome
this, scientists have engineered CAR T cells that can utilize the tumor-
secreted chemokines for their homing to the tumor sites. For instance,
Hodgkin lymphoma can produce chemokine CCL17 and CCL22
which are attractants for the CCR4-expressing T helper 2 (Th2) and
regulatory T (Treg) cells, but not for the CD8þ T cells, which lack
CCR4 expression. Based on that, researchers have engineered CCR4-
expressing CAR T cells, which have shown improved homing and
antitumor activity when infused intravenously in mice engrafted with
human Hodgkin lymphoma.62 Similarly, IL-8 has also been reported
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as a chemoattractant for neutrophils and myeloid-derived suppres-
sive cells which contribute to the immunosuppressive nature of
TME. Co-expression of IL-8 receptor CXCR2 in the CAR T cells
has also achieved promising outcomes including enhanced tumor

homing and efficacy in multiple solid tumor models.63–65 Besides,
co-expression of other chemokine receptors, including CCR2b,66

CXCR3,67 CXCR4,68 and CCR6,69 have also shown promising
results in solid tumor treatment.

FIG. 3. Engineering of armored CAR T cells through modifications on non-CAR molecules. (a) The immunosuppressive TME of a solid tumor faced by CAR T cells. (b)
Representative approaches aimed to help CAR T cell fight the immunosuppressive TME, including expressions of cytokines, chemokine receptors, dominant-negative recep-
tors, heparanases, and CRISPR-mediated genome editing and library screening in T cells.
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Heparanase

Endogenous T cells can produce enzymes that degrade the ECM
of solid tumors, one of the barriers for T cell infiltration; however, it
has been found that CAR T cells can lose such capability of degrading
ECM during the ex vivo engineering process. To improve the tumor
infiltration of CAR T cells, Caruana et al. reequiped the anti-GD2
CAR T cells with the enzyme heparanase (HPSE), which degrades
heparan sulfate proteoglycans, the main components of ECM.70 Based
on their results, these CAR T cells indeed demonstrated improved
infiltration into xenograft tumors in mice and prolonged survival as
compared to CAR T cells lacking heparanase expression.

Dominant-negative receptors

Another approach to overcome the immunosuppressive signals
within TME is to block the immunosuppressive pathways in CAR T
cells. Transforming growth factor b (TGF-b), secreted by many tumors
including prostate cancer, is known to potently suppress the immune
system, creating an immunosuppressive milieu within solid tumors.
Studies have demonstrated that the TGF-b signaling can be blocked by
expressing dominant-negative TGFBRII, which lacks the intracellular
domain for downstream signaling. Using this as an add-on, Kloss et al.
demonstrated that the potency of PSMA-directed CAR T cells can be
greatly enhanced, with increased T cell proliferation, cytokine secretion,
resistance to exhaustion, and long-term in vivo persistence.71 Similarly,
co-expressing PD-1 dominant-negative receptor, which blocks the PD-1
pathway, has also demonstrated augmented efficacy for various CAR T
therapies targeting CD19, mesothelin, and HIV-1.72–74 Compared with
antibody-based PD-1 blockade, the genetic-engineering approach can
provide more sustainable and tumor-limited effects and has provided
opportunities to treat different types of solid tumors.

High-throughput pooled knock-in

The add-on expression of endogenous or exogenous genes has
shown great promise for cancer immunotherapy, and in fact decades of
studies on T cell signaling and function have suggested numerous candi-
dates for such applications. However, a high-throughput method for
screening the gene candidates that most potently enhance the perfor-
mance of cell therapies is still needed. Recently, Roth et al. developed a
high-throughput platform to assess the functional effects of pooled library
of knock-in gene templates in the same locus through CRISPR targeting,
with which they demonstrated the rapid screening of a barcoded 36-
member library that included dominant-negative receptors, synthetic
switch receptors, transcription factors, and metabolic regulators/
receptors.75 Using a human melanoma mouse model allowed the direct
comparison of T cells knocked in with the pooled library and identified
subsets of knock-in constructs that promoted in vivo tumor infiltration.
Particularly, the TGF-bR2–41BB chimeric receptor, one of the candidates
in the library, has been shown to enhance T cell fitness and promote
expression of key effector cytokines, and improve solid tumor clearance
in vivo, suggesting that the pooled knock-in technology can be a powerful
tool in identifying potential lead constructs from large libraries.

Knock-out of inhibitory surface receptors

Alternatively, researchers have investigated the deletion or dis-
ruption of genes that negatively regulate T cell performance. Immune

checkpoints such as PD-1 and CTLA-4 are inhibitory receptors that
can suppress T cell activation and promote T cell exhaustion and dys-
function.76,77 Immune checkpoint blockade therapies utilizing mono-
clonal antibodies against the checkpoint receptors have shown
promising clinical results.76,77 Investigators have also applied immune
checkpoint blockade in CAR T therapy by combining CAR T treat-
ment with PD-1 blocking antibody administration,78 rewiring PD-1 or
CTLA-4-based inhibitory signals to CAR T activation (iCARs),79 or
engineering CAR T cells with constitutive anti-PD-1 scFv expression
and secretion.80 Moreover, recent advancement in gene editing tech-
nology has allowed the manipulation of endogenous genes. Using the
CRISPR/Cas9 system, Su et al. performed PD-1 gene knock-out in
patient-derived T cells and observed enhanced cytokine production
and cytotoxicity in vitro.81 Rupp et al. further applied CRISPR/Cas9-
mediated PD-1 knock-out in anti-CD19 CAR T cells and demon-
strated improved clearance of PD-L1þ tumor xenografts in vivo.82 Hu
et al. observed similar results with PD-1 knock-out in anti-mesothelin
CAR T cells.83 Furthermore, Ren et al. performed multiplex genome
editing to simultaneously knock-out TCR, HLA class I molecule, and
PD-1, generating universal allogeneic PD-1 deficient CAR T cells with
enhanced antitumor activity.84 Disruption of other inhibitory recep-
tors such as CTLA-4 has also been studied in CAR T cells and
achieved promising results.85,86 A list of potential immunoinhibitory
receptor targets for genome editing in CAR T cells has been reviewed
elsewhere.87

Knock-out of negative regulators

Meanwhile, systematic screening methods have been developed
to identify key negative regulators in T cells. Shifrut et al. performed
CRISPR/Cas9-based genome-wide loss-of-function screens and identi-
fied negative regulators of proliferation following stimulation in pri-
mary human T cells in vitro.88 Wei et al. developed a pooled CRISPR/
Cas9 mutagenesis screening approach and identified REGNASE-1 as a
major negative regulator of T cell antitumor activity among 3017
metabolism-associated factors.89 REGASE-1 knock-out T cells demon-
strated improved accumulation and persistence in an adoptive cell
therapy model in vivo.89 In another case report, Fraietta et al. discov-
ered unintended disruption of the methylcytosine dioxygenase TET2
gene by CAR lentiviral integration in a CAR T cell administrated into
a chronic lymphocytic leukemia (CLL) patient, in addition to a hypo-
morphic variant in the other TET2 allele.90 The TET2-disrupted CAR
T cell underwent massive in vivo expansion and became the dominant
population (94% of the CD8þ CAR T cell repertoire at the peak of
response), leading to complete remission in this patient.90 Further
analysis revealed epigenetic reprogramming and central memory phe-
notype of the TET2-disrupted CAR T cells, whose potency-enhancing
effect was recapitulated by experimental knockdown of TET2.90 While
TET2 is a tumor suppressor gene and extreme caution should be used
when disrupting such genes, these reports highlighted the potential of
endogenous gene silencing and genome/epigenome editing in enhanc-
ing the efficacy of CAR T therapy.

Off-the-shelf CAR T cells

An additional hurdle that CAR T based therapies must overcome
involves the manufacture and delivery of autologous CAR T cells.
FDA-approved therapies require taking a patient’s own cells,
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reprogramming them, and allowing them to proliferate prior to inject-
ing the modified cells back into the patients. The whole process may
need around two weeks. For many patients who failed prior to front-
line therapies, they may not survive long enough to receive and benefit
from the reprogrammed cells. Thus, another field of research involves
developing off-the-shelf allogeneic CAR T cells that do not require a
two-week waiting period.

Allogenic donor CAR T cells may attack recipient tissues and
cause graft-vs-host disease (GVHD) mediated by the TCR expression
on donor T cells.91 One solution is to knock-out TCR in allogenic
donor CAR T cells. Poirot et al. utilized transcription activator-like
effector nuclease (TALEN)-mediated gene editing approach to knock-
down TCR and CD52 (a protein targeted by chemotherapeutic agent)
in CD19CAR T cells, and demonstrated their high efficacy in a blood
cancer mouse model.92 This universal CD19CAR T product (later
termed UCART19) was later used to treat B-ALL in two infants,93 fol-
lowed up by two phase 1 studies in pediatric and adult patients.94

Other attempts to generate universal CAR T cells include CRISPR/
Cas9-mediated triple knock-out of TCR, HLA, and PD1,84 as well as
the integration of CAR into the TCR alpha constant (TRAC)
locus.95,96 In the event that GVHD or other serious adverse events
occur that require termination of the CAR T therapy, researchers are
actively developing safety switches to kill or inactivate the allogeneic
CAR T cells.97–99

At the same time, host-vs-graft (HVG) activities triggered by the
infusion of allogeneic T cells, including the host T- and NK-cell
responses to eliminate foreign cells, may limit the persistence of
infused CAR T cells, and should also be minimized to achieve full
therapeutic benefits. Ayuk et al. reported that for some patients,
allogeneic CAR T therapy may be feasible as CAR T cells from an
HLA-matched donor were able to proliferate and persist during
immunotherapy.100 In addition, the allogeneic T cell-activated host
lymphocytes would upregulate surface receptors, such as 4–1BB
(CD137), which can serve as markers to distinguish the activated cyto-
toxic effectors from the unstimulated populations. Based on that, Mo
et al. engineered the chimeric 4–1BB-specific alloimmune defense
receptor (ADR) which selectively eliminates the activated host lym-
phocytes by the allogeneic CAR T cells while sparing the resting
lymphocytes.101 They showed that the ADR-expressing CAR T cells
can successfully evade immune rejection and achieve sustained tumor
eradication in mouse models of allogeneic T cell therapy of hemato-
poietic (CD19 CAR) and solid (GD2 CAR) cancers.

STIMULI-INDUCIBLE CAR T CELLS

Toxicity remains a major concern in CAR T therapy. CRS is a
potentially life-threatening side effect characterized by systemic eleva-
tions of cytokines such as IL-6 and interferon c (IFN c). CRS is one of
the most common adverse effects in CAR T therapy caused by infu-
sion of large amounts of active CAR T cells and is commonly treated
with IL-6 receptor blockade.102–104 Another potentially lethal side
effect is the “on-target off-tumor” toxicity, where CAR T cells attack
normal tissues expressing low levels of the target antigen. An infusion
of 1010 anti-ERBB2 CAR T cells attempted to treat a patient with met-
astatic ERBB2þ cancer caused acute respiratory distress and the sub-
sequent death of the patient.105 The serious toxicity was later believed
to be caused by the recognition of low levels of ERBB2 on lung epithe-
lial cells by the infused CAR T cells.105 There is hence an urgent need

to engineer safer CAR T cells whose activation can be tightly con-
trolled spatiotemporally to prevent CRS, on-target off-tumor toxicity,
and other adverse effects. To this end, researchers have developed
stimuli-inducible CAR T cells, where functional CAR expression is
activated or deactivated in a controllable manner by environmental
cues such as tumor antigens, small molecules, light, ultrasound, and
other stimulations (Fig. 4). These designs provide enhanced controlla-
bility of CAR T cells, bringing the field one step closer to safer CAR T
therapy.

Automated CAR T cells

The engineering of AND-gate T cells based on the synthetic
Notch receptor (synNotch) system which is activated only by dual
antigen recognition allows precise control of CAR T cell signaling [Fig.
5(a)]. In the synNotch design, the CAR-like synNotch receptor on the
T cells senses antigen 1 presented on the tumor cells, which induces
the expression of a CAR targeting tumor antigen 2; thus, only the
tumor cells expressing dual antigens are eliminated.106 This AND-gate
circuit expands the antigen sets on solid tumors that can be targeted
safely with CAR T cells.107 For instance, the synNotch CAR T cells can
sense ROR1 protein and induce the expression of CAR molecules spe-
cific for EpCAM or B7-H3, which are expressed on ROR1þ tumor
cells but not ROR1þ stromal cells; therefore, this system can overcome
the lethal toxicity of constitutive ROR1-CAR T cells.108 Furthermore,
the synNotch CAR T cells that recognize the combination of alkaline
phosphatase placental-like 2 (ALPPL2) and the tumor-associated anti-
gen-melanoma cell adhesion molecule (MCAM), mesothelin, or
HER2 were demonstrated to more precisely guide the T cells to target
the tumors.109 Recently, T cells with multiple synNotch receptors as
flexible regulatory connectors were developed, which could achieve
precise tumor recognition by integrating up to three different antigens
while ignoring related two-antigen tumors.110 Similar approaches also
allowed the integration of signals from the recognition of multiple
imperfect but complementary antigens for the design of T cell killing
functions.111 Mechanistically, in addition to the precise targeting of
specific tumor cells, the synNotch-regulated CAR expression has also
been shown to avert tonic signaling and exhaustion, maintain a higher
fraction of the T cells in a na€ıve/stem cell memory state, thus leading
to more efficient tumor killing than conventional CAR T cell.109,111

Another approach of automated conditionally expressed CARs is
driven by tumor microenvironment-associated factors such as hyp-
oxia. Using quantitatively characterized hypoxia-responsive element
(HRE) together with a panel of core promoters, Ede et al. found the
synthetic promoter, YB_TATA, to have the most prominent contrast
in inducing reporter gene expression between normal and hypoxia
conditions.112 These regulatory elements were further applied to engi-
neer hypoxia-inducible CAR T cells that can be conditionally activated
in the hypoxia tumor microenvironment.112 Later, instead of inducible
expression of CARs directly by the hypoxia-responsive element, the
oxygen-dependent degradation domain (ODD) of HIF1a was also uti-
lized to induce the degradation of the fused CARs under normoxia
condition and thus achieving T cell activation and tumor killing only
under hypoxia conditions.113 Recently, a dual oxygen-sensing CAR T
cell was developed by appending the ODD domain onto the CAR,
whose expression is driven by nine consecutive HREs.114 This design
allows the inducible expression of CAR under hypoxia and the degra-
dation of CAR expression leakage under normoxia environment.
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Small molecule-controllable CAR T cells

Chemical controllable CAR is an alternative way to control the
dose and timing of activated T cells to mitigate side effects such as
CRS. A robust ON-switch split-CD19CAR design based on FKBP-
FRB� dimerization was proposed, in which the functional CAR mole-
cules are formed only after the addition of dimerization small molecule
rapamycin analog AP21967 (rapalog), producing titratable, reversible,
and temporally controllable CAR T cells115 [Fig. 5(b)]. This study pro-
vides an elegant example of designing safer therapeutic cells by inte-
grating autonomous and user controls. Similar methods can be
extended to a broader range of small molecule-inducible dimerization
systems116,117 or other CAR molecules such as the epidermal growth
factor receptor variant III (EGFRvIII) CAR.118 Another ON-switch
design utilizing the tetracycline (Tet)-On system, an inducible gene
expression system for mammalian cells, was also used to control CAR
expression with a small molecule doxycycline (Dox) and achieved low
background expression and an equivalent killing efficiency to the con-
ventional CAR in the presence of Dox.119 Yang et al. designed an
inducible gene expression system based on a dietary molecule resvera-
trol (RES) to regulate CAR expression and demonstrated that RES-
activated CAR T cells achieved in vivo cytotoxicity comparable to that
of conventional CAR T cells.120

In addition to the ON-switches, the inducible suicide switch
(OFF) has been applied to control CAR T cells,121–126 especially when
these cells have adverse effects on human patients. One of the most
successful suicide genes is the inducible caspase-9 (iCasp9) gene,

where the dimerization of iCasp9 by a small molecule compound can
trigger the apoptosis of 90% of the modified T cells within 30min in
GVHD patients and end GVHD without recurrence.124 However, the
suicide switch approach is irreversible, eliminating the entire CAR-
positive T cell population. Yang et al. showed that RES-based inducible
gene expression system can also be used to reversibly repress CAR
expression, serving as an OFF switch.120 An alternative approach is an
inducible degradation of CARs in T cells using the ligand-induced
degradation (LID) domain such as degron127,128 and dihydrofolate
reductase (DHFR) destabilizing domain.128 The addition of a small
molecule ligand of degron-shield-1 promotes the proteasomal degra-
dation of the CAR-LID fusion protein.127 In contrast, CAR-DHFR can
be stabilized by the FDA-approved antibiotic trimethoprim (TMP),128

achieving the drug-dependent control of CAR expression and activity
both in vitro and in vivo. Jan et al. also developed an OFF-switch CAR
using the clinically approved drug lenalidomide to trigger the degrada-
tion of CAR proteins.117 Additionally, the proteolysis-targeting chi-
mera (PROTAC) compound was also applied to control the CAR
molecules.129 PROTACs are small bifunctional molecules that are able
to bind to target protein ligands and E3 ubiquitin ligase, which resul-
tantly degrades the target protein through the ubiquitin-proteasome
system.130 The CD19 CAR molecule linked with the bromodomain
(BD) from BRD4 protein can be degraded by the E3 ligases after the
addition of PROTACs; however, the problem of PROTACs is the deg-
radation of endogenous proteins as well as CAR protein, which may
be toxic to CAR T cells.130

FIG. 4. Conceptual illustration of stimuli-
inducible CAR T cells. Various ON- and
OFF-switches controlled by external stim-
uli such as tumor antigens, small mole-
cules, light, ultrasound, and other
environmental cues have been utilized to
activate functional CAR expression (ON-
switch) or deactivate CAR-expressing T
cells (OFF-switch).
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In addition to their usage in inducible CARs, small molecules
were also applied to pre-condition the CAR T cells before transplanta-
tion to enhance therapeutic efficacy. Dasatinib, an FDA-approved
tyrosine kinase inhibitor that was initially used to treat chronic mye-
loid leukemia (CML), was found to be effective in temporarily inacti-
vating CAR T cells. The treatment of dasatinib reduced the acute
toxicity, inhibited the tonic CAR signaling, and reinvigorated
exhausted CAR T cells, thus resulting in superior antitumor responses
in vivo.128,131,132 Similarly, after low dose treatment of Decitabine, a
DNA methyltransferase inhibitor that is FDA-approved for treating
myelodysplastic syndromes (MDS), CAR T cells showed higher
expressions of memory-, proliferation-, and cytokine production-
associated genes, and enhanced their persistent antitumor capacity

in vivo133 through epigenome reprogramming. Since these small mole-
cules are FDA-approved and have demonstrated safety in humans,
implementing these drugs as an on/off control in CAR T cell immuno-
therapy should be straightforward.

Light-controllable CAR T cells

Optogenetics, where optical and genetic methods are combined
to control biological processes with high spatiotemporal precision, was
mainly applied in neurobiology in the early stage.134 With the develop-
ment of genetically encoded light-sensitive proteins, optogenetics has
become an increasingly popular tool for the remote control of cellular
functions.135 Kennedy et al. demonstrated the application of blue-

FIG. 5. Representative designs of stimuli-inducible CAR T cells. (a) Synnotch CAR T cells. (b) Rapalog-inducible CAR T cells. (c) Blue-light-controllable CAR T cells with the
LINTAD system. (d) FUS-controllable heat-sensitive CAR T cells.
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light-controllable dimerizers cryptochrome 2 (CRY2) and CIB1 in
protein translocation, transcription, and Cre-mediated DNA recombi-
nation, opening doors for the remote control of cellular functions
using a new generation of optogenetic tools.135,136 Recently, research-
ers have explored the application of optogenetics in CAR T therapy as
it may offer enhanced safety and controllability. Huang et al. devel-
oped a light-inducible nuclear translocation and dimerization
(LINTAD) gene activation system by integrating the CRY2-CIB1
dimerizer and the LOV2-based light-inducible nuclear localization sig-
nal (biLINuS) [Fig. 5(c)]. The LINTAD system was applied to regulate
CAR expression in T cells and achieved blue-light-controllable tumor
killing in vivo.137 Zhang et al. engineered a photoswitchable CAR
based on the FITC-folate mediated CAR (reviewed above), where they
inserted a photocleavable linker between FITC and folate moieties in
the bispecific adaptor, allowing the deactivating of CAR T cells by
light.138 O’Donoghue et al. engineered an optoCAR system by fusing
one part of a split CAR to the improved light-inducible dimer (iLID)
and another to the iLID binding partner SspB, allowing the reconstitu-
tion of a functional intact CAR upon illumination.139 Similarly, He
et al. also engineered optoCAR based on an optical dimerization sys-
tem with a circularly permuted LOV2 (cpLOV2), and demonstrated
the photoinducible antitumor activity of the optoCAR T cells
in vivo.140 While light offers precise spatial and temporal control, its
limited tissue penetration depth may prevent further applications in
human patients. To overcome this, technologies involving upconver-
sion nanoparticles, implantable LEDs, near-infrared (NIR) light, and
optical fibers have been developed.141–143 For example, Nguyen et al.
utilized upconversion nanoplates and demonstrated antitumor
responses of light-switchable CAR (LiCAR) T cells activated by NIR
light.144

Ultrasound and/or heat-controllable CAR T cells

Ultrasound can penetrate deep into biological tissues. In addition
to its traditional usage as an imaging tool for diagnosis, ultrasound has
been applied to regulate cellular functions for therapeutic purposes.
Pan et al. utilized ultrasound to mechanically perturb microbubble-
coupled cells, activating the mechanosensitive ion channel Piezo1 and
subsequent molecular events including calcium influx, nuclear factor
of activated T cells (NFAT) translation, and NFAT-mediated gene
expression. They applied this system in CAR T cells and showed
ultrasound-inducible tumor cell killing in vitro.145

In addition to direct mechanical stimulation, ultrasound can also
cause local hyperthermia when the deposited mechanical energy is
converted to thermal energy via internal friction. Focused ultrasound
(FUS), capable of causing temperature elevation in a confined region,
has been widely used to ablate tumors in the clinics. Inspired by the
endogenous heat shock response where heat (or other stresses) acti-
vates the heat shock promoter (Hsp) through heat shock factors
(HSFs) to drive the expression of heat shock proteins, researchers have
employed FUS to activate Hsp-driven transgene expressions by gener-
ating mild hyperthermia in vitro and in vivo.146–149 Recently, Wu et al.
developed FUS-CAR T cells containing an Hsp-driven Cre-lox switch
that can be controlled by FUS to activate CAR expression.150 They fur-
ther engineered a reversible FUS-CAR T cell where CAR production is
directly driven by the Hsp [Fig. 5(d)]. The FUS-activated FUS-CAR T
cells demonstrated antitumor efficacies in two subcutaneous tumor
models; more importantly, the FUS-CAR T cells were shown to cause

significantly lower on-target off-tumor toxicity compared with stan-
dard constitutive CAR T cells.150 In another Hsp-based design, Miller
et al. utilized plasmic gold nanorods to convert near infrared (NIR)
light to heat, activating Hsp-driven IL15 superagonist in constitutive
CAR T cells. Their results revealed that NIR-activated IL15-expression
enhanced the antitumor activity of CAR T cells in vivo.151

CELL THERAPY BASED ON MACROPHAGES
AND NATURAL KILLER CELLS

CAR T therapy remains less effective for solid tumors, mainly
attributed to the antigen heterogeneity as well as the physical barrier
and immune-suppressive tumor microenvironment.152 Solid tumor
microenvironment (SME) can attract myeloid cells including macro-
phages through chemokines secreted by tumor or stroma cells.153 As
such, there is abundant number of macrophages in SME. Typically,
these macrophages are polarized toward M2 phenotype, which pro-
motes tumors and resist therapeutic treatments by providing physical
barrier and suppressive microenvironment.154 Approaches have been
designed to deplete these suppressive M2 tumor macrophages to
enhance the therapy efficacy.155 Recently, reengineering these tumor
macrophages with CAR (CAR-M) has rendered impressive therapeu-
tic efficacy against solid tumors.156 CAR-M cells had a tendency polar-
izing toward M1 antitumor phenotypes and also indirectly recruited
host immunity to eradicate target tumors including ovarian cancer.157

In an alternative approach, integrated sensing and activating protein
(iSNAP), integrating the functionality of both protein-based biosen-
sors and activators, was designed to rewire the negative “don’t eat me”
CD47/SIRPa pathway into activating and pro-phagocytic signaling in
macrophages. The results showed that the iSNAP-rewired macro-
phages possessed a strong capability of negating the inhibitory CD47
signaling and eradicating tumors including non-Hodgkin’s lymphoma
(NHL) and colon cancer.158 Given the abundance of macrophages at
SME, it becomes an attractive topic to convert the phenotypes and
functions of these macrophages via genetic engineering for immuno-
therapy against solid tumors.

Nature killer (NK) cells are lymphocytes playing key roles in the
innate immunity. About 10% mononuclear cells are NK cells in
peripheral blood samples.159 NK cells are in general, insensitive to
antigens presented by major histocompatibility (MHC) molecules. As
such, NK cells can be engineered to develop allogenic therapeutic cell
products, avoiding GVHD.160 Initial tests showed that CAR-NK rarely
causes CRS. This is particularly appealing for the development of “off-
the-shelf” therapeutic products.161 In fact, CAR-NK cells have been
developed as potent tools against tumors.162–165 NK cells derived from
human iPSCs were engineered to express CAR and demonstrate
strong antitumor activity against ovarian cancers.166 Further engineer-
ing of these iPSC-derived NK-CAR cells by knocking out the gene
encoding cytokine-inducible SH2-containing protein which regulates
the IL-15 and JAK-STAT pathways, significantly enhanced the meta-
bolic fitness of NK-CAR cells for more efficient toxicity against multi-
ple cancer types.167 However, compared to T cells, NK cells are
relatively more difficult to engineer genetically and to maintain expan-
sion and persistence.159 More research activities will hence be war-
ranted to further improve NK-CAR functionality.

In summary, CAR-M is advantageous over CAR T in terms of
SME infiltration, but lacks the ability to proliferate, making cell num-
ber a limiting factor in CAR-M based therapies. CAR-NK has the
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advantages of causing less toxicities and significantly reduced risk of
GVHD, rendering it a safer and more universal therapy. Its antigen-
independent killing capability may also be harnessed to tackle the issue
of antigen escape in some tumors. However, CAR-NK also suffers
from difficulties in gene delivery and cell expansion. More optimiza-
tions are needed to make CAR-M and CAR-NK alternative and com-
plementary treatments to CAR T therapy.

CONCLUSIONS AND PERSPECTIVES

The fast development of CAR T therapy in the past decades is
mainly driven by the interrelated feedback loops between clinical trials
and laboratory research. Researchers gain new insights into CAR effi-
cacy, toxicity, and resistance from the “bedside” and create new
designs of CAR at the “bench” and then reapply these new CARs to
the bedside. Multiple cutting-edge frontiers have shifted CAR designs
from simply changing co-stimulatory domains to more sophisticated
strategies.

The difficulties of CAR T therapy mainly lie in the treatment of
solid tumors, especially in the balance between the reduction of on-target
off-tumor toxicity and the persistence of T cells in the immunosuppres-
sive tumor microenvironment.152 Modifications of players in key signal-
ing pathways in CAR T cells have shown promising results, including
increased trafficking and fitness of T cells.89,168 Meanwhile, controllable
designs have demonstrated spatiotemporal precisions in the efficient reg-
ulation of T cells at the tumor site.137,150,151 CAR designs applied to other
cell types such as macrophages157 and NK cells166 to circumvent the limi-
tations of T cells are also leading to promising results.

However, most of the engineering strategies only focus on
improving individual features. Presumably, combinations of multiple
designs can equip the T cells with multiple layers of capabilities and
may achieve better therapy results. For example, a combination of
knock-out or knock-in with controllable T cells will increase T cell
homing and fitness and confine T cell activity at the tumor site, thus
reducing the off-tumor toxicities. In the future, high-throughput
CRISPR-based screening in human T cells88,169 tailored for the con-
trollable system may shift the CAR engineering direction and out-
comes. Furthermore, due to the complicated biological crosstalk
among different immune cells in the body, the combinations of differ-
ent cell types for tumor treatment may lead to novel approaches with
high efficiency and specificity. For instance, mixing engineered T cells
with NK cells has shown promising antitumor efficacy in a multiple
myeloma model.170 As new technologies and engineering approaches
are rapidly evolving, it is envisioned that cell-based immunotherapy
integrating engineering tools and synthetic biology will provide safe,
efficient, and precise therapeutic options for a broad range of solid
tumors.
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