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ABSTRACT Strain MW13 exhibited broad-spectrum antibacterial activity toward
Gram-positive and Gram-negative pathogens. The 7.1-Mb draft genome gives insight
into the complete secondary metabolite production capacity and reveals genes pu-
tatively responsible for its antibacterial activity, as well as genes which contribute to
plant growth promotion.

As part of our ongoing efforts to investigate natural products from rhizosphere bacteria,
which are relevant in an agricultural or pharmaceutical context (1–6), we recently

isolated and characterized 80 rhizospheric soil samples from wheat, barley, and clover
fields, as well as turf grass and buckthorn trees in the Isfahan province in central Iran. In a
subsequent screening panel, isolate MW13 exhibited antibacterial activity. Based on 16S
rRNA gene sequence similarity, strain MW13 was identified as a Micromonospora sp. The
most closely related type strains to MW13 are Micromonospora echinofusca DSM 43913 and
Micromonospora auratinigra DSM 44815, both with 99% sequence identity. Bacteria of the
genus Micromonospora have long been recognized as an important source of aminogly-
coside antibiotics (7) but also recently for their potential regarding biocontrol and break-
down of cellulosic biomass for biofuels (8). They play an important role in soil ecology,
biodegradation, and plant growth promotion, but little is known about how these microbes
accomplish these numerous functions. Therefore, we aimed to determine the whole-
genome sequence of strain MW13 to reveal the genetic background of its antibacterial
capacity, as well as to provide a resource to study factors involved in plant association and
potential biocontrol properties.

Strain MW13 was isolated from the rhizosphere of Triticum aestivum L. Five grams of
roots plus adhering rhizosphere soil were suspended in 50 ml of sterile phosphate-
buffered saline (9) in 100-ml Erlenmeyer flasks and shaken for 30 min at 30°C. The
suspension was filtered, and a dilution series was prepared. The filtered suspensions
were plated onto King’s B agar (10). After 4 days at 30°C, strain MW13 along with 10
further bacterial colonies could be distinguished and separately isolated based on their
morphological appearance.

Strain MW13 was grown in 15 ml Trypticase soy broth (TSB) overnight at 30°C on a
rotary shaker (180 rpm). For genomic DNA (gDNA) isolation, the Qiagen genomic DNA
purification kit was used in combination with 100/G Genomic-tips, according to the
manufacturer’s protocol, except that for the bacterial lysis, the handled volumes were
doubled, and the incubation time at 50°C was prolonged until a clear lysate was obtained.
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A paired-end library was constructed using the TruSeq PCR-free kit (Illumina), according
to the manufacturer’s protocol, and subjected to sequencing using an Illumina HiSeq 1500
platform in a 2 � 250-bp run. A total of 2,602,577 paired-end reads were obtained, and the
data were quality checked using FastQC version 0.11.5, operating with default parameters.
With an average quality score of Q37 for the forward reads and Q34 for the reverse reads,
the reads were trimmed from the 3= end, removing bases with a score below Q20. The de
novo assembly was performed utilizing Newbler version 2.8, with default parameters, using
a subset of 2.6 million reads and screening against the phiX sequence as vector contam-
ination. Overall, 2,597,997 reads were assembled into a 7,086,037-nucleotide draft at
84.7-fold coverage. The resulting draft genome sequence consists of 152 contigs in total
(average contig size, 57,095 bp) in 41 scaffolds, with a G�C content of 73.3%. The assem-
bled contigs were annotated with the PROKKA version 1.11 pipeline (11), resulting in the
annotation of 6,184 coding sequences.

Automated secondary metabolism analysis using antiSMASH 4.0.2 (12) predicted 25
biosynthesis gene clusters (BGCs). Eight of these matched known clusters for the
biosynthesis of desferrioxamine B (13, 14), sioxanthin (15), and landomycin (16). The
remaining clusters were predicted to encode 2 terpenoid-, 4 nonribosomal peptide
synthetase (NRPS)-, 9 polyketide synthase (PKS)-, 1 hybrid-NRPS-PKS-, and 6 ribosomally
synthesized and posttranslationally modified peptide (RiPP)-based compounds.

Data availability. This whole-genome sequence (WGS) project and the 16S rRNA
gene sequence have been deposited at DDBJ/ENA/GenBank under the accession
numbers QKKX00000000 and MK045809, respectively. The raw sequencing data are
available from the Sequence Read Archive (SRA) under the accession number
SRR7949780.
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