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Abstract

Background: Clear cell renal cell carcinoma (ccRCC) is still highly aggressive and lethal even with various
therapeutic approaches. As the kidney is an iron metabolism-related organ, exploring and assessing the clinical
value of ferroptosis, an iron-dependent regulated cell death, is practical and important.

Methods: Prognostic ferroptosis-related differentially expressed genes (DEGs) were identified from the KIRC cohort
in the cancer genome atlas (TCGA) database, from which a prognostic signature was established using Lasso-
penalized Cox regression analysis. Each patient in the KIRC cohort and the E-MTAB-1980 cohort (from the
ArrayExpress database) was assigned a calculated signature-correlated risk score and categorized to be either in the
high- or low-risk group divided by the median risk score in the KIRC cohort. Then, the independent prognostic
value of the signature was further assessed by Kaplan-Meier (K-M) survival, time-dependent receiver operating
characteristic (ROC) and Cox regression analyses based on overall survival (OS) in both cohorts. Finally, risk-related
DEGs were identified in both cohorts and subjected to enrichment analyses for Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) and immune infiltration.

Results: Among 60 ferroptosis-related genes, 32 prognostic DEGs were identified, from which we constructed a
prognostic 12-gene signature with CARST, HMGCR, CHAC1, GOT1, CD44, STEAP3, AKR1C1, CBS, DPP4, FANCD?2,
SLCTAS5 and NCOAA4. Patients in both cohorts were divided into high- and low-risk groups, which were visually
distributed in two sets and had positive-risk-related mortality. The K-M survival and the ROC curves validated that
the signature has prognostic value with P < 0.05 and area under the curve > 0.7 in both cohorts, respectively.
Multivariate Cox regression further confirmed the risk score as an independent prognostic predictor for OS.
Commonly enriched terms in GO and KEGG not only showed a high iron correlation but also, interestingly, immune
relevance of 3 immune cells (macrophages, mast cells and regulatory T cells) and 1 immune-related function
(antigen processing cell co-stimulation).

Conclusion: We established a novel 12 ferroptosis-related-gene signature that was proven to be an independent
prognostic predictor for OS and inferred to be related to tumour immunity in ccRCC; however, the underlying
mechanism is still poorly characterized and needs further exploration.
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Background

As the latest research suggests, renal cell carcinoma
(RCC) is the second most commonly diagnosed uro-
logical cancer after bladder cancer, in which approxi-
mately 80% are clear cell RCCs (ccRCCs) [1, 2]. Even
with various therapeutic approaches, such as surgery,
chemotherapy, radiotherapy, targeted therapy and the
newly proposed immunotherapy, ccRCC is still one of
the most difficult clinical problems in urology. Delays in
diagnosis and a high metastatic rate are the main causes.
The incidence of advanced ccRCC is approximately 33%
at patients’ first hospital visits, and 40% develop distant
metastases and suffer from poor survival outcomes (the
5-year survival rate is less than 11.2%) [3]. For localized
RCC, radical nephrectomy is still the major treatment
modality. Concerning metastatic tumours, conventional
therapeutic methods such as multitarget tyrosine kinase
inhibitors (TKIs) and mammalian target of rapamycin
(mTOR) inhibitors are extensively adopted; however, the
therapeutic benefits are modest [4].

Iron is an essential element in the basic biological pro-
cesses of the human body, and metabolic disorders are
involved in the occurrence and progression of many tu-
mours [5, 6]. Recently, iron-dependent regulated cell
death (RCD), namely, ferroptosis, has drawn increasing
attention in the cellular-molecular field of tumours. Less
than a decade ago, ferroptosis was introduced as a nona-
poptotic RCD distinguished from necroptosis [7], pyrop-
tosis [8], and alkaliptosis [9, 10]. In 2012, Dixon et al.
[11] first demonstrated that in contrast to apoptotic in-
hibitors, the growth inhibitory effect of erastin on RAS-
mutant cancer cells can be completely antagonized by
iron chelators and lipophilic antioxidants relying on a
new form of RCD named ferroptosis. Morphologically,
unlike typical apoptotic features such as membrane bleb-
bing and shrinkage, classical necrosis-like features such
as cell swelling and plasma membrane rupture can be
observed during ferroptosis [12]. Biochemically, ferrop-
tosis is driven by reactive oxygen species (ROS), which
are highly associated with iron accumulation and lipid
peroxidation [13]. Due to their high metabolic character-
istics, most tumours are in a state of high oxidative
stress and are required to increase their ROS scavenging
ability to prevent oxidative damage, which may make
them sensitive to ferroptosis [14]. Many cancers have been
proven to be ferroptosis-related, such as hepatocellular
carcinoma [15], gastric cancer [16, 17], ovarian cancer [18,
19], and breast cancer [20, 21]. Therefore, inducing fer-
roptosis to promote cell death or inhibit cell growth for
cancer could be a new therapeutic strategy [22].

The kidney is an iron metabolism-related organ with
biofunctions, such as balancing iron homeostasis by filter-
ing and reabsorbing iron and promoting haemoglobin
synthesis by forming erythropoietin [23]. Several studies
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have demonstrated that ccRCC is highly associated with
iron metabolism [24, 25]. However, the role of ferroptosis
in ccRCC remains poorly understood. Thus, exploring the
potential correlation between ccRCC and ferroptosis is
practical and important.

To explore and assess the clinical value of ferroptosis
in ccRCC, we performed this bioinformatics analysis by
establishing an independent prognostic ferroptosis-
related gene signature using the cancer genome atlas
(TCGA) database and validated it in the ArrayExpress
database. Then, common functional annotations in both
cohorts were screened out with Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
immune infiltration enrichment analyses to explore the
underlying mechanisms.

Methods

The flow chart of the bioinformatics analysis is pre-
sented in Fig. 1. All statistical analyses were completed
in R language software (Version 4.0.3) [26], and P < 0.05
was considered statistically significant without a speci-
fied setting.

Acquisition of ferroptosis-related genes and ccRCC
cohorts

A comprehensive literature survey about ferroptosis was
performed, and high-quality articles were retrieved, in
which 60 ferroptosis-related genes were identified and
are presented in Supplementary Table S1 [27-30].

The derivation set and validation set of ccRCC were
retrieved from the KIRC cohort (including 526 ccRCC
tissue samples and 72 normal kidney tissue samples) in
the TCGA database (https://portal.gdc.cancer.gov/
repository) and accession E-MTAB-1980 (including 101
ccRCC tissue samples) in the ArrayExpress database
(www.https://www.ebi.ac.uk/arrayexpress), respectively.
Both raw count values of gene expression and clinical
information were downloaded from the corresponding
databases. The gene expression profiles of the KIRC and
E-MTAB-1980 cohorts were normalized with the
“edgeR” package [31] in R language software. Patients
with 0 follow-up days were removed from further ana-
lysis. Since all retrieved data were from public databases,
no ethical review or approval from an Ethics Committee
was required. We identified differentially expressed
ferroptosis-related genes with prognostic value between
ccRCC tissues and normal kidney tissues.

Identifying differentially expressed ferroptosis-related
genes with prognostic value between ccRCC tissues and
normal kidney tissues

The gene expression profiles of the KIRC cohort were
subjected to differential expression analysis using the
“edgeR” R package. Differentially expressed genes (DEGs)
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between ccRCC tissues and normal kidney tissues were
screened out with a false discovery rate (FDR) < 0.05 and
|fold change (FC)| > 1. DEGs related to ferroptosis were
selected and demonstrated with a heat map generated by
the “pheatmap” R package [32]. Then, univariate Cox ana-
lysis of overall survival (OS) for 60 ferroptosis-related
genes was performed to identify the genes with prognostic
value. A Cox P-value <0.05 indicated a significant rela-
tionship to OS. Ferroptosis-related DEGs with prognostic
values were selected using intersection analysis of DEGs
and prognostically valuable genes with the “Venn” R pack-
age [33] and then visualized with a protein-protein inter-
action (PPI) network generated by the STRING database
(version 11.0) [34] and a correlation network generated by
the “igraph” [35] and the “reshape2” [36] R packages.

Construction and validation of a prognostic ferroptosis-
related gene signature

To minimize the risk of overfitting, we used Lasso-
penalized Cox regression analysis to rule out genes with
an overfitting tendency and construct a prognostic sig-
nature with the “glmnet” R package [37-39]. The risk
scores in the derivation set and the validation set were

calculated according to a linear combination of the nor-
malized expression value of each prognostic ferroptosis-
related DEG and its corresponding multivariate Cox
regression coefficient (B). The risk score calculation for-
mula was as follows: Risk score = 3 x expression value of
CARS1 + B x expression value of HMGCR + [ x expres-
sion value of CHAC1 + [ x expression value of GOT1 +
B x expression value of CD44 + 3 x expression value of
STEAP3 + 3 x expression value of AKR1C1 + f3 x expres-
sion value of CBS + P x expression value of DPP4 + [ x
expression value of FANCD?2 + f3 x expression value of
SLC1AS5 + B x expression value of NCOA4. In both sets,
each patient was given a risk score from the calculation
of the formula and then assigned to either high- or low-
risk group divided by the median risk score of the deriv-
ation set. The distribution patterns were described for the
risk scores and the corresponding survival times of all pa-
tients with scatter diagrams by the “pheatmap” R package,
the gene expression of established signature with principal
component analysis (PCA) by the “stats” R package [26],
and the patients in different risk groups with t-distributed
stochastic neighbour embedding (t-SNE) by the “Rtsne” R
package [40]. Kaplan-Meier (K-M) survival analysis and
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Fig. 2 Identification of the prognostic ferroptosis-related DEGs in the KIRC cohort. (A) Heatmap showing the ferroptosis-related DEGs identified
with differential expression analysis. (B) Forest plots showing the significantly prognostic ferroptosis-related genes identified with univariate Cox
regression analysis based on OS. (C) Venn diagram showing the overlapping genes between ferroptosis-related DEGs and OS-correlated genes
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time-dependent receiver operating characteristic (ROC)
analysis based on OS were performed using the “survival”
package [41], the “survminer” package [42] and the “time-
ROC” package [43] in R to estimate the prognostic accur-
acy of the gene signature in the derivation set and verify it
in the validation set.

Prognostic independence of the gene signature from
traditional clinical characteristics

To further assess the independent prognostic value of the
established gene signature, we used univariate and multi-
variate Cox regression analyses to determine whether it
was affected by other clinical characteristics. Several avail-
able clinical characteristics, including age, gender and
TNM stage, were transformed into dichotomous variables

and included for the calculation of hazard ratios (HRs)
and 95% confidence intervals (CIs) based on OS. P < 0.05
was considered statistically significant.

GO, KEGG and immune infiltration enrichment analyses
for risk-related DEGs

According to the risk grouping, normalized gene expres-
sion matrixes of the derivation set and the validation set
generated above were applied with the “limma” R pack-
age [44] to identify risk-related DEGs with the cut-off
criteria of |FC|=1.5 and FDR < 0.05, respectively. Risk-
related DEGs were analysed with GO [45] and KEGG
[46] using the “clusterProfiler” R package [47]. The top
30 enriched terms in 3 categories of GO (including bio-
logical process (BP), cellular component (CC) and
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molecular function (MF)) and KEGG with the cut-off
criteria of gene count > 10 and P-value < 0.05 in both 2
sets were intersected to obtain the overlapping enriched
terms. Then, single-sample gene set enrichment analysis
(ssGSEA) [48] for immune infiltration was applied with
the “GSVA” R package [49] to assess the infiltration
score of 16 immune cells and the activity of 13 immune-
related functions. With the annotated gene sets provided
in Supplementary Table S2, we quantified the immune
infiltration enrichment scores for different immune cells
and immune-related functions to further investigate the
correlation between the risk score and immune status.
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Results

Identification of prognostic ferroptosis-related DEGs in
the KIRC cohort

Among 60 ferroptosis-related genes, 55 (91.67%) were
differentially expressed between ccRCC samples and
normal kidney samples (Fig. 2A), and 34 (56.67%) were
considered OS-related in the univariate Cox regression
analysis (Fig. 2B), from which 32 overlapping genes cor-
related to ferroptosis and OS were selected by the inter-
section analysis (Fig. 2C). Interactions of 32 prognostic
ferroptosis-related DEGs were further visualized with
the PPI and correlation networks (Fig. 3A-B).
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Establishment of a ferroptosis-related 12-gene signature
in the KIRC cohort

The 32 prognostic ferroptosis-related DEGs were sub-
jected to Lasso Cox regression analysis based on OS,
and a 12-gene signature with CARS1, HMGCR, CHACI,
GOT1, CD44, STEAP3, AKR1C1, CBS, DPP4, FANCD2,
SLC1A5 and NCOA4 was identified in the KIRC cohort.
According to the median risk score, patients were di-
vided into a high-risk group (#=263) and a low-risk
group (n=263) (Fig. 4A), which were distributed into
two sets in PCA and t-SNE (Fig. 4B-C). In addition, con-
sidering survival outcomes, we observed that the high-
risk group had more deaths than the low-risk group
(Fig. 4D). To further evaluate the prognostic value and
predictive performance of the gene signature, we per-
formed K-M survival and time-dependent ROC analyses,
and both produced significant results. The K-M survival
curve showed significantly worse survival outcomes for
patients in the high-risk group than for patients in the
low-risk group (P =3.83e-14) (Fig. 4E), and the area
under the curve (AUC) reached 0.761 at 1 year, 0.735 at
3years, 0.765 at 5years, and 0.825 at 10years in the
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Validation of the prognostic predictive performance for
the 12-gene signature in the E-MTAB-1980 cohort

By applying the KIRC median risk score in the E-
MTAB-1980 cohort, we categorized 101 patients as ei-
ther high-risk (7 = 53) or low-risk (n =48) with different
PCA, t-SNE and death probability distributions similar
to the KIRC cohort (Fig. 5A-D). Consistently, a positive
risk-related K-M survival curve with a significant P-value
(2.514e-2) and ROC curves with considerable AUCs
(0.733 at 1year, 0.774 at 3years, 0.763 at 5years, and
0.721 at 10years) were also established as convincing
validation for the gene signature (Fig. 5E-F).

Prognostic independence of the 12-gene signature from
clinical characteristics

Age, gender and TNM stage were included to test the
independence of the prognostic 12-gene signature in the
univariate and multivariate Cox regression. As shown in
the univariate Cox regression analysis, risk score and
TNM stage were proven to be strong OS-related factors
in both the KIRC (risk score: HR =3.950, 95% CI=
3.031-5.147, P<0.001; TNM stage: HR =3.961, 95%

ROC analysis (Fig. 4F). CI=2.871-5.463, P<0.001) and the E-MTAB-1980
KIRC .
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Fig. 6 Univariate Cox regression analysis regarding OS in the KIRC and E-MTAB-1980 cohorts
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cohorts (risk score: HR = 10.247, 95% CI = 3.604—29.136,
P<0.001; TNM stage: HR=7.472, 95% CI=3.191-
17.496, P <0.001), as well as age in the KIRC cohort
(HR=1.628, 95% CI=1.202-2.204, P=0.002) (Fig. 6).
After independent correction for other clinical character-
istics in the multivariate Cox regression, the risk score was
still a solid prognostic predictor for OS in both cohorts
(KIRC: HR=2.953, 95% CI=2.223-3.924, P<0.001;
E-MTAB-1980: HR=4.270, 95% CI=1.465-12.439,
P=0.008) (Fig. 7).

GO and KEGG enrichment analyses in the KIRC and E-
MTAB-1980 cohorts

After differential expression analysis between the high-
and low-risk groups, 8597 DEGs significantly enriched
in 958 BP, 92 CC, 155 MF and 66 KEGG terms were
identified in the KIRC cohort. For the E-MTAB-1980
cohort, 1253 DEGs were significantly enriched in 605
BP, 50 CC, 76 MF and 28 KEGG terms. All significantly
enriched terms are shown in Supplementary Tables S3
and S4 for the KIRC and E-MTAB-1980 cohorts, re-
spectively. We selected the top 30 enriched terms in GO
and KEGG in both cohorts and found 9, 15, 20 and 8
overlapping enriched terms in BP, CC, MF and KEGG,
respectively (Figs. 8-9). As expected, several iron-
related molecular functions, including metal ion
transmembrane transporter activity, ion channel activ-
ity, and active ion transmembrane transporter activity,
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were identified. Moreover, several immune-related
terms in BP (humoral immune response), MF (cyto-
kine receptor binding; cytokine activity) and KEGG
(viral protein interaction with cytokine and cytokine
receptor; IL-17 signaling pathway; cytokine-cytokine
receptor interaction) were significantly enriched in
both cohorts (Figs. 8-9).

Immune infiltration ssGSEA in the KIRC and E-MTAB-1980
cohorts

In the KIRC cohort, we found that 9 out of 16 immune
cells had significantly higher infiltration enrichment
scores in the high-risk group: CD8+ T cells, macro-
phages, plasmacytoid dendritic cells (pDCs), T helper
cells, follicular helper T cell (Tth), helper T cells 1 (Thl
cells), helper T cells 2 (Th2 cells), tumour infiltrating
lymphocyte (TIL) and regulatory T cell (Treg), while im-
mature dendritic cells (iDCs) and mast cells showed the
opposite pattern (Fig. 10A). Similarly, the high-risk
group was predicted to be significantly correlated with
most immune-related functions, except for the Type II
immune interferon (IFN) Response (Fig. 10B). Regarding
ssGSEA in the E-MTAB-1980 cohort, we validated the
significantly different infiltration scores of 3 immune
cells (macrophages, mast cells and Tregs) and 1
immune-related function (antigen processing cell (APC)
co-stimulation) (Fig. 10C-D).

KIRC .
Multivariate analysis Pvalue HR 95% Cl '
I
I
Age (>65 vs <65) 0.016 1.454 1.074-1.970 I——
|
I
I
Stage (III/IV vs I/IT) <0.001 2.799 2.000-3.915 : —
\
Risk Score (High vs Low) <0.001 2.953  2.223-3.924 : e
0 1 2 3
Hazard ratio
E-MTAB-1980 !
Multivariate analysis Pvalue HR 95% Cl :
I
Stage (IVIV vs /)~ <0.001 2799  2.000-3.915 ' 4 = .
]
I
I
Risk Score (High vs Low) <0.001 2.953  2.223-3.924 i N = {

Fig. 7 Multivariate Cox regression analysis regarding OS in the KIRC and E-MTAB-1980 cohorts
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Discussion

In the current study, the expression and clinical data
were retrieved from the KIRC cohort in TCGA and the
E-MTAB-1980 cohort in ArrayExpress. Within 60
ferroptosis-related genes, we performed differential ex-
pression analysis and univariate Cox analysis to screen
32 prognostic DEGs, from which Lasso-penalized Cox
regression analysis was applied to construct a prognostic
12-gene signature with CARS1, HMGCR, CHACI,
GOT1, CD44, STEAP3, AKR1C1, CBS, DPP4, FANCD2,
SLC1A5 and NCOA4. The signature-correlated risk score
of each patient in both cohorts was calculated, according
to which patients were assigned to either the high- or low-
risk group divided by the median risk score of the KIRC
cohort. Then, the independent prognostic value of the sig-
nature was further assessed by K-M survival, ROC and
Cox regression analyses in the KIRC cohort and validated
in the E-MTAB-1980 cohort. Finally, risk-related DEGs
were identified in both cohorts and subjected to enrich-
ment analyses for GO, KEGG and immune infiltration. As
expected, several iron-related GO and KEGG terms were
significantly enriched. However, interestingly, some

immune-related terms were identified. Further immune
infiltration analysis showed that 3 immune cells and 1
immune-related function were enriched in both cohorts,
which supported the potential relationship between
tumour immunity and ferroptosis in ccRCC.

The prognostic 12-ferroptosis-related-gene signature
contains 5 protective genes (HMGCR, GOT1, AKRI1C1,
DPP4 and NCOA4) and 7 risk genes (CARS1, CHACI,
CD44, STEAP3, CBS, FANCD2 and SLC1A5), which can
be classified as iron metabolism-related (NCOA4, STEAP3
and FANCD2), lipid metabolism-related (HMGCR,
AKR1C1 and DPP4), (anti) oxidant metabolism-related
(CHAC1, CD44, CBS and CARS1) and energy metabolism-
related genes (GOT1 and SLC1A5) according to the poten-
tial gene-regulating function for ferroptosis [30].

In iron metabolism, NCOA4 can help elevate the
levels of free iron by recruiting iron-storage protein
ferritin (FTH) including ferritin light chain (FTL) and
ferritin heavy chain 1 (FTH1) for lysosomal degrad-
ation and then releasing iron. As a participant in free
radical formation and lipid peroxidation propagation,
the accumulation of iron can increase the ferroptotic
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sensitivity of cells. Therefore, inhibition of NCOA4
can suppress ferroptosis induced by amino acid/cyst-
ine deprivation or erastin [50, 51]. In addition, the
expression STEAP3, a metalloreductase reducing Fe3+
to Fe2+, can also be upregulated in ferroptosis. In the
endosome, Fe2+ reduced by STEAP3 will be released
into the cytosol to increase free iron and therefore
participate in ferroptosis. In contrast to what was
mentioned above, FANCD2 is a nuclear protein in-
volved in DNA damage repair with a potential ability
to decrease iron levels. In bone marrow stromal cells,
the knockout of FANCD?2 increased the expression of
STEAP3 and enhanced erastin-induced ferroptosis
[52].

HMGCR is a reductase that can catalyse 3-hydroxy-3-
methyl-glutaryl coenzyme A (HMG-CoA) to synthesize
mevalonic acid and then participate in the synthesis of
sterol coenzyme Q10 (CoQ10), an endogenous suppres-
sor of ferroptosis. A study showed that the drug inhib-
ition of HMGCR is responsible for the enhancement of
FIN56-induced ferroptosis [53]. AKR1C1 is a member of
aldosterone reductase family 1 (AKR1), an aldehyde de-
toxification enzyme family that is involved in steroid me-
tabolism. The overexpression of AKRIC (including
AKR1C1, AKR1C2 and AKRI1C3) has been proven to
have an antiferroptotic effect through the reduction re-
action converting the end products of lipid peroxides to

the corresponding nontoxic lipid-derived alcohols [54].
DPP4 is a binding protein to NOX, a participant in a
membrane-bound enzyme complex that produces down-
stream ROS. The combination of NOX-DPP4/CD26 can
cause plasma membrane lipid peroxidation and therefore
result in ferroptosis, which can be blocked by p53
through DPP4 silencing in colorectal cancer cells [55].
In addition, the involvement of DPP4 and p53 was ob-
served in Golgi stress-induced ferroptosis [56].

During (anti) oxidant metabolism in ferroptosis, cysteine
serves as an initiator by providing materials for the biosyn-
thesis of glutathione (GSH), which contributes an antifer-
roptotic effect. Extracellular cysteine can be transported
into the cytosol by exchange with intracellular glutamate
through the cysteine-glutamate exchange system Xc-.
CHACI and CD44 have been suggested to interact with
system Xc- and provide a proferroptotic effect in Burkitt’s
lymphoma [57] and an antiferroptosis effect in human
gastrointestinal cancer [17], respectively. In another way,
homocysteine has an alternative transsulfuration pathway
that produces cystathionine promoted by CBS and then
cysteine promoted by cystathionine (CTH). In the cyto-
plasm, cysteine can be charged with tRNACys, which are
catalysed by CARS1 and therefore result in a decrease in
cysteine. A study showed that the knockdown of CARS1
can increase the compensatory transsulfuration pathway
to increase cysteine and suppress ferroptosis induced by
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Fig. 10 Results of ssGSEA immune infiltration in the KIRC and E-MTAB-1980 cohorts. (A) The ssGSEA scores of 16 immune cells between different
risk groups in the KIRC cohort. (B) The ssGSEA scores of 13 immune-related functions between different risk groups in the KIRC cohort. (C) The
ssGSEA scores of 16 immune cells between different risk groups in the E-MTAB-1980 co-hort. (D) The ssGSEA scores of 13 immune-related
functions between different risk groups in the E-MTAB-1980 cohort. aDCs, activated dendritic cells; DCs, dendritic cells; iDCs, immature den-dritic
cells; NK cells, natural killer cells; pDCs, plasmacytoid dendritic cells; Tfh, follicular helper T cell; Th1 cells, helper T cells 1; Th2 cells, helper T cells 2;
TIL, tumour infiltrating lymphocyte; Treg, regulatory T cell; CCR, cytokine-cytokine receptor; HLA, human leukocyte antigen; MHC, major
histocompatibility complex; IFN, immune interferon; ns, not significant; *, adjusted P < 0.05; **, adjusted P < 0.01; ***, adjusted P < 0.001

erastin, which can be resensitized by silencing CBS [58].
Additionally, the ferroptosis-enhancing effect of suppress-
ing CBS has been demonstrated in hepatocellular carcin-
oma cells [59].

GOT1 and SLC1A5 are both involved in the energy-
metabolic network for ROS production in ferroptosis. In
cystine deprivation- or erastin-induced ferroptosis,
SLC1A5-mediated L-glutamine uptake is a critical
process for the production of glutamate, which is further
converted into o-ketoglutarate (aKG) by transaminase
GOT1-mediated transamination [60]. The accumulation
of aKG can be converted into acetyl coenzyme A
(acetyl-CoA) in the cytoplasm for lipid biosynthesis and
fatty acid synthesis or increase mitochondrial ROS and
iron levels to promote ferroptosis [61, 62]. Immune cells
are attracted and accumulated by a set of signals to help
program cell death during apoptosis [63]. It is conceiv-
able that similar signal patterns will attract APCs and

other immune cells to assist the accomplishment of fer-
roptosis, although solid proof is still lacking. However,
an in vitro study on macrophage clearance of ferroptotic
cells supported this possibility [64]. Bioinformatically,
several studies have demonstrated the potential connec-
tion between RCC and immune infiltration [65, 66].
Clinically, in addition to palliative targeted therapy, con-
siderable promising results of monotherapy with novel
immunotherapies, such as immune checkpoint inhibitors
(ICIs), have been observed in some advanced RCC pa-
tients [67]. Moreover, a combinatory ICI therapy of
nivolumab plus ipilimumab has been approved for the
phase-3 clinical trial last year [68].

In the present study, with immune annotation analysis
based on risk groups, we discovered that macrophages,
mast cells, Tregs and immune-related function APC co-
stimulation were significantly enriched in both cohorts,
which indicates a potential underlying modulation
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between tumour immunity and ferroptosis in ccRCC.
Macrophages, mast cells and Tregs are all APCs that are
capable of presenting processed antigens to T cells and
activating the immune response by co-stimulation.
Tumour-associated macrophages (TAMs) have a dual
character and have either procancer or anticancer effects
in the immune system [69, 70]. As in ccRCC, it has been
demonstrated that an increased density of TAMs is
associated with poor clinical prognosis and aggressive
tumour migration [71, 72]. Similarly, Tregs show
tumour-facilitating potential in ccRCC. Tregs have been
proven to have an association with worse prognosis in
ccRCC [73, 74]. For mast cells, the research of Senba-
baoglu et al. revealed that mast cell density has an inde-
pendent negative correlation with OS and progression-
free survival (PFS) in ccRCC [66]. Moreover, Fu et al.
observed that mast cells were independently negatively
correlated with cancer-specific survival (CSS) and
relapse-free survival (RFS) in ccRCC [75]. In addition,
in vitro and in vivo experiments have demonstrated the
angiogenesis-promoting effect of mast cells in RCC [76].
Although multiple pieces of evidence have elucidated
the functions of macrophages, mast cells and Tregs in
ccRCC, the underlying mechanism remains poorly char-
acterized, and this issue in the field of ferroptosis is lack-
ing. The relationships between the immune response
and ferroptosis and how they correlate with prognosis in
ccRCC still require further investigation.

Several limitations were observed in the present study.
As a bioinformatics analysis, the weakness of lacking ex-
perimental and clinical validation is inevitable, as well as
the various possible results from using different cut-off
criteria, statistical methods or analysis tools. Addition-
ally, establishing a prognostic model by considering a
single hallmark might lead to the regrettable absence of
many other promising prognostic genes.

In summary, we established a novel ferroptosis-related
12-gene signature that was proven to be an independent
prognostic predictor for OS in ¢ccRCC. Through func-
tional annotation analyses, the gene signature was shown
to be tumour immunity-correlated; however, the under-
lying mechanism is still poorly characterized and needs
further exploration.
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