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800-kyr land temperature variations modulated by
vegetation changes on Chinese Loess Plateau
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Weijian Zhou'? & Zhisheng An'?2

The complicity of long-term land surface temperature (LST) changes has been under
investigated and less understood, hindering our understanding of the history and mechanism
of terrestrial climate change. Here, we report the longest (800 thousand years) LSTs based
on distributions of soil fossil bacterial glycerol dialkyl glycerol tetraethers preserved in well-
dated loess-paleosol sequences at the center of the Chinese Loess Plateau. We have found a
previously-unrecognized increasing early and prolonged warming pattern toward the north-
western plateau at the onset of the past seven deglaciations, corresponding to the decrease
in vegetation coverage, suggesting underlying surface vegetation or lack of has played an
important role in regulating LSTs, superimposed on the fundamental global glacial-interglacial
changes. Our results support that LSTs in semi-humid and semi-arid regions with little
vegetation will be more sensitive to the anticipated global temperature rise, while improving
vegetation coverage would reduce LSTs and thus ecological impacts.
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ur current understanding of the patterns and processes of

Quaternary temperature changes has heavily relied on

studies of marine records, mainly due to ocean’s uni-
formity and large capacity of taking up excess heat. For example,
the timing and magnitudes of sea surface temperature (SST)
variations are recorded by the alkenone unsaturation index!, sea
level and ice volume cycles are reflected in benthic oxygen isotope
values (8'80) from marine sediments?, and polar air tempera-
tures can also be reconstructed using ice cores’. Even though
these proxy-derived oceanic climate reconstructions have served
as benchmarks for global climatic changes during the Quaternary,
earlier response in marine realm, relative to ice volume changes,
has been reported?, some of which has been linked to orbital
obliquity control®. Although the classical terrestrial Devils Hole
chronology” has been revised to be more closely aligned with the
marine record®, as the heterogeneity of land surface, such as
topography and vegetation changes, can affect regional climate,
direct comparisons between marine and land climate records
remain to be difficult’”. More terrestrial records are thus badly
needed to better understand the general patterns and mechanisms
of climatic changes on land. While cave records, elemental data,
and lipid isotope signals offer records of monsoon intensity,
and tree ring and pollen records can serve as short-term tem-
perature proxies, long-term land paleotemperature reconstruc-
tions have been rare, primarily due to lacking of suitable
proxies. Yet, a better understanding of terrestrial temperature
variation is essential in deciphering global climatic changes,
enhancing the development of climatic models, and predicting
regional temperature variations on land. Particularly, amplified

temperature changes due to global warming have become a
typical feature at the middle and high latitudes of the Asian
continent, with northern China, in particular$, having a profound
impact on ecosystems, hydrological circulations, and agricultural
production®.

The loess—paleosol sequences on the Chinese Loess Plateau
(CLP) provide a valuable climatic archive with established and
well-constrained chronological controls!®!l. Various proxies
have revealed the history of terrestrial climatic changes in relation
to strengths of the East Asian monsoon (EAM) from 2400 to
2600 kyr ago (ka) to the Holocene!?. Recent studies have shown
that branched glycerol dialkyl glycerol tetraether (brGDGTs) (see
Supplementary Fig. 1 for structures) derived from membranes of
some heterotrophic bacteria are widely distributed in loess
deposits, and the newly developed brGDGT proxy holds great
potential for paleotemperature reconstruction!?-1>, Here we
apply this method to two well-dated loess—paleosol sections,
Luochuan (~800 kyr) and Xifeng (~600 kyr), at the center CLP
(Fig. 1 and “Methods”) to reconstruct the longest terrestrial
paleotemperatures, covering the last seven glacial-interglacial
periods. A comparison with other geochemical records recon-
structed from the same loess—paleosol sections, as well as marine/
global records, reveals distinctive features of brGDGT-recorded
land surface temperatures (LSTs) under the influence of vegeta-
tion coverage. We have found that such vegetation feedbacks are
linked with the intensity of EAM, illustrating the importance and
complicity of terrestrial vegetation coverage in affecting LST
variations, at least in semi-humid and semi-arid regions. To
assist our interpretation, we also present modern observations
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Fig. 1 Geographic locations of Mangshan, Lantian, Weinan, Luochuan, and Xifeng loess-paleosol sections and modern vegetation coverage on the Chinese
Loess Plateau. The base map is generated from the ArcGIS software. Vegetation coverage was calculated from the annual maximal Normalized Difference
Vegetation Index of the SPOT VEGETATION satellite dataset as proposed in ref. 50. The area enclosed in orange line denotes the Chinese Loess Plateau.
Modern vegetation coverage on the plateau decreases from southeast to northwest
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Fig. 2 Measured land surface and air temperatures in bacterial growth seasons and the temperature difference against total organic carbon (TOC) contents
at 11 locations in China. a Measured in situ land surface and air temperatures. b Temperature difference between measured in situ land surface and air
temperatures. (1) Aershan, (2) Haikou, (3) Yijun, (4) Guilin, (5) Manchuanguan, (6) Taoyuan, (7) Luochuan, (8) Baiyunebo, (9) Wuyuan, (10) Yulin and
(11) Dengkou. TOC content is used here to indicate vegetation cover. Bacterial growth seasons are defined as the period from March to November. The
purple triangles represent the locations with low vegetation biomass, while green triangles represent the locations with high vegetation biomass. The
highlighted low TOC (<£1.2%) interval indicates high temperature contrast in little vegetated regions. See Supplementary Fig. 2 for locations

demonstrating progressively increased contrast between air and
in situ LSTs toward desert regions.

Results

Modern LSTs vs. air temperatures. We have retrieved in situ
LSTs from 11 sites in China, shown together with modern air
temperature data from nearby meteorological stations (Fig. 2).
The two temperatures during bacterial growth seasons (March to
November, “Methods”) diverge with reducing vegetation cover,
indicated by total organic carbon (TOC) contents. The tem-
perature difference could reach ~5°C in little vegetated regions,
while minimal in vegetated regions (Fig. 2). The LSTs from four
selected meteorological stations, representing different vegetation
zones in China (Supplementary Fig. 2), are quite similar to air
temperatures in winter but increase faster in summer (Supple-
mentary Fig. 3). The difference between the two temperatures
increases with reduced vegetation cover, reaching maximal
~10°C in July in the desert region (Moyu, Supplementary Fig. 3).
Therefore, our modern observations strongly support that LSTs
tend to be amplified as compared to air temperatures, due to poor
vegetation cover. It remains intriguing whether such vegetation
feedbacks could also be identified particularly during past glacial
periods when vegetation coverage was substantially reduced in
northern Chinal®17,

LST evolution at Xifeng and Luochuan. Our new brGDGT-
derived LST reconstructions (“Methods” and Supplementary
Figs. 4 and 5 for chronology) extend our paleotemperature
records to the past 800 kyr (Fig. 3), which allows us to determine
the rate, timing, and magnitude of terrestrial temperature varia-
tions and their relationship to global climatic changes in unco-
vering possible influencing factors on land. Our Xifeng record
expands the brGDGT analysis of this section by >500 kyr from its
previous analysis'®; and at the overlapped portion, our recon-
structed temperature variations are congruent with the published,

further demonstrating the robustness of our method. The
reconstructed temperatures at Luochuan and Xifeng sections
show a glacial-interglacial change of 4-10°C, a range that is
consistent with those from the Weinan section located at the
southern tip of the CLP!4. Our results indicate that LST range
between glacial and interglacial periods is about 4-6 and 7-10 °C
before and after 450 ka, respectively. The phenomenon of reduced
amplitude before 450ka is in good agreement with the Mid-
Brunhes Event recorded in marine sediments and Antarctic
ice>19-21. Our 800-kyr records clearly show the dominance of the
100-kyr cycles, similar to magnetic susceptibility records from the
same areas!!22, global temperature records’>1°, and benthic
8180 stack? (Fig. 3). This suggests that paleotemperature varia-
tions on the CLP were primarily controlled by glacial-interglacial
cycles, consistent with previously established climatic variation
patterns revealed by other loess-based proxies!®?3 and in broad
agreement with our understanding of periodicities due to orbital
forcing!-219:24,

While our reconstructed temperatures are consistent among
themselves and in tight correspondence with magnetic suscept-
ibility/mean grain size (MS/MGS) variations derived from the
same sections (Figs. 3 and 4), our new data show a couple of
novel, and rather surprising, features. First, we have observed
consistent offsets of the timing for the transitions from glacial to
interglacial periods relative to the changing times in the onsite
MS/MGS and TOC content, and ice volume and global
temperature variations that are mainly derived from marine
records (Figs. 3 and 4). Taking the Last Glacial period as an
example, our Xifeng and Luochuan temperatures started to rise
around 36 ka (Fig. 4); that is ~16 kyr in advance of the onsite MS/
MGS and TOC changes, in addition to global ice volume maxima
as indicated by global benthic 180 and CO, variations®?4. Our
temperature records further indicate that such early warming at
the center CLP occurred at nearly every glacial termination
during the last seven glacial-interglacial periods spanning the
past 800 kyr (Fig. 3). As a result, the timing of our reconstructed
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Fig. 3 800-kyr land surface temperature (LST) records from Luochuan and

Xifeng sections on the Chinese Loess Plateau, compared with onsite magnetic

susceptibility and global/marine indicators. a Luochuan and Xifeng magnetic susceptibility (MS) records with major loess (L4-L;) and paleosol (So-S,
orange bars) units labeled. b, ¢ LSTs from Luochuan and Xifeng, respectively, with their three-point moving averages. d Atmospheric CO, from Antarctic
ice core records?4. e Reconstructed global sea surface temperatures'® and benthic §'80 stack?. The blue bars highlight intervals of early warming at Xifeng

and Luochuan within glacial periods as indicated by other records. Initiatio

temperatures changes from Luochuan and Xifeng sections does
not match with cold and warm events recorded in SST records or
the marine benthic §180 stack from previous studies!~3 (Fig. 3).
Usually, during the Last Glacial Maximum (LGM) (25-15Kka)
when continental ice sheets were at their greatest extension
during the last glacial period, the lowest global temperatures of
this period were recorded through marine proxies. However, this
low temperature period is not reflected by our brGDGT-based
reconstructions at either Luochuan or Xifeng (Fig. 4). Similarly,
instead of recording the Holocene thermal maximum of a
relatively warming period between ~11 and 5ka, our recon-
structed temperature curves show a much longer warming
duration between ~20 and 5 ka at the center CLP.

Second, compared with most marine proxy-derived tempera-
tures and MS/MGS records from the same sites, our recon-
structed temperatures record a longer time period when
transitioning from glacials into interglacials. During the last
transition, instead of ~10kyr registered in SST and MS/MGS
records, our data recorded a prolonged time period of ~20 kyr
(Fig. 4) for glacial termination. The observed gradual glacial
termination in our records is inconsistent with the much rapid
termination of ice ages that have been documented in
most marine!?, ice core?, and cave stalagmite records?> over the
past 800 kyr.
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n of LST rise led other indicators by ~7-20 kyr

Spatial pattern of early warming. We compare our LSTs with
previously published brGDGT data from other three CLP sec-
tions: Mangshan (34° 56 N, 113° 22’ E), Lantian (34° 12’ N, 109°
12 'E), and Weinan (34° 21’ N, 109° 32’ E) (see Fig. 1 for loca-
tions) over the past 60 kyr (Fig. 4). An obvious increasing trend of
early warming times from the southeastern Mangshan to central
Luochuan and Xifeng sections can be well identified. The onset of
warming began around ~36ka at Luochuan and Xifeng, com-
pared with ~23 ka at Lantian and Weinan, and then decreased to
15-20ka at Mangshan (Fig. 4). In contrast, MS/MGS records
from those same sections, as well as TOC contents to indicate
vegetation changes here, show largely synchronous changes, with
transitions typically taking place between ~20 and 10ka, con-
sistent with the global pattern of the last deglaciation (Fig. 4). In
other words, the early warming reflected in the brGDGT-derived
LSTs, relative to their onsite MS/MGS and TOC changes, is a
robust feature, irrespective of any chronological uncertainty.

Discussion

The chronology of loess sections is commonly established based
on the correlation of MS/MGS with marine benthic 8180 (ice
volume) or orbital parameters (“Methods”), and constrained with
paleomagnetic data when the studied section is sufficiently long.
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Fig. 4 Spatial pattern of early land surface temperature (LST) rise on the Chinese Loess Plateau. a LSTs at Xifeng and Luochuan. b LSTs at Weinan'# and
Lantian'®. ¢ LSTs at Mangshan (purple'2, orange®®). d-f Total organic carbon (TOC) content, normalized magnetic susceptibility (MS), and mean grain size
(MGS) records at these sections (Mangshan, organge®®; Lantian, olive; Weinan, blue'4; Xifeng, black; Luochuan, purple). g Reconstructed global mean
SSTs’ and benthic 8'80 stack?. Earlier LST rise toward the northwestern Chinese Loess Plateau is highlighted with the black arrow and purple shaded areas,
in line with reduced vegetation cover (lower TOC content in d) during the last glacial period. The last deglaciation into the Holocene, as indicated by the
onsite MS/MGS and TOC content, and global/marine records (d-g) is highlighted with the blue bar. The early LST rise, relative to other proxies from the
same sites, is a robust feature and irrespective of chronological uncertainty. See Fig. 1 for site locations

Consequently, MS/MGS variations, proxies for East Asian sum-
mer and winter monsoon, respectively, from various sections on
the CLP are essentially synchronous on glacial-interglacial
timescales (Supplementary Fig. 6), a fundamental tenet in loess
studies. Sediment hiatus, if presented, could affect the correlation-
based chronology. A 4-5-kyr hiatus in the typical loess deposits
has been reported in several studies based on independent quartz
optically stimulated luminescence (OSL) dating technology,

indicating that the loess record is not continuous over millennial
timescales, and this hiatus may be forced by a period of
strengthened East Asian winter monsoon and less vegetation
cover at the investigated sites20-28. However, at other sites sedi-
ment hiatus is not detectable, suggesting that dust accumulation
for the last glacial loess is generally continuous at millennial
timescales on the CLP2°-31. The inferred hiatus typically occurred
at the paleosol-loess boundary, where processes of pedogenesis
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and carbonate leaching could both affect the estimates of OSL
ages26-32.33, Some of the inferred hiatuses are actually an artifact
of inaccurate determination of OSL ages33. Therefore, sediment
hiatus over the major part of the CLP including the classical
Xifeng and Luochuan sections (except desert margins>4) might be
minimal over millennial timescales?%32-33,

In order to further evaluate chronological uncertainty, we
compare age discrepancies between correlation-based and high-
resolution OSL-derived chronologies from Weinan3?, Xifeng°,
Luochuan®” and Jingyuan?3 sections. Over the past 60/130 kyr,
the age difference is within 5 kyr for most periods and <10 kyr in
extreme cases (Supplementary Fig. 7). Consequently, the MS/
MGS changes still took place between ~10 and 20 ka, with either
of the two chronologies (Supplementary Fig. 8). Therefore, the
high-resolution OSL ages from the last glacial period strongly
support the fidelity of the correlation approach that spans the last
seven glacial-interglacial cycles in the present study.

We also examined the early signals in our temperature records,
relative to the onsite MS variations from Xifeng, Weinan, Lantian,
and Mangshan loess profiles, in depth domain without trans-
forming into ages. The offset in depth between LSTs and MS,
supporting the early warming, becomes larger from the southeast
to northwest of the CLP (Supplementary Fig. 9). Considering
loess deposition rate at Xifeng (~3.9-22.5 cm/kyr, average
11.5 cm/kyr3°) is lower than that at Mangshan, ~26 cm/kyr33, the
spatial pattern of early warming would be more apparent in time
domain. Therefore, the early warming relative to MS/MGS
changes and the spatial pattern of early warming on the CLP
reported in this study are largely unaffected by chronological
uncertainty, based on our assessment of sediment hiatus, com-
parison of the two chronologies, and examination of the signal
offset in depth domain.

Global and local studies of modern processes have shown that
the distribution of brGDGTSs corresponds well with tempera-
ture3®-43, which can be used to reconstruct paleotemperature
changes on land!>13-39, although the specific biological source of
brGDGTs has not been identified. Currently brGDGT-based
temperature reconstructions are generally calibrated against mean
annual air temperature at both global and regional scales due to
the lack of soil temperature data3®-43. However, we argue that
brGDGT-based temperature reconstructions from these loess
sections should best be interpreted as near-ground LSTs during
bacterial growth seasons since bacterial production of brGDGTs
on the CLP occurs during warm, wet seasons®. A recent inves-
tigation using an independent set of 20 soil samples collected
from temperate area of northern China has also demonstrated
that brGDGT indices correlate strongly with growing season
(March to November) soil temperatures but respond weakly to
winter soil temperatures3,

Although responding to air temperatures, LST variability
registered in brGDGTs produced by bacteria living within soil
layers is more directly influenced by the near-ground climate. The
near-ground climate may substantially differ from the air layer
(defined as a height of ~1.5m above the level of the ground),
since when ground surface is approached, many atmospheric
elements change rapidly** and can be further modified by soil
physical parameters (such as albedo, texture, and moisture)*°.
This distinction is important as land surface barriers impact near
surface radiation and alter surface energy balance as well as
boundary development in the way of influencing soil and near
surface temperatures. We therefore interpret brGDGT-based
temperatures to indicate LSTs during bacterial growing seasons
on the CLP.

Although brGDGT-producing bacteria may survive in deeper
soils, brGDGTSs produced in surface soil should predominate. The
lifestyle of brGDGT-synthesizing bacteria is heterotrophic#®, and

thus surface soil is more suitable for bacterial growth due to
available organic matter and oxygen. A stable isotope probing
experiment has also demonstrated that brGDGT-producing
bacteria in peat are more active in the aerobic acrotelm than
the anoxic catotelm®®. Further, brGDGTSs concentrations in sur-
face soil (0-5 cm) are generally much higher than those in deeper
soil (5-30 cm) at Xifeng, Lantian, and Mangshan (Supplementary
Fig. 10), supporting that brGDGTs are mainly produced in the
surface soil layer, at least on the CLP.

We also examined downcore variations of LST, brGDGT
concentration, brGDGT concentration normalized by TOC
content, TOC content, and MS in the Xifeng profile. Changes in
all these contents correspond well with MS, while LST changes
are obviously ahead of them (Supplementary Fig. 11). Generally,
higher LSTs correspond with lower brGDGT concentrations.
Therefore, the higher LSTs unlikely result from downward
migration of brGDGT's produced at a later time or in situ modern
production in deeper soils. Bioturbation and diagenesis, although
affecting GDGT concentrations, have neglected effects on GDGT
temperature proxies*’~4. Therefore, the early warming observed
in our temperature records is unlikely due to the alteration of
brGDGT distributions after burial in loess—paleosol sequences or
chronological uncertainty as assessed above and requires a cli-
matic interpretation.

Modern investigations show that vegetation coverage on the
CLP gradually decreases from southeast to northwest (Fig. 1). For
instance, remote sensing data®” indicate that vegetation coverage
decreases from 50-60% at Mangshan to 20-30% at Xifeng in
1999. Modern TOC content also decreases toward the northwest
CLP>1. However, past vegetation coverage reconstruction remains
difficult. Pollen records suggest that during the LGM, temperate
grassland, xerophytic shrubland and desert dominated northern
China, including the CLP (Supplementary Fig. 12). Several sec-
tions on the CLP17 reveal the presence of desert/steppe vegetation
on the plateau during the LGM, with more abundant Poaceae at
the southwest. However, as pollen records largely represent large-
scale regional vegetation changes, not at a particular locality, we
thus here use TOC content as an indicator of vegetation cover at
those study sites, previously proposed to reflect vegetation history
and biomass variations on the CLP>2.

TOC contents at Xifeng, Luochuan, Weinan, and Mangshan
over the past 60 kyr show generally synchronous changes with the
MS, as well as pollen-inferred vegetation changes in northern
China and global climate but clearly decouple from the onsite
LST changes (Fig. 4, Supplementary Fig. 12). That is, the TOC-
inferred vegetation cover gradually decreased and reached the
lowest value during the LGM and then increased gradually in
parallel with the monsoon intensity indicators such as MS/MGS
(Fig. 4, Supplementary Fig. 12). The TOC-inferred vegetation
variations on the CLP also indicate a decrease in vegetation
coverage from southeast to northwest, in parallel with the
reduction of EAM influence. As such, TOC contents at Luochuan
and Xifeng sections remained <0.3% throughout the last glacial
period until the early Holocene, while being higher toward the
southeastern CLP (Fig. 4). Previous published §'3C-based pre-
cipitation reconstructions on the CLP are in high level of con-
gruence with variations of TOC contents®3, providing additional
support for the EAM-controlled vegetation gradient on the CLP.
It can thus be inferred that, during the past glacial period, par-
ticularly LGM, desert/steppe vegetation dominated the center
CLP, such as Xifeng and Luochuan, whereas substantial vegeta-
tion cover still existed at Mangshan, the southeast CLP. The
spatial trajectory of vegetation coverage change is also consistent
with the pattern of early warming times recorded in our recon-
structed LSTs (Fig. 4).
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These distinctive features captured in our LST reconstructions
(Figs. 3 and 4) can be explained by a combination of better
understanding of the nature of the brGDGT proxy and con-
sidering the vegetation feedback on the CLP under the EAM
influence, offering an opportunity to tease out the complicity of
continental temperature reconstructions in Asian semi-humid
and semi-arid regions. Because of the nature of the brGDGT
proxy mentioned above, the influence of local vegetation varia-
tions on LSTs during bacterial growing seasons may be more
pronounced on the relatively dry CLP, causing a large deviation
from air temperatures. These factors become even more apparent
when we closely examine our LST records in the context of
overall features on the CLP.

Previous studies on loess—paleosol sections have demonstrated
the importance of solar insolation on temperature variations on
the south CLP, in addition to other potential drivers (e.g.,
atmospheric CO, and Southern Hemisphere cooling)!2-3%, How-
ever, the obvious mismatch observed in our LST records indicates
the existence of other factor(s) at working in modulating LST's on
the CLP. These five loess—paleosol sections are quite close geo-
graphically (~600 km between Mangshan and Xifeng) and have
minor latitudinal differences, only ~1.5° from the southernmost
Lantian to the northernmost Luochuan. Therefore, it is unlikely
that the time difference in temperature rise was due to local
insolation affected by orbital parameters or variations in green-
house gas concentrations. The fact that the spatial distribution of
these sections and the advancement of warming times correspond
well with the reduction of EAM influence suggests a connection
between these LST changes and a powerful covariant factor that is
controlled by the EAM on the CLP.

We suggest that the EAM-controlled vegetation variations on
the CLP have exerted an important influence on LST variations,
and have thus tested this hypothesis in both spatial and temporal
perspectives. Vegetation feedback on climate has been previously
noticed>»”>. Vegetation’s influence on air temperatures is
believed to be relatively weak (probably <2 °C), although mod-
eling experiments have demonstrated that vegetation change is an
important mechanism contributing to climate configurations
during the mid-Holocene and the last interglacial period®. Such
vegetation feedbacks can be intensified in soil layers in semi-
humid and semi-arid regions, causing larger and amplified LST
variations registered in brGDGT proxies, primarily due to heat
transfer and influx balanced by the interaction between soil and
vegetation®»°%, The critical role that local vegetation variations
have played in altering LSTs has also been illustrated in the fol-
lowing cases. A 12-month document recording daily soil tem-
peratures from forest, woodland, and grassland sites in the Meru
National Park in Kenya has well demonstrated an obvious
influence of vegetation types on soil surface temperatures®.
While air temperatures remain similar in the park, open areas
have daily high surface ground temperatures up to 25 °C higher
than those at the nearby well-shaded areas, due to higher light
intensity and lower soil moisture without woody canopy cover-
age>. The measured in situ surface soil temperatures obtained by
temperature loggers placed at 11 soil study sites (Fig. 2), as well as
the 4 selected meteorological stations representing different
vegetation zones in China (Supplementary Fig. 3), also show that
the difference between LSTs and air temperatures increases with
reducing vegetation coverage, especially during soil bacterial
growing seasons.

As the way solar radiation is absorbed in soils varies, different
underlying surfaces may affect the distribution of energy between
the atmosphere and surface soil®’. Vegetation changes can
directly or indirectly influence spatial and temporal variations of
soil temperatures in a number of ways through physiological
activities underground and changing heat fluxes on and above

ground through changing shading (measured by means such as
leaf area index, projected leaf area per unit of ground area),
ground litter stores, and soil and air moisture®®. Generally, two
opposing vegetation feedback effects may occur on heat fluxes:
warming through increased energy absorption (i.e., relatively low
albedo) and cooling through increased evaporation®®. The net
impact of vegetation feedback (warming or cooling) that can be
registered in the brGDGT-based proxy depends on which influ-
ence is predominant. Normally, loess stages developed during the
cold-dry glacial periods with relatively low vegetation coverage.
Cold air temperatures may have prevailed on the whole CLP as
suggested by pollen records!®!7>%, During these periods, how-
ever, the poor vegetation and low soil moisture facilitate more
efficient heat absorption to warm up soil layers. This may explain
why our brGDGT-derived LSTs are insensitive to the extremely
cold air temperatures during the LGM, when the minimal vege-
tation cover resulted in a maximal difference between air tem-
peratures and LSTs. All of our observed early LST warmings
occurred within loess stages at regions with low TOC contents
and soil 8!3C-based precipitation®3, corresponding to poor
vegetation coverage toward the northwestern CLP. The longer
warming duration and lower rates of temperature transitioning
from glacials into interglacials recorded in our LST reconstruc-
tions at the center CLP appear to reflect a different land surface
energy balance modulated by a significant vegetation feedback,
resulting in the insensitivity of LST to air temperature changes.
The large deviations (mean 6.0 °C) between modern land surface
and air temperatures observed in regions with little vegetation
cover (Supplementary Fig. 3), similar to the temperature varia-
tions between glacials and interglacials (4-10 °C) (Fig. 3), further
support that, in semi-humid and semi-arid regions, the brGDGT-
based LSTs could have increased to a higher level, while air
temperatures remained low during glacial periods, corresponding
to the global signal.

The analysis of our LST records spanning the past 800 kyr in
loess—paleosol sequences at the center CLP leads us to conclude
that surface vegetation variations may have played a substantial
role in regulating near-surface land temperatures. The complicity
of interpreting terrestrial temperature records is manifested at our
CLP case, while not fundamentally challenging the orbital
(“Milankovitch”) theory of the Ice Ages. Well-constrained
regional LST signals, such as the ones from our brGDGT-based
reconstructions, can enrich our understanding of seemingly
nonsynchronous climatic variations on land due to surface
dynamics. This long neglected mechanism of terrestrial paleo-
temperature changes opens new windows for studies of terrestrial
climate change, as well as improving projections of terrestrial
climate. Our results confirm that LST changes in semi-humid and
semi-arid regions with little vegetation cover are more sensitive to
global warming and also reinforce one of the obvious, but less
appreciated, beliefs that improving vegetation coverage on the
CLP would help mitigate ecological impacts under the projected
warming trend by reducing near-surface temperatures.

Methods

Materials. The Luochuan section (35° 47’ N, 109° 26’ E) lies at the center of the
CLP (Fig. 1), with a current mean annual temperature (MAT) of 9.6 °C and a mean
annual precipitation (MAP) of 592 mm (based on China Meteorological Admin-
istration climate records during 1981-2010, http://www.cma.gov.cn). The total
thickness of the Luochuan loess section is 138 m. We collected samples from the
upper 60 m, including 7 consecutive loess layers (L;-L;) and paleosol layers (So—S;)
spanning the past 800 kyr. A total of 270 samples were collected and analyzed from
the Luochuan section at 25 cm intervals, giving an average sampling resolution
of 3kyr.

Another loess—paleosol sequence from the Xifeng section (35° 42’ N, 107° 38’ E),
spanning the past 600 kyr, was also sampled and analyzed. The Xifeng section lies
also at the center CLP, ~250 km away from the Luochuan section, with its current
MAT and MAP of 9.2 °C and 480 mm, respectively. Samples were taken from two
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sites at Xifeng: the 16 m eastern site covers the Sy (Holocene) and S,, whereas the
nearby 40 m western site (3 km away) extends the sequence continuously down to
S (Marine Isotope Stage 15). A total of 363 samples with an approximate sampling
resolution of 0.4 kyr were taken from the eastern site, while a total of 145 samples
with a resolution of 3.3 kyr were taken from the western site.

Chronology. The chronology of this study is based on the generally accepted
correlation scheme of loess—paleosol sequences with marine benthic §'80 records
(Supplementary Fig. 4), with loess (L,-L;) accumulated during glacial periods and
paleosols (So-S;) formed during interglacial periods. Weighted interpolation is
employed following the established grain size-based age model®.

T,=T + (Zm: “i5i> (T, - T)) (ZH: “i5i>

i=1

where T and T, are age control points, respectively; a; is the accumulation rate at
level i, which is assumed to be proportional to MGS; n is the total sampling level
between T and T,; and m is the sampling level at T and T5. The age control points
over the past 800 kyr were transferred from MIS boundaries? by correlating them
with interglacial palacosol boundaries®®®!. Between control points, interpolation
weighted by grain size was used to derive the chronology (Supplementary Fig. 4).

An alternative chronology for the Xifeng and Luochuan sections over the past
60/130 kyr, where high-resolution OSL ages are available®®%, is constructed in
order to assess chronological uncertainty. We used the BACON software®? to
derive the OSL-based chronology. Then the OSL chronology was mapped to our
depth scale by comparison of loess—paleosol stratigraphy and MGS variations
(Supplementary Fig. 5). Similarly, the correlation-based and OSL-derived
chronologies were constructed for the Weinan and Jingyuan sections, where high-
resolution OSL ages are also available?>33. The age differences between the two
chronologies for the four sections are shown together in Supplementary Fig. 6.

Given the established chronological framework on the CLP®? and our robust
age model that is verified by independently dated records (Supplementary Fig. 6),
we view that our observed early rise of LSTs is highly unlikely due to chronology
uncertainty. Although different timescales are available for the Quaternary loess of
China®364, these chronologies are generally consistent, at least on
glacial-interglacial timescales, over the past 800 kyr®. Major sources of age
uncertainty in our age model can be from the determination of age control points
and the interpolation methods, since a transition period exists between high and
low MGS values and the stratigraphic boundary defined by the MGS signal may be
time-transgressive, depending upon the rates of weathering and dust deposition at
each section®. However, comparison between the tie points and mid-points of the
intervals shows that differences between them are 1.58 + 1.84 kyr (n = 1083) for the
Luochuan section®!, whereas comparisons between simple linear and weighted
interpolations are 1.22 + 1.11 kyr (n = 1083) for the Luochuan section?2, Therefore,
although this correlation approach probably bears some uncertainties of <2 kyr,
such uncertainties will not affect our main conclusion based on at a much larger
period (i.e., >10-kyr difference).

MS, MGS, and TOC analysis. MS was measured using a MS, Bartington magnetic
susceptibility meter at the Institute of Earth Environment, Chinese Academy of
Sciences. For TOC analysis, the carbonate fraction of homogenized materials was
removed using 2 mol/l HCI, then rinsed thoroughly four times in deionized water
and dried. For MGS analysis, all samples were pretreated to remove organic matter
and calcium carbonate using 30% hydrogen peroxide (H,0O,) and 6 N hydrochloric
acid (HCl), respectively®’, and then dispersed by ultrasonification with 10 ml 10%
(NaPOQs)s solution??. Grain size distribution was carried out on a Malvern 2000
laser instrument with an analytical error of within 2% at the Institute of Earth
Environment, Chinese Academy of Sciences. TOC was measured on a Vario EL III
elemental analyzer (Hanau, Germany), with an error <0.2%9%8.

GDGT analysis. For GDGT (for structures, refer to Supplementary Fig. 1) analysis,
homogenized materials (~25 g) were extracted with dichloromethane (DCM):
methanol (9:1) using an accelerated solvent extractor (ASE 350) at 100 °C and
1500 psi. This process was conducted in three cycles with 5 min of heating followed
by 5min of static extraction. The extracts were dried under a gentle stream of N,
and isolated with a silica gel column with 25 ml of DCM:ethyl acetate (3:7, V/V).
The extracts were dried under N,, re-dissolved in hexane:isopropanol (99:1, V/V),
and filtered over a 0.45-um polytetrafluoroethylene filter before analysis.

The branched GDGTs were analyzed using a Shimadzu liquid chromatography
triple quadruple mass spectrometry system (LC-MS 8030) with an autosampler and
Labsolutions manager software. Detection was achieved in an atmospheric pressure
chemical ionization chamber with selected ion monitoring at m/z 1050, 1048, 1046,
1036, 1034, 1032, 1022, 1020, and 1018. The brGDGTs were quantified from
integrated peak areas of the [M + H]T ions and compared with the C,4 internal
standard. Source conditions were listed below: interface voltage 4500 V, interface
temperature 350 °C, drying gas (N,) flow 5 L/min, Neb gas flow 2.5 L/min, and heat
block temperature 250 °C. The injection volume was 50 uL. Separation of brGDGTs
was achieved with two coupled Inertsil silica columns (250 mm x 4.6 mm, 3 pm).
GDGTSs were separated isocratically for 85 min with 95% n-hexane and 5%

isopropanol, at a flow rate of 0.6 mL/min. After each analysis, the column was
cleaned by flushing using 10% n-hexane/90% isopropanol for 20 min.

To derive land temperature from brGDGT distributions in the loess, MAT,,,
were calculated over the past 130 kyrs using the following equations according to
the most recent proxy calibration*?:

MAT,,, = 7.17 4+ 17.1x [Ta] 4 25.9 x [Ib] + 34.4 x [I]
—28.6 x [Ila](n = 222,7* = 0.68)

where the fractional abundance of Ia, Ib, Ic, and Ila was relative to the sum of all
brGDGTs. Owing to the very low concentration of brGDGTs in some samples,
MAT were calculated using the three most abundant and omnipresent brGDGT's
Ia, IIa, and Illa, in the form of the Multiple Linear Regression Simple index
(MAT,,,)*2 over the past 130-800 kyrs:

MAT, = 5.58 4+ 17.91 x [la] — 18.77 x [IIa]
(n=231,r> = 0.62)

where the fractional abundance of Ia and ITa was relative to the sum of Ia, IIa, and
IIIa. Over the past 130 kyrs, the two calibrations give very similar results
(Supplementary Fig. 11).

The average analytical reproducibility of the MAT,y,,s based on duplicate
injections of a selected set of loess—paleosol samples is ca. 0.5 °C. A laboratory
internal standard (lacustrine sediment) was also injected after every 30 samples in
order to check the repeatability of the sample test and the average analytical
reproducibility of the MAT,, is <0.3 °C.

To further verify the reliability of our method, we recalculated paleotemperature
using our current method from the Lantian loess—paleosol sequence over the past
60 kyrs with the one that was reported previously in literature!>!8 and found that
the structure of the two curves is in good agreement, demonstrating the
reproducibility of our analytical method and the relationship between brGDGT
distribution and temperature reconstruction.

It should also be noted that there exist several proxies and calibrations for the
paleotemperature reconstruction using brGDGT distributions. Although absolute
values of reconstructed temperatures may vary, the structures of paleotemperature
curves reconstructed by different proxies and calibrations are generally similar for
the same section, especially for the timing of deglacial warmings'>!83%. Therefore,
such uncertainties will not affect our major findings.

Direct measurements of in situ LSTs. To better understand possible controlling
factors, we measured in situ LSTs in one whole year at 11 sites along a roughly
south-north transact in China, covering various latitudinal, topographical, vege-
tation, and climatic variables. The geographic coordinates of these locations are as
follows: Haikou (19° 56’ 40” N, 110° 12’ 10” E), Guilin (109° 58’ 14” E, 24° 59’ 05”
N), Taoyuan (28° 49’ 25” N, 111° 30’ 08“E), Manchuanguan (33° 09’ 39“N, 110° 09’
09” E), Yijun (35° 23’ 20” N, 109° 07’ 58” E), Luochuan (35° 42’ 42” N, 109° 25’ 02”
E), Yulin (38° 33’ 5" N, 109° 39’ 28” E), Dengkou (40° 09’ 14” N, 106° 54’ 4” E),
Wuyuan (41° 18 35” N, 108° 25’ 30” E), Baiyunebo (41° 24’ 35” N, 109° 57" 47” E),
and Aershan (41° 31’ 317 N, 119° 25’ 24” E) (See Supplementary Fig. 2 for the
locations). Temperature loggers (Thermochron iButton DS1922L-F5#) were
deployed at ca. 5 cm soil depth for these sites to record LSTs at time intervals of
every 2 h. After 1 year of burial, the temperature loggers were retrieved and the
measured LST was exported and analyzed. The defined temperature in bacterial
growth seasons was averaged over March to November.

Data availability
All relevant data that support the findings of this research are available from the
corresponding author on request.
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