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Abstract: Epimorphic regeneration of lost body segments is a widespread phenomenon across
annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have
not been identified. In this study, we focused on the role of fibroblast growth factor (FGF) signaling
in the posterior regeneration of Alitta virens. For the first time, we showed an early activation of
FGF ligands and receptor expression in an annelid regenerating after amputation. The expression
patterns indicate that the entire regenerative bud is competent to FGFs, whose activity precedes the
initiation of cell proliferation. The critical requirement of FGF signaling, especially at early stages, is
also supported by inhibitor treatments followed by proliferation assay, demonstrating that induction
of blastemal cells depends on FGFs. Our results show that FGF signaling pathway is a key player
in regenerative response, while the FGF-positive wound epithelium, ventral nerve cord and some
mesodermal cells around the gut could be the inducing tissues. This mechanism resembles reparative
regeneration of vertebrate appendages suggesting such a response to the injury may be ancestral for
all bilaterians.

Keywords: invertebrates; annelids; Nereis; dedifferentiation; blastema induction; evolution; segmen-
tation; axis elongation; SU5402; fibroblast growth factor

1. Introduction

Annelids are known for their exceptional regenerative abilities. Their potential to restore
considerable body parts, derived from all germ layers, outmatches other classical regeneration
models. However, the mechanisms, which allow this process to be completed so efficiently
are not described in detail. One of the best developed models of segment recovery are
nereid polychaetes, such as Alitta (Nereis), Platynereis and Perinereis. Their regeneration is
predominantly epimorphic, with some substantial signs of morphallaxis [1,2].

In juvenile Alitta virens, following the amputation of the posterior fragment of the
body, several segments are restored in about a week, after which anamorphic growth (the
addition of segments from the growth zone) continues. Wound epithelium is formed by the
fused superficial and intestinal epithelia on the first day post-amputation (dpa) [3]. Along
with wound healing, mesodermal cells appear under the wound epithelium, giving rise to
the future blastema [4]. Multiple nerve fibers project to the wound area from the severed
end of the ventral nerve cord (VNC). During the second dpa, blastemal and epithelial
cells exit from the cell cycle arrest and proliferate. By three dpa, the patterning of the
regenerative bud leads to segregation of three areas: pygidium, growth zone, and material
of future segments [3]. On the fifth dpa, an external groove appears on the posterior
border of the newly formed segment, which already contains a nerve ganglion, a pair of
coeloms, and transverse and longitudinal muscles. Expression of tissue-specific marker
genes indicates the succession of germ layers during regeneration in nereids and the major
role of local cell dedifferentiation [4–6]. The only known inductive interactions involved in
late regeneration steps are Wnt signals [7].
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In other animals, one of the key regulators of the reparative processes is fibroblast
growth factors (FGF) [8–12]. These molecules are widespread in eumetazoan phyla, demon-
strating a significant divergence in primary sequence and number of paralogs [13–16].
FGFs bind to tyrosine-kinase receptors (FGFRs) and activate multiple intracellular path-
ways, such as MAP-kinase, PI3-Akt, and PLCγ. These pathways regulate different cellular
responses: proliferation, differentiation, migration, epithelial-mesenchymal transition,
suppression of apoptosis and inflammation [17–19]. Such a pleiotropic effect is achieved
by a different cellular context and various paralogous genes. Mammals have 22 different
ligands grouped into 7 subfamilies. Detailed classification and functional analysis of par-
alogous molecules are done for other vertebrates, too [14–16,20–25]. On the contrary, an
unambiguous affiliation of the identified FGF members in invertebrates remains problem-
atic [9,15,18,26–28]. A detailed molecular and functional evolution of FGFs in the context
of regeneration is yet to be fully elucidated.

Vertebrate models of limb, tail and fin regeneration demonstrate that FGF molecules
mediate the signal to initiate the formation of the blastema and subsequent proliferation of
its cells [8,10,28]. The role of the FGF pathway is best described in axolotl limb regeneration.
The wound epithelium of the amputated limb becomes the source of FGFs 1, 2 and 8, which
are received by underlying blastemal cells, and cause a mitogenic effect. Blastemal cells
subsequently become the source of FGF10, which influences epithelial cells, establishing
a positive feedback loop [29,30]. Another remarkable role of FGFs was shown on the
accessory limb model. Early studies have demonstrated that nerve deviation to the wound
site leads to forming blastema instead of wound healing, which normally occurs [31].
However, recent studies show that an FGF-soaked bead can substitute the deviated nerve
and result in limb or tail development [32,33]. A study performed on the zebrafish fin
regeneration has also demonstrated that FGF signaling is essential and employs a similar
activation mechanism. Wound epithelium induces blastema by FGF20a. However, in this
case, primary FGF signals do not trigger proliferation but induce underlying mesenchymal
cells to participate in blastema formation. Further blastemal cells become the source of
FGF3/10a, which supports proliferation [8].

After identifying the first growth factor in mammals in 1973, it took almost 20 years to
identify a substance with similar effects in invertebrates. Noteworthy, it was made on the
nereid polychaete Nereis [34]. Based on immunological properties and biological activity,
the nereid growth factor was homologized to a mammal FGF, but the amino acid sequence
and the definite phylogenetic position were not determined. In the context of invertebrate
regeneration, FGF activity is described for cnidarians [9,35,36], planarians [37,38] and a
brittle star [12]. These works demonstrate that FGFs have a specific expression and play
distinct roles in these organisms.

The variety of ligands and receptors of the FGF pathway has never been described in
detail for any spiralian (lophotrochozoan) animal. The expression of the components of
the FGF pathway is shown in embryonic and larval development of brachiopods [39,40], a
phoronid [40] and, partially, in an annelid Capitella teleta [41].

In this study, we focused on the role of FGF signaling in the posterior regeneration
of Alitta virens (formerly Nereis virens). Our work elucidates the molecular evolution,
expression patterns, and functional requirement of the protostome FGFs. These findings
are important for understanding when and how FGFs acquired their incredible capacity to
promote regeneration across the whole bilaterian clade.

2. Materials and Methods
2.1. Animals

Spawning epitoke individuals of A. virens were caught in summer near the Marine
Biological Station of SPbSU at the White Sea. Laboratory culture of embryos was obtained
by artificial fertilization [42]. Animals grew for 2–3 months in small aquariums with natural
or artificial seawater. The posterior third of the juveniles’ body was amputated, and then
the animals were left to regenerate for various periods at +18 ◦C. When the animals reached
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the preferred stage, they were anesthetized with 7.5% MgCl2 mixed with artificial seawater
(1:1) and fixed in 4% PFA on 1.75x PBS with 0.1% Tween-20. The samples were left at +4 ◦C
overnight and then either rinsed with phosphate buffer without sodium azide for EdU
detection or put in 100% MetOH for longer storage at 20 ◦C.

2.2. SU5402 and U0126 Treatments

To inhibit FGF signaling, the regenerating juveniles were treated with 50 µM SU5402
(Sigma-Aldrich) or 40 µM U0126 (Promega). Inhibitors were diluted with DMSO (stock
concentration U0126–10 mM, SU5402–25 mM), aliquoted, and stored for no more than
2.5 months at −20 ◦C. The inhibitors were added to artificial seawater in which regenerat-
ing worms were kept. For prolonged incubation, the solution was changed every other day.
The controls were incubated in 0.4% DMSO.

2.3. EdU Labeling and Fluorescent Stainings

Proliferating cells were labeled by incubating the worms for 15 min with 5 µM EdU (5-
ethynyl-2′-deoxyuridine, analogous to thymidine) just before anesthetization and fixation
in PFA. After washes with PBS and one fast wash with 0.1 M Tris buffer (pH = 8.5), the
samples were put in the click-reaction mixture for 45 min at room temperature. The mixture
consisted of 100 mM Tris (pH = 8.5), 4 mM CuSO4, 2 µM sulfo-cyanine-5-azide (Lumiprobe),
and 50 mM ascorbic acid in deionized water (I. Borisenko, personal communication). After
this, the samples were rinsed with PBT and subjected to immunocytochemical detection
of acetylated tubulin and nuclei labeling with DAPI. Acetylated tubulin was detected
using primary antibodies (Sigma T6793, dilution 1:250) and fluorescent secondary antibody
anti-mouse AF568 (Invitrogen, dilution 1:500) as previously described [3]. Incubation in
antibodies took 1–2 days at +4 ◦C. After this, the samples were left in DAPI (1 µg/mL)
for 1–2 h at room temperature or +4 ◦C overnight, then rinsed with PTW and stored in
90% glycerol.

F-actin labeling was performed independently of the other types of detection us-
ing phalloidin-AF488 (Invitrogen A12379, concentration 5 units/mL) as previously de-
scribed [3]. The samples were incubated for 2 h at room temperature, then rinsed with
phosphate buffer and stored in 90% glycerol.

2.4. Sequence Retrieval and Phylogenetic Analysis

Sequences of FGF and FGFR were found in an unannotated transcriptome database
for Alitta virens (local resource), Platynereis dumerilii databases (http://4dx.embl.de/platy;
http://pdumbase.gdcb.iastate.edu/platynereis/controller.php?action=blast accessed on 1
November 2018), genome assembly for Praesagittifera naikaiensis [43] (https://marinegenomics.
oist.jp/p_naikaiensis/viewer?project_id=71 accessed on 1 April 2021), Capitella teleta and
Lottia gigantea [44] (https://genome.jgi.doe.gov/portal/ accessed on 1 April 2021) and in
the publicly available molecular genetic databases GenBank and UniProt via TBLASTN
search. The sequences were analyzed and aligned in the CLC Workbench. The amino
acid alignments (Supplementary Materials Data S6 and S7) were used for further phylo-
genetic analysis. The consensus tree was inferred using MrBayes3.7.2a on the CIPRES portal
(https://www.phylo.org/ accessed on 1 April 2021). Two runs of 1,000,000 generations each
with every 100 generation sampling were performed on 4 chains with a burn-in fraction of
0.25. In addition, maximum-likelihood analysis was performed using the IQtree online server
(http://iqtree.cibiv.univie.ac.at/ accessed on 1 April 2021), models of amino acid substitution
were selected automatically based on the input data, bootstrap = 1000. Domain organization of
the sequences was established using the online programs PROSITE (https://prosite.expasy.org/
accessed on 1 April 2021) and SMART (http://smart.embl-heidelberg.de/ accessed on 1
April 2021).

http://4dx.embl.de/platy
http://pdumbase.gdcb.iastate.edu/platynereis/controller.php?action=blast
https://marinegenomics.oist.jp/p_naikaiensis/viewer?project_id=71
https://marinegenomics.oist.jp/p_naikaiensis/viewer?project_id=71
https://genome.jgi.doe.gov/portal/
https://www.phylo.org/
http://iqtree.cibiv.univie.ac.at/
https://prosite.expasy.org/
http://smart.embl-heidelberg.de/
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2.5. Cloning of the cDNA

For RNA probes for in situ hybridization, the fragments of four candidate sequences
were cloned. We amplified the fragments from 1.1 to 2.4 kb, which contained either par-
tial or full coding sequences, using cDNA of regenerating A. virens as a template and
Phusion®high-fidelity (NEB) or Encyclo (Evrogen) DNA polymerase. Primer design was
made using Primer3 (http://primer3.ut.ee/ accessed on 1 March 2019). Gene-specific
primers were made for each gene of interest Avi-fgfr2 forward primer CTGGGGACAC-
CCATCAGTTG, Avi-fgfr2 reverse primer CCCAAGCCATATCCCCCTAC (PCR program:
98◦C–2′ → (98 ◦C–15′′ → 66 ◦C–45′′ → 72 ◦C–1′30′′) × 9→ (98 ◦C–15′′ → 64 ◦C–45′′ →
72 ◦C–1′30′′) × 35→ 72 ◦C–5′.); Avi-fgfr1 forward primer AACGGTGTTGTCAGGGTCGG,
Avi-fgfr1 reverse primer GCTTCCAACGCTGCTAACCG (98 ◦C–2′ → (98 ◦C–15′′ → 62 ◦C–
20′′ → 72 ◦C–30”) × 35→ 72 ◦C–5′.); Avi-fgfA forward primer CCACCAGTTTCAACAC-
CGCG, Avi-fgfA reverse primer AGTCCTCCCTTCTTTCGCCG (95 ◦C–3′ → (95 ◦C–30′′ →
62 ◦C–45′′→ 72◦C–1′)× 35→ 72 ◦C–5′.); Avi-fgf8/17/18 forward primer AGACTTCTCCAG
CTCTGCGG, Avi-fgf8/17/18 reverse primer ACAATGCGCCTCCTTTTCCC (95 ◦C–3′ →
(95 ◦C–30′′→ 63 ◦C–45′′→ 72 ◦C–1′)× 35→72 ◦C–5′). The PCR products were ligated into
pAL2-T (Evrogen TA cloning kit) and used to transform chemically competent E. coli (One
Shot®TOP10). After colonies with correct insert were obtained and checked by sequencing,
we synthesized the digoxigenin-labeled RNA probes used for in situ hybridization.

2.6. Whole-Mount In Situ Hybridization

The protocol was performed as described previously [4]. The samples were rehy-
drated from MetOH, then rinsed in PTW, treated with proteinase K (100 µg/mL) for
2.5–3 min at +22 ◦C, twice rinsed in glycine (2 mg/mL), postfixed with 4% PFA on PTW
for 20 min, and washed in PTW before pre-hybridization. After overnight incubation with
the probe and subsequent washes, the samples were blocked in 5% sheep serum, followed
by anti-digoxigenin AP antibodies overnight incubation (dilution 1:2000). The staining was
performed with NBT/BCIP, followed by washing in PTW and mounting in 90% glycerol.

The stained samples were also embedded in glycolmethacrylate [45] and sectioned in
series of 5 µm sections.

2.7. Data Visualization

Confocal images were obtained with Leica TCS SPE confocal microscope. In situ
hybridization results were visualized using DIC optics with Axio Imager D1 microscope
(Carl Zeiss). The optical sections were combined in stacks and converted to video files
(Supplementary Materials Data S2–S5) by ImageJ. Schemes were made in Adobe Illustrator.

2.8. Western Blotting

Amputated animals were incubated in inhibitors or DMSO from 0 to 2 dpa as de-
scribed above. The posterior-most 15 segments and the regenerative bud were cutoff and
homogenized in lysis buffer, containing Tris 50 mM (pH = 7.4), SDS 1%, NaCl 150 mM,
EDTA 10 mM, PMSF (1:100) and a phosphatase inhibitor (100 mM Na3VO4, 250 mM NaF,
50 mM sodium glycerophosphate, 50 mM sodium pyrophosphate, dilution 1:50). Then the
samples were centrifuged at +4 ◦C for 10 min at 14,000 g. An aliquot of fresh supernatant
was used for measuring protein concentration by the Bradford method with BSA as a
standard. The supernatant was mixed with loading buffer (pH = 6.8), denatured for 10 min
at 95 ◦C and cooled at room temperature. The samples were loaded in 10% polyacrylamide
gel (50 µg of protein on each lane), resolved with SDS–PAGE under reducing conditions,
and transferred to the PVDF membrane (Amersham) by electroblotting. To control the
blotting results, the membrane was stained with Ponceau S for 30 s, rinsed with water
and blocked in 5% sheep serum and 1% BSA diluted in TBST for 1 h. Then the membrane
was incubated in the primary rabbit antibodies against phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) (Cell signaling technology #4370, dilution 1:250) overnight at +4 ◦C. After
several washes in TBST incubation in the secondary antibodies anti-rabbit HRP (Thermo

http://primer3.ut.ee/
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#A16096, dilution 1:1000) was performed for 2 h at room temperature. All membrane
incubations and washes were performed using an orbital shaker. After the membrane was
rinsed with TBST 3 times for 10 min and once with TBS (pH = 7.2), it was submerged into
developing solution pH = 7.0 (DAB 0.5 mg/mL, 0.1 M imidazole, 0.01% H2O2) for 30 min.
Then the membrane was rinsed with water and photographed.

3. Results
3.1. Sequence Analysis

To characterize the FGF signaling pathway components in A. virens, we searched the
local databases for candidate sequences, followed by the domain mapping and phylo-
genetic analysis. Two candidate FGF genes (Avi-fgf8/17/18 and Avi-fgfA) and two genes
encoding FGFR (Avi-fgfr1 and Avi-fgfr2) were identified. The core part of the ligands’
sequence is rather small, approximately 120aa, and highly variable [13,14,16]. For this part,
the similarity of A. virens FGFs with the sequences of other animals was moderate (the
proportion of identical amino acid residues did not exceed 23%). The core FGF sequences of
A. virens and P. dumerilii were more similar with each other, 65% and 41% for FGF8/17/18
and FGFA, respectively.

Additional bona fide FGF candidates were looked for in genome datasets for spiralians
Capitella teleta and Lottia gigantea [44] and the basally divergent bilaterian Praesagittifera
naikaiensis [43]. Two unique sequences with characteristic domain organization were
identified in the acoel worm P. naikaiensis, one in the polychaete Capitella teleta, and two in
the mollusk L. gigantea. Phylogenetic analysis showed that all eumetazoans tested (except
for P. naikaiensis) possessed members of the FGF8/17/18 subfamily (Figure 1). One of
the two candidates in nereids and L. gigantea, as well as a single predicted gene from the
C. teleta genome, was reliably assigned to the FGF8/17/18 subfamily. These sequences
cluster with previously analyzed FGF8 orthologs of ecdysozoans, lophophorates, and
chordates. The second paralog of the FGF ligand of A. virens and P. dumerilii and both
candidates of the acoel P. naikaiensis did not cluster with any clade, so their phylogeny is
left unresolved. In contrast, the L. gigantea FGF candidate formed a clade together with
lophophorate FGF9/16/20 genes. The sister clades are undebatable homologs of FGF9/16/20
of vertebrates and C. elegans and obscure insect-specific branchless genes. Our data show
that the FGF paralogs pyramus and thisbe, which were previously suggested to be an
independent acquisition of insects, are copies of FGF8/17/18, while branchless may represent
a derived variant of insect FGF9/16/20. Precisely these two subfamilies (FGF8/17/18 and
FGF9/16/20) are enriched with genes from diverse taxa, which may explain low levels
of support for the corresponding clades. Noteworthy, among FGF8/17/18 genes, the most
derived sequences belong to insects, but in the inferred FGF9/16/20 subfamily, the longest
branches are formed by the representatives of spiralians (a mollusk and a phoronid).
Altogether these results provide a new perspective on the FGF repertoire in protostomes.
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Figure 1. FGF ligands phylogeny (Bayesian inference). A. virens sequences Avi-FGF8/17/18 and Avi-FgfA are marked in red.
Branch labels demonstrate probability (percent). Polytomy indicates the branch support less than 50%. Collapsed branches
are in black triangles. The scale bar shows the number of amino acid substitutions per site.

The analysis of FGF receptors revealed both conserved and lineage-specific characters.
Several Ig-like domains (from two to five), a transmembrane domain, and a tyrosine kinase
domain are characteristic of metazoan FGF receptors [46]. The receptors’ sequences were
aligned by the tyrosine kinase domain since the number of Ig-like domains and their
sequences tend to diverge. The two FGF receptor sequences of A. virens were found to be
closely related to the FGFRs of other spiralians (branch support 100%) (Figure 2). This clade
demonstrates lineage-specific diversification events. Avi-fgfr1 and Avi-fgfr2 are independent
duplicates and do not correspond to the vertebrate FGFR1 and FGFR2 subfamilies. C. teleta
has four paralogs, which are presumably the result of a more recent expansion. Comparing
the number of Ig-like domains in the cluster of spiralian sequences, we showed that their
number correlated with the location on the phylogenetic tree. Paralogous sequences of
A. virens and P. dumerilii FGFRs contained either three or two Ig-like domains, while the
tyrosine kinase domain showed a significant divergence rate.
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Figure 2. FGF receptors phylogeny (Bayesian inference). A. virens sequences Avi-fgfr1 and Avi-fgfr2 are marked in red. Red
circles represent the number of Ig-like domains in spiralian FGFRs. This parameter for C. teleta is inferred according to the
previously published analysis [46]. Branch labels demonstrate probability (percent). Polytomy indicates the branch support
less than 50%. Collapsed branches are in black triangles. The scale bar shows the number of amino acid substitutions
per site.

These results suggest that the evolution of FGF components in Metazoa was predom-
inantly independent. Both cnidarians and different bilaterian clades acquired lineage-
specific FGF subfamilies. FGF8/17/18 seems to be the most enriched and indispensable
subfamily. Nevertheless, the set of FGF genes could be replenished or could undergo
secondary losses in each taxon. This is indicated by the varying number of paralogs,
the potential horizontal transfer of branchless [16] and the differences in the number of
conserved domains (for example, Ig-like domains in annelid receptors).

3.2. Expression Patterns of the FGF Signaling Genes

Already 4 h after amputation (hpa), the transcripts of Avi-fgf8/17/18 appear in the
cells of the VNC ganglia (Figure 3A, insert), the lateral epidermis of the last segments,
as well as in the wound epithelium (Figure 3A, arrow). At later stages, expression in the
nervous system becomes less extensive and persists in single cells (Figure 3C,D inserts).
By 1 dpa, mRNA expression is observed only within the wound epithelium (Figure 3B,
arrow). Towards more advanced stages of regeneration, the signal remains in the superficial
epithelium (Figure 3C–F, red arrows) and developing cirri, and also appears in the cells
of the blastema (Figure 3C,D, Supplementary Materials Data S2), which retain it in the
anterior parts of the regenerative bud (Figure 3E,F, green arrows). By the 7 dpa stage,
Avi-fgf8/17/18 expression encompasses most of the regenerated epidermis, neuroectoderm
and the old VNC ganglia (Figure 3F).
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Figure 3. Whole-mount in situ hybridization, which shows mRNA expression of FGF and FGFR genes in posterior
regeneration of A. virens. (A–F) Avi-fgf8/17/18, (G–L) Avi-fgfA, (M–R) Avi-fgfr1, (S–X) Avi-fgfr2. In all planes, the anterior end
is to the left. Red arrows indicate expression signal in the wound epithelium (A,B,H,T) or epidermis of the regenerative bud;
green arrows, expression signal in the mesoderm-derived blastema; yellow arrows, expression signal in the mesodermal
cells around the gut; black arrows, expression in the ventral nerve cord. Asterisks mark nonspecific staining in the gut
lumen. Inserts show a different focal plane of the corresponding stage specimen.

Individual ventral cells within the VNC (Figure 3G, insert, black arrows) show Avi-fgfA
expression as early as 4 hpa. The number of these neural elements increases towards the
site of amputation, starting with 4 cells in the first 1–2 setigerous segments and ending with
16 cells in the last 8–10 segment. Expression in the nervous system remains up to 5 dpa
(Figure 3H–K inserts). At the stage 1 dpa, we observed an additional ectodermal domain
in the wound epithelium (Figure 3H), which at later stages remains in the epithelium of
the regenerative bud (Figure 3I–K, red arrows, Supplementary Materials Data S3) and in
cirri. Ectodermal expression has a different intensity along the AP axis so that the most
intense domains are confined to the middle of each segment anlage, while the weakest
ones coincide with segmental boundaries (Figure 3J–L). Furthermore, from the earliest
studied time point (4 hpa), we found Avi-fgfA expression in mesodermal cells around the
gut in the segments near the amputation site (Figure 3G, yellow arrow). These cells can be
classified as elements of the coelom wall (myoepitheliocytes) or free coelomocytes. Later
on, these Avi-fgfA-positive cells are detectable at 3 dpa and 7 dpa (Figure 3L, yellow arrows).
This spotted domain merges with the faint staining in blastemal cells, which eventually
differentiate in coelomic sacks (Figure 3I–L, green arrows).

Avi-fgfr1 demonstrates an exclusively mesodermal expression pattern during regen-
eration. Like the Avi-fgfA, the first response to the amputation from Avi-fgfr1 expression
appears at 4 hpa in the individual cells around the gut (Figure 3M). The visual level of
staining intensity in this domain gradually increases towards the injury site; the number of
cells with a signal is also uneven and tends to increase along the anterior-posterior axis.
This expression profile persists to later stages up to 7 dpa (Figure 3M–R, Supplementary
Materials Data S4). Histological sections clarified the localization of the mesodermal cells,
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confined to visceral and parietal coelomic walls (Supplementary Materials Data S1). On the
second dpa, at the posterior end of the supposedly migrating Avi-fgfr1-positive mesoder-
mal cells of the old segments, an expression domain in the developing blastema becomes
apparent (Figure 3O). As the bud grows and differentiates, the expression remains in the
mesodermal tissues and is not present in the epithelium (Figure 3O–R).

The expression of Avi-fgfr2 exhibits a predominantly ectodermal tissue specificity. This
gene is active mainly in the epithelium and, at a much lower level, in the mesodermal
cells of the regenerate. The first cells with transcripts appear at 4 hpa across the VNC
ganglia (Figure 3S). The intensity of the signal gradually fades away in the anterior di-
rection. By 1 dpa, the expression is observed in the wound epithelium (Figure 3T). Later
on, the expression remains in the epithelium anterior to the pygidium (Figure 3U–X, Sup-
plementary Materials Data S5). A sharp border of this superficial domain demarcates
the growth zone (Figure 3X, insert). At the ventrolateral epidermis of the segmented
regenerate (5–7 dpa), Avi-fgfr2 expression has several bilaterally symmetric stripe-shaped
domains with a brighter signal, which coincide with segmental furrows and putative
borders (Figure 3X). In addition, a faint signal is detectable in a few blastemal cells at
2–3 dpa (Figure 3V).

3.3. Inhibition of FGF signaling by SU5402 and U0126

Given the importance of cell proliferation and subsequent differentiation of the prolif-
erated cells at certain stages, we assumed that these processes might be under the control
of FGF signaling. This assumption prompted us to experiments with pharmacological in-
hibitors of the FGF signaling pathway, which affect it at different levels. SU5402 suppresses
the interaction between the ligand and the receptor, and U0126 suppresses the MAP kinase
pathway, which is also activated by FGF signaling. We used various schemes of treatment
with inhibitors, which are summarized in Figure 4.

Figure 4. Summary of SU5402 and U0126 treatment and its effect on proliferation, morphogenesis and tissue differentiation.
Periods of treatment are marked in red. The outcome varies from a strong effect (+++) to no visible differences (-).

The effects of the inhibitors on regenerating animals were investigated using morpho-
logical, immunofluorescent, and Western blot analysis. Antibodies against phosphorylated
MAP-kinase (dpErk1/2) previously tested on A. virens [47] revealed in the control sample
a single band of 42 kDa (Figure 5), which corresponds to the expected Erk molecular mass.
This indicates an active state of MAPK cascade during regeneration, which is downregu-
lated by SU5402 and U0126 (Figure 5). Since MAPK is a conserved target of FGF signaling
and the similar overall effect of the two inhibitors is apparent (Figure 4), we confirm the
specificity of the used pharmacological agents.
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Figure 5. Phosphorylated MAP-kinase detection after inhibition of the FGF pathway. Incubation
in DMSO is used as a control. 42 kDa band is present in control DMSO but not in SU5402-treated
regenerates. A decreased intensity in the U0126-treated sample indicates a partial MAPK downregu-
lation, which nevertheless has an apparent stage-specific phenotypic expression (Figures 4 and 6–9).
A similar amount of transferred protein was controlled by Ponceau S staining (not shown).

Figure 6. Suppression of proliferation during long-term incubation in SU5402 and U0126, starting
from the moment of amputation. All planes are maximum projections of confocal Z-stack of ventral
views (anterior is to the left) of posterior regeneration of A. virens. (A–C) EdU labeling in red, nuclear
staining with DAPI in blue. (A′–C′) EdU in red. The dotted line indicates the level of amputation.
Asterisks, nonspecific autofluorescence of the exocrine glands. (A,A′) control with DMSO at 6 dpa,
(B,B′), (C,C′) after 6 days of incubation in SU5402 (B,B′) or U0126 (C,C′). In comparison with control,
there is no regenerative bud at the stage of 6 dpa (B,C), while EdU labeling shows an almost complete
suppression of proliferation (B′,C′).
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Figure 7. Proliferation and differentiation of nerves and muscles after inhibition of FGF pathway
starting from amputation to 2 dpa. All planes are maximum projections of confocal Z-stack of ventral
views (anterior is to the left) of posterior regeneration of A. virens. (A–A′′′) control in DMSO, (B–B′′′)
SU5402, (C–C′′′) U0126. (A–C) EdU labeling in red, nuclear staining with DAPI in blue; (A′–C′) EdU
labeling in red; (A′′–C′′) antibody labeling against acetylated tubulin (yellow) shows the nervous
system, and gray arrows indicate lateral nerves, which at this stage grow into the regenerative
bud. (A′′′–C′′′) phalloidin staining of the muscular system, an arrow indicates pygidial circular
muscles (A′′′), which are absent in (B′′′,C′′′). The asterisk in (C′′′) is the autofluorescence of the
exocrine glands.

3.3.1. Suppression of FGF Signaling Immediately after Amputation

The most severe effect was observed when the animals were exposed to inhibitors for
6 days, starting immediately from the moment of amputation (Figure 6). Both inhibitor
treatments showed a complete suppression of proliferation, which resulted in the absence
of the blastema and the regenerative bud. The standard EdU incorporation experiment
recovered no more than a dozen weakly labeled cells (Figure 6B′,C′), while normally, at
that stage, there are about several thousand EdU+ cells (Figure 6A′). We also found that
if the animals are washed out from the solution of inhibitors and cultured under normal
conditions, the ability to regenerate is fully restored.
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Figure 8. FGF inhibitors influence proliferation and differentiation of muscles and nerves in experiments starting from
2 dpa to 4 dpa ((B–B′′) and (C–C′′) in SU5402 or U1026, respectively) or from 4 dpa to 5 dpa ((D–D′′) and (E–E′′) in SU5402
or U1026, respectively). All planes are maximum projections of confocal Z-stack of ventral views (anterior is to the left)
of posterior regeneration of A. virens. Planes (A–A′′) DMSO control at 4 dpa stage. (A–C) EdU labeling in red, nuclear
staining with DAPI in blue, bracket indicates pygidium region (in B there are no cirri and no apparent pygidium region);
(A′–C′) antibody labeling against acetylated tubulin (yellow) shows the nervous system, and gray arrows indicate thin
parapodial nerves (absent in (B′,C′)). (A′′–C′′) phalloidin staining of the muscular system, red arrows indicate ventral
median longitudinal muscle and orange arrows indicate oblique muscles in each formed segment (A′′,D′′,E′′). Asterisks,
autofluorescence of the exocrine glands.

3.3.2. Suppression of FGF Signaling from the Moment of Amputation up to 2 dpa

In the case of a shorter inhibition of FGF signaling, starting from the moment of
amputation to 2 dpa, we observed a significant suppression of proliferation and no signs of
blastema development or any outgrowth (Figure 7B′,C′). Normally, an early blastema is
already formed at this stage [3]. The observed disturbances in the nervous and muscular
systems are associated with the absence of the regenerative bud. As regards neuromor-
phology, at this stage, we noted neurites from the lateral nerves projecting through the
wound epithelium (Figure 7B′′,C′′, arrows), but no innervation from the VNC posterior
end characteristic of control 2 dpa regenerates. In the muscular system (Figure 7A′′′–C′′′),
which at this stage is characterized by forming circular pygidial muscles, this structure was
not revealed in the treated samples.

3.3.3. Suppression of FGF Signaling from 2 to 4 dpa and from 4 to 5 dpa

At stage 4 dpa, a new segment is formed in control animals, and differentiation of its
metameric elements within the nervous and the muscular system occurs. The pygidium
region becomes more prominent (Figure 8A, bracket). During incubation from 2 dpa to
4 dpa, suppression of proliferation was noted in comparison with the DMSO control, the
effect being more pronounced for SU5402 (Figure 8B). The disturbed morphology of the
bud resembles a less advanced stage of the regenerative process (Figure 8B,C). Subtle
differences were observed in the nervous and the muscular system. Normally, at this
stage, the first pair of parapodial nerves is restored (Figure 8A′, arrow), but the inhibitors
blocked their formation completely (Figure 8B′,C′). SU5402 had a more prominent effect
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on the differentiation of the muscular system. Despite forming the circular muscles of
pygidium when both inhibitors were used, incubation in SU5402 did not result in the
recovery of longitudinal muscles (Figure 8B′′), which were observed in U1026 (Figure 8C′′,
orange arrow).

Figure 9. FGF inhibitors influence proliferation and differentiation of muscles and nerves in experiments starting from
2 dpa to 6 dpa (planes (B–B′′) and (C–C′′) in SU5402 or U1026, respectively) or from 4 dpa to 6 dpa (planes (D–D′′) and
(E–E′′) in SU5402 or U1026, respectively). All planes are maximum projections of confocal Z-stack of ventral views (anterior
is to the left) of posterior regeneration of A. virens. Planes (A–A′′) DMSO control at 6 dpa stage. (A–C) EdU labeling in
red, nuclear staining with DAPI in blue, arrows point to separated segment borders; (A′–C′)—antibody labeling against
acetylated tubulin (yellow) shows the nervous system, gray arrows indicate lateral nerves. (A′′–C′′) phalloidin staining of
the muscular system, arrows indicate oblique muscles in each formed segment (A′′,C′′,D′′,E′′). Number of these muscles
varies from 0 (B′′) to 1 (D′′,E′′) or 3 (A′′,C′′). Asterisks, autofluorescence of the exocrine glands.

Incubation in inhibitors for 24 h starting from the stage 4 dpa had a less pronounced
effect on cell proliferation and morphology of the regenerate (Figure 8D,E). The nervous and
the muscular system are almost unaffected and show an almost normal differentiation of
the parapodial nerves and circular, longitudinal and oblique muscles (Figure 8D′,E′,D′′,E′′,
arrows).

3.3.4. Suppression of FGF Signaling from 2 or 4 to 6 dpa

Incubation in inhibitors from the 2 dpa to 6 dpa stage had a more prominent effect in
SU5402. Morphologically the regenerative bud does not correspond to 6 dpa control, since
the proper number of segments did not form (Figure 9B, white arrow) and the distinctive
structures of the nervous system, such as thick parapodial nerves, did not form, either, with
only a thin network of nerves forming instead (Figure 9B′, gray arrow). In the abnormal
muscular system, the circular muscles of the pygidium are weakly developed, and oblique
muscles are not developed at all (Figure 9B′′). In U0126, morphological differences from
the normal development were less apparent as many as usual intersegmental furrows were
formed (Figure 9C, white arrows). Parapodial nerves were formed in the nervous system
(Figure 9C′, gray arrow). The newly formed oblique and longitudinal muscles exactly
correspond to the 6 dpa stage (Figure 9C′′, orange arrows).
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During 48 h incubation starting from 4 dpa, the effect was also noticeable. Although
the formation of the first new segment was not obvious to the eye, confocal reconstructions
showed its anlage (Figure 9D,E, white arrows) and the formation of its neural and muscular
structures. The parapodial nerves were rather thin (Figure 9D′,E′, gray arrows). The longi-
tudinal and the oblique muscles of the future segment were differentiated (Figure 9D′′,E′′,
orange arrows). During this time period, the regeneration slowed down but was not
completely suppressed.

4. Discussion
4.1. Involvement of FGF Signaling in the Induction of Cellular Sources of Growth and Regeneration

Induction of the proper cellular sources is crucial for successful regeneration. In
nereid regeneration, the cells required for this process appear due to dedifferentiation
response in the segment abutting the amputation site [4,5,48]. Dedifferentiated cells, rather
than stem cells, are considered the source of the blastema in most polychaetes [49–51].
It has been experimentally shown that innervation and wound healing are crucial for
blastema formation and growth [52–54]. However, the molecular inducers of the blastemal
precursor cells in annelids have not been identified until now. Our data suggest that FGF is
essential for the blastema initiation and the following regenerative process in A. virens. In
particular, we found an almost immediate (within several hours) response to amputation
by expression of FGF genes adjacent to the wound (Figures 3 and 10). Pharmacological
blockade starting at this time point leads to the absolute suppression of regeneration.

Figure 10. Schematic illustration of gene expression patterns in A. virens during posterior regeneration. Anterior is to the
left, vertical line at 4 hpa indicates amputation site, the gut is shown in gray, ventral nerve cord (VNC) outlined in gray
dotted line. Ectodermal expression is shown in darker lines; mesodermal expression is lighter. Expression pattern of each
gene is demonstrated in its own color.

Expression domains at the 4 hpa stage were noted at the surface of the stump (Avi-
fgf8/17/18), in the nervous system (for Avi-fgf8/17/18, Avi-fgfA, Avi-fgfr2), in mesodermal
cells located around the gut (for Avi-fgfA, Avi-fgfr1), and at the 1 dpa stage in the wound
epithelium (for Avi-fgf8/17/18, Avi-fgfA, Avi-fgfr2). From the stage of 2 dpa, in addition
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to the domains mentioned above, FGF ligands are expressed in various domains of the
blastemal masses and in stripes of the epidermis on the ventral and the lateral sides. Upon
3 dpa, the receptors demonstrate an exclusively mesodermal (Avi-fgfr1) or ectodermal
(Avi-fgfr2) tissue-specific expression. The tissue-specificity of the FGFRs expression in A.
virens suggests that almost all tissues involved in epimorphic regeneration are potentially
competent to FGF. A restricted expression of distinct genes to ectodermal and mesodermal
tissues implies that FGF signaling may mediate the interaction of cells derived from these
germ layers.

Mutual epidermal-mesodermal interactions are essential during vertebrate limb re-
generation, although the role of wound-derived FGFs in the dedifferentiation process is
unclear [55]. However, the conserved FGF role in blastema formation is undeniable. FGFs
are believed to be nerve-induced factors that can independently promote regeneration
without innervation [56]. In urodele tail regeneration, the spinal cord or exogenous FGFs
and BMP can induce an ectopic regenerative response in a way similar to the accessory
limb model [33]. An extensive activation of the expression of both ligands in the VNC of A.
virens indicates the possibility of their propagation through neurites to various tissues of
the segment.

An early transcriptional response from the epidermis and numerous internal cells in
A. virens suggests that these structures also act as an FGF source, promoting the recruitment
of FGFR-positive mesodermal and ectodermal cells, triggering proliferation and blastema
formation. This assumption is supported by (1) the subordination of the FGF expression
upregulation and the following onset of an extensive EdU labeling at 2 dpa (Figure 7A), and
(2) the inhibition of FGF signaling starting immediately from the moment of amputation
(Figure 6). The wound healing is not disturbed under this condition, but neither epithelial
nor underlying cells start to divide, which is obvious by the absence of EdU incorporation
and tissue outgrowth. According to the vertebrate regeneration models, FGF molecules
(and several other growth factors) act as a regulator of the exit from the dormant G0 state
into and progression through the G1 phase [57]. Probably, FGF signaling in A. virens has
a similar effect on differentiated tissues. What controls cell proliferation in the advanced
regenerative bud remains to be determined since FGF inhibition at stages after 2 dpa does
not completely suppress EdU incorporation.

Our results suggest that FGF signals are possible candidates for reprogramming cell
fates in the annelid regeneration. We interpret the mesodermal signal of Avi-fgfA and Avi-
fgfr1 in the old segments as a sign that myoepithelial cells might undergo FGF-dependent
dedifferentiation processes to populate the wound area and give rise to the blastema. Acti-
vation of the germline/multipotency program (GMP) genes [4] in the wound epithelium
and just below it confirms this scenario. Indeed, FGFs have important roles in cell survival,
migration and proliferation in many developmental contexts. FGF signaling has been
shown to promote cell motility and chemotaxis in chick and Drosophila embryos [19,58].
FGF-induced dedifferentiation of myocytes and pigment epithelial cells is observed in the
regeneration of different elements in the anamniote eye, such as extraocular muscle, lens
and retina [10]. Like A. virens, the suppression of FGFR or MAPK pathway in an injured
zebrafish impairs proliferation, which is a consequence of disturbed reprogramming and
dedifferentiation via muscle-to-mesenchyme transition in the zebrafish regeneration [59].

Considering a profound similarity of the FGF requirement for initiation of the whole
regenerative processes in the protostome representative (A. virens) and vertebrates, we
assume that the role of FGFs in cell induction and proliferation may predate the origin
of bilaterians. It is tempting to analyze the conservation of the FGF upstream and down-
stream regulatory circuits in invertebrate models. First of all, we intend to verify whether
a local signaling center is formed in the annelid wound epithelium, which stimulates
dedifferentiation and recruitment of blastemal cell precursors.
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4.2. Putative Roles of FGFs in Axial Patterning and Further Regenerative Bud Maturation

Our results demonstrate a high-intensity of expression of FGF components in the
ectoderm and the nervous system of the youngest newly formed segments at the late stages
of regeneration. This can be considered as a sign of FGFs participating in axis elongation
and patterning in A. virens, similarly to the dose-dependent FGFs role in vertebrate posterior
development [21]. Expression of A. virens FGF components in the nervous system near the
amputation plane at early stages may represent positional shift (i.e., posteriorization). This
hypothesis is supported by the expression profile of some Hox genes, such as Lox5, Lox2 and
Post2 in A. virens, which participate in the restoration of the anterior-posterior axis upon
amputation [60]. Analyzing regenerative processes in annelids, we called these repatterning
events “molecular morphallaxis” [2] and considered them as crucial for the initiation of
epimorphic morphogenesis. Expression of the GMP gene pl10 is also activated de novo
at 1 dpa in the posterior-most VNC ganglia [4], which coincides with FGF activation and
indicates a change in the regulatory state of the posterior tissues.

Undifferentiated condition is well documented for the wounded area and early regen-
erative bud of nereids [4,5,48,61]. The observed expression of A. virens FGF components
in both blastemal and epidermal cells at the 2 dpa stage correlates with the onset of ac-
tive proliferation in these tissues (Figures 3 and 7). Several GMP marker genes, such as
vasa, pl10, piwi, which presumably maintain a multipotent and undifferentiated state of
regenerative bud cells in A. virens, have an extensive expression in FGF-competent tissues
starting from 2 dpa [4]. These facts suggest that FGFs in A. virens may act to prevent
or slow down premature cell differentiation during blastema growth and patterning (at
2–3 dpa). Moreover, inhibition effects on cell proliferation and morphogenesis are much
more prominent at earlier stages when incubation occurs from 2 dpa. Comparing four dpa
(Figure 8B,C) and six dpa (Figure 9B,C) regenerates deprived of FGF, we note that after
four dpa, the inhibitory effect can be mostly overcome. Interestingly, the inhibitors rarely
have any influence on pygidial cirri development. In line with that, these sensory organs
demonstrate expressing FGF ligands but not the receptors. Thus, we suppose that in newly
formed cirri, FGFs may not control proliferation but act as attractants to the nerves growing
into them.

As regeneration proceeds, the bud undergoes consecutive segmentation. Its mecha-
nisms in annelids, as well as its homology in diverse bilaterians, are not fully understood.
Though a prevailing hypothesis postulates an independent evolution of segmentation
in annelids, arthropods, and chordates [62], significant similarity is recovered in some
distantly related species [63]. Segmentation of the body axis proceeds simultaneously with
its elongation in both annelid juveniles and vertebrate embryos. Vertebrate FGFs have
multiple roles in establishing such borders as the midbrain–hindbrain boundary and the
determination front in the paraxial mesoderm [21]. In brachiopod development, fgf8/17/18
expression does not correlate with ectodermal boundaries of the segments but is associated
mostly with metameric chetal sacs [39]. However, our inhibitor experiments apparently
influence the segmentation of the regenerative bud if the FGF suppression begins before the
blastema patterning at 2–3 dpa (Figures 8 and 9). As a result, we observed fewer segmental
boundaries and other metameric structures, whose development was significantly delayed,
especially in SU5402. The functional effects correlate with the expression of Avi-fgfr2,
which has a more prominent signal at segmental borders at 5 and 7 dpa (Figure 3X). At
the same stages, Avi-fgfA also demonstrates a periodically varying expression intensity
with a maximum in the middle of the segment length (Figure 3K,L). Noteworthy, both
FGF receptors have no expression in differentiating pygidium, a non-segmented structure.
In further studies of FGF in segmented animals, special attention should be paid to its
possible involvement in forming boundaries and the patterning of metameres.

4.3. Molecular and Functional Evolution of the FGF signaling

FGF molecules activate a fairly ancient signaling pathway [13,15,19]. According to
genomic data, the FGF domain and/or its putative predecessor (FGF-like) is found in the
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predicted genes of choanoflagellates and most metazoans, including sponges ctenophores,
cnidarians, and bilaterians. However, only for the representatives of the latter two taxa, the
presence of molecules with all the canonical features of FGF ligands and receptors was con-
firmed. Thus, the signaling pathway mediated by secreted bona fide FGFs has originated
in the cnidarian/bilaterian ancestor [9,13,64,65]. Bioinformatic analysis showed a great
structural diversity of FGF components in this lineage. Cnidarians possess well-supported
FGF8/17/18 members and numerous diverged FGF genes with unclear phylogenetic affili-
ation [9,64,66]. The same is true of the protostomian repertoire, which in addition acquired
representatives of FGF9/16/20 and probably FGF1/2 subfamilies [15,16]. A complete loss
of FGF ligands has been documented in certain annelid lineages [41].

The results presented in this study improve our understanding of FGF evolution in
protostomes by extending the sampling owing to newly identified and recently described
candidate sequences. In our phylogenetic analysis, one of the A. virens ligand sequences
(named Avi-fgf8/17/18) was undoubtedly recovered within FGF8/17/18. This subfamily
also includes the ligands found in cnidarians and numerous bilaterians, including the
trochozoans P. dumerilii, C. teleta, L. gigantea, lophophorates [40], ecdysozoans and deuteros-
tomes [13–16]. This broad distribution confirms that FGF8/17/18 is one of the earliest
diverged subfamilies. Moreover, FGF8/17/18 genes have a rather conservative role in the
early development of bilaterian animals [18,40,67].

Insufficient phylogenetic signal was recovered for FGFs of several distantly related
metazoans, including deuterostomes [12,15,26,27]. For Avi-fgfA, we were also unable to
find well-supported orthology. Due to the low identity percentage between these sister
genes of the two nereid species and the lack of other clustered members, they are likely
to be fast-evolving sequences rather than representatives of a new subfamily. Since the
only described spiralian FGFs outside FGF8/17/18 are members of FGF9/16/20 [15,40],
Avi-fgfA might belong to either of these subfamilies. Comparative genomics and synteny
analysis will help to resolve this issue.

Sequences of FGFR-type tyrosine kinases were identified in sponges (but there are no
associated extracellular FGF-binding Ig-like domains), while proper FGFRs are present
in all branches of Eumetazoa. Here FGFR paralogs number varies from one (in C. ele-
gans, Tribolium castaneum, Strongylocentrotus purpuratus, Ciona intestinalis) to four (in mam-
mals) [46,68]. For A. virens, two FGFR paralogs were found, clustering together with the
sequences of other spiralians, and differing in the number of Ig-like domains. The number
of these domains can differ both in one species and in different clades [68]. The existence
of a different number of paralogous sequences in genomes can be the result of lineage-
specific duplications, loss or horizontal gene transfer. Probably, similar events occurred
independently in different branches of Bilateria and in annelids, for which both common
and unique homologs genes of FGF components can be found. Specifically, on the FGFR
tree, the sequences of A. virens, P. dumerilii, and C. teleta containing two Ig-like domains
tend to segregate from those with three Ig-like domains. It may indicate a duplication
event in an annelid or spiralian common ancestor.

When comparing FGF activity in different animals, one can see great diversity and
a few conservative features. In Nematostella vectensis, 15 ligand-encoding sequences were
found, but only 5 of them have been described. For this animal, the involvement of FGF
signaling in gastrulation, neurogenesis, and forming the apical organ has been shown, with
co-expression of ligands and receptors either in the same place or in very closely situated
domains [64,66]. In bilaterian animals, the corresponding expression domains appear in
different germ layers, the mesoderm and ectoderm [18]. For early embryos of deuterostome
invertebrates, receptor expression domains are confined to the mesoderm and ligands to the
ectoderm [12,27,67,69]. The role of FGFs in the induction of the mesoderm adjacent to their
source was convincingly demonstrated in numerous bilaterian lineages [18,40,67,70,71].
Overall similar characterization of the FGF function is relevant for insects at the stages of
germ-band elongation [72]. In line with that, the MAP-kinase branch of the FGF pathway
in A. virens also participates in mesoderm development [47,73].
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Both ecto- and mesodermal domains are also found in the expression patterns of FGF
components in regenerating A. virens. However, the presence of two paralogs among the
ligands and receptors with different expressional tissue specificity does not allow us to
determine the trajectory of intercellular communication with confidence. Our data indicate
the fundamental possibility of the mutual influence of internal and superficial tissues, but
the autocrine nature of the signaling cannot be ruled out either. Apparently, distinct sets of
components and a complex, unique pattern of FGF expression in different taxa reflect a
very high evolutionary lability of this system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060788/s1, Figure S1: Transverse histological sections after in situ hybridization, which
demonstrates expression of the Avi-fgfr1 at 3 dpa stage in coelomic walls (arrows). A represents more
anterior region, than B. Video S2–S5: Stacks of individual images, which demonstrate different focal
planes of 3 dpa regenerates. An expression of Avi-fgf8/17/18 (S2), Avi-fgfA (S3), Avi-fgfr1 (S4), Avi-fgfr2
(S5) in A. virens. Red arrows indicate expression signal in the epidermis of the regenerative bud;
green arrows, expression signal in the mesoderm-derived blastema; yellow arrows, expression signal
in the mesodermal cells around the gut; black arrows, expression in the ventral cord cells. Asterisks
mark non-specific staining. Data S6: Alignment of the FGF ligand core sequence. Data S7: Alignment
of the FGFR RTK domain.
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