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Abstract

Background

Despite the discovery of familial cases with mutations in Cu/Zn-superoxide dismutase

(SOD1), Guanine nucleotide exchange C9orf72, TAR DNA-binding protein 43 (TARDBP)

and RNA-binding protein FUS as well as a number of other genes linked to Amyotrophic Lat-

eral Sclerosis (ALS), the etiology and molecular pathogenesis of this devastating disease is

still not understood. As proteins do not act alone, conducting an analysis of ALS at the sys-

tem level may provide new insights into the molecular biology of ALS and put it into relation-

ship to other neurological diseases.

Methods

A set of ALS-associated genes/proteins were collected from publicly available databases

and text mining of scientific literature. We used these as seed proteins to build protein-pro-

tein interaction (PPI) networks serving as a scaffold for further analyses. From the collection

of networks, a set of core modules enriched in seed proteins were identified. The molecular

biology of the core modules was investigated, as were their associations to other diseases.

To assess the core modules’ ability to describe unknown or less well-studied ALS biology,

they were queried for proteins more recently associated to ALS and not involved in the pri-

mary analysis.

Results

We describe a set of 26 ALS core modules enriched in ALS-associated proteins. We show

that these ALS core modules not only capture most of the current knowledge about ALS, but

they also allow us to suggest biological interdependencies. In addition, new associations of

ALS networks with other neurodegenerative diseases, e.g. Alzheimer’s, Huntington’s and

Parkinson’s disease were found. A follow-up analysis of 140 ALS-associated proteins identi-

fied since 2014 reveals a significant overrepresentation of new ALS proteins in these 26 dis-

ease modules.
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Conclusions

Using protein-protein interaction networks offers a relevant approach for broadening the

understanding of the biological context of known ALS-associated genes. Using a bottom-up

approach for the analysis of protein-protein interaction networks is a useful method to avoid

bias caused by over-connected proteins. Our ALS-enriched modules cover most known bio-

logical functions associated with ALS. The presence of recently identified ALS-associated

proteins in the core modules highlights the potential for using these as a scaffold for identifi-

cation of novel ALS disease mechanisms.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease clinically driven by deterio-

ration of motor functions and affects about 1–2 individuals per 100,000 per year. It is a rapidly

progressing disease with a life expectancy after diagnosis of 3–5 years. ALS is classified into

two categories, which are clinically very similar. The most common form of ALS, with over

90% of the cases, is the sporadic form (SALS), where no mutations can be identified. The less

frequent (10%) familial forms (FALS) are often autosomal dominant, caused by a number of

mutations in a heterogeneous set of genes [1, 2].

The main mutations currently described are in SOD1 (20% of FALS), C9orf72 (30–40% of

FALS), TARDBP and FUS (together 5% of FALS) [3]. There are also other genes that have

been associated with ALS, but they represent a small proportion of cases [4]. However, there is

an increasing rate of new discoveries of ALS-associated genes, for which the supporting biol-

ogy is not well established. During the last 5 years, more than 7 new mutations have been iden-

tified which are associated with one or more pathological mechanisms associated with ALS [5]

(MATR3, CHCHD10, TBK1, TUBA4A, NEK1, C21orf2, CCNF). These pathological mecha-

nisms include, among others, dysfunction in global protein homoeostasis resulting from

abnormal protein aggregation or a defect in the protein clearance pathway, mitochondrial dys-

function, altered RNA metabolism, impaired cytoskeletal integrity, altered axonal transport

dynamics, and DNA damage accumulation due to defective DNA repair. However, despite

active research, the pathogenesis and etiology of ALS remain largely unknown, and while an

increasing number of genetic factors are being identified it remains unclear how these cellular

events lead to the wide range of proposed mechanisms that underlie this complex and devas-

tating neurodegenerative disease.

The clinical manifestation of ALS is not the consequence of a single mutated protein, but

rather represents a complex imbalance of a dynamic network of proteins which links intra-cel-

lular processes to inter-cellular processes. Network biology offers an approach to explore the

molecular complexity of a disease and define disease modules and relevant pathways. With

this approach ALS-associated mutations can be investigated in the relevant biological context

of the molecular pathways they are involved in, thereby linking them to potentially new genes

that may become future drug targets.

The concept of spectrum disorders has been introduced to link phenomenologically distinct

diseases based on a related underlying etiology or genetic link. The most accepted spectrum

disorders are in the autism spectrum, where this concept is well accepted. Also, other mental

diseases, such Lewy body dementias and Parkinson’s disease are thought to be part of a spec-

trum rather than separate pathologies [6]. Similarly, ALS and frontotemporal dementia [7] or

other motor neuron diseases have been discussed to be the extreme ends of a spectrum, based
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on imaging similarities and genetic and neuropathological findings [8]. Based on the ALS core

modules we are analyzing other neurological disorders for molecular overlaps and are relating

them to the molecular biology of ALS.

ALS in the network biology perspective

Genes and proteins do not work in isolation, and insight about disease biology of complex dis-

eases can be gained from investigating the interaction partners of known disease associated

genes/proteins [9]. This could for example be by investigating which pathways appears to be

perturbed (either by containing known disease associated proteins or by analysis of experi-

mental data such as GWAS and gene expression studies). Pathway data from sources such as

KEGG [10], WikiPathways [11] and Reactome [12] is generally of high quality, and is indeed a

very valuable resource for biological interpretation of data. However, it is important to realize

that pathways represent what could be considered “text-book knowledge” or “established

knowledge”–a curated and aggregated summary of what is considered to be the consensus in

the scientific literature. Consequently, truly novel interactions of ALS-associated genes/pro-

teins are not expected to be found relying solely on pathway information.

Protein-protein interaction (PPI) networks can be used as an alternative avenue for analy-

sis. PPI networks have a higher coverage of human genes/proteins compared to pathways (up

to 85% coverage of proteome [13, 14]) and are especially strong in their ability to cover the

areas in-between the well-known pathways because they are based on high-throughput experi-

mental screens, rather than curation of literature knowledge. Biological modules found from

network analysis of PPI data could be considered "proto-pathways" that may mature into

established pathways after experimental follow-up.

When working with PPI data, it is important to be aware of experimental artifacts that may

carry over into the protein networks, and which therefore may impact the interpretation of

results. We explore this in detail in the supplement, as there are many factors to consider. Here

we would like to emphasize two areas of concern: 1) Due to the high false-positive rate associ-

ated with PPI data, it is critically important to use a PPI resource where the experimental evi-

dence behind each interaction has been evaluated (and where a high-confidence subset can be

extracted) and 2) To appreciate that certain proteins have an inflated number of interactions

in PPI networks (even after the filtering of low-confidence interactions), either due to experi-

mental artefacts (see [15] for a review) or due to study bias. We here refer to these as over-con-

nected proteins. This situation can adversely affect results from network analysis if not

addressed properly. A protein that is highly connected due to these factors in the global inter-

actome, will have a very high likelihood of appearing in the network neighborhood around

any set of disease associated proteins, no matter if the study is investigating ALS, Heart disease,

Diabetes, Cancer or any other class of disease. It will also be very likely, that such an “over-con-

nected” protein will have a high number of interaction partners in the local network around

the disease proteins being studied, without it necessarily being of particular importance for the

disease per se. This is important, since in network analysis studies that are built around the

concept of the "centrality-lethality rule" [16] where the node degree (number of interaction

partners) is important, are likely to pick up these over-connected proteins, unless a node-

degree normalization scheme is used. UBC (Polyubiquitin-C) is a good example of such an

artificially over-connected protein (see Supplement for details: S3 File and S5 Table within),

and we notice that this very protein is singled out as being important for ALS in recent study

by Mao et al. [17], due to its high node degree in the local network around ALS associated pro-

teins. In that study UBC’s high node degree in the entire interactome was not taken into

account, and we speculate it to be a false positive.
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Here, we present an approach to network analysis of known ALS-associated genes/proteins

that handles the issues concerning over-connected proteins in the network in several ways.

First of all, the network modules are built using a bottom-up approach, where the first-order

networks around each individual ALS-associated protein are first extracted and then merged if

they overlap. By doing this, rather than having a first step, where we pull out a very large net-

work surrounding all ALS proteins, we avoid having to run a topological network clustering

algorithm (such as MCODE [18] or CLUSTERONE [19]) which are prone to emphasize fea-

tures in the network influenced by the over-connected proteins. As a second measure we have

built in a pruning step following the initial network extraction where proteins are removed if

their global degree (total number of interactions) is much larger than their local degree (num-

ber of interactions in the network being investigated), which again will down-weigh the influ-

ence of proteins that are highly and unspecifically connected in the global interactome. The

result is a set of 26 ALS core modules that capture most of the current knowledge about ALS

and provide new insight into the biology and etiology of this complex disease.

Methods

Our analysis strategy is shown in Fig 1 and is based on the concept of finding network modules

of moderate size significantly enriched in known ALS-associated proteins, and where other

proteins in the modules therefore are likely also involved in ALS-related processes. This also

allows for a detailed analysis of the biology represented in each module, and for generating a

module collection that can be used for further study.

Fig 1. Analysis workflow. Outline of the workflow followed in this study. Briefly, lists of genes associated to ALS were collected from 7 data sources, and

combined into an aggregated list, keeping note of how many sources supported each gene. Next, genes were mapped to their corresponding protein products,

and for each protein, a protein-protein interaction (PPI) network of 1st order interaction partners was found using the inBio Map PPI database. Networks with

a large overlap were merged, producing a final set of 282 “ALS modules”. Finally, the strength of the association to ALS for each module was investigated via

over-representation analysis for enrichment of ALS associated proteins. From the over-representation analysis we defined 26 modules to be “Core modules”

(subdivided into two tiers of significance).

https://doi.org/10.1371/journal.pone.0268159.g001
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Overview of methods

In order to make the following sections easier to read, we first provide a brief non-technical

overview of the methods:

Step 1: Compiling the list of known ALS-associated genes.

We compile a set of genes across multiple data sets and databases used as seed genes for PPI

network building. The gene list is by purpose as inclusive and comprehensive as possible since

a filtering criterion is introduced upon network generation. The gene list is generated by

searching through databases of ALS-associated genes and by text mining of the scientific litera-

ture. Furthermore, we collect a set of genes that were added to the databases since the original

data extraction. This gene set is then used as a benchmark set to evaluate if the ALS networks

have predictive power to find (new) ALS associated genes.

Step 2: Generating ALS-associated PPI networks

This is the single most important step of the analysis. As reviewed extensively in both the

main text and in the supplement, there are a number of potential artefacts of PPI data that

needs to be addressed in the network analysis. The workflow used here (see Fig 1) is built to

address these challenges (see Methods and Discussion). We use the entire gene list identified

in step 1 above as seed proteins to build the PPI networks from the bottom-up. Afterwards,

highly overlapping networks are merged to form the ALS modules. This workflow ensures

that, even if it is impossible to completely eliminate promiscuous interactions, they will not be

the drivers of the identification of the ALS modules.

Step 3: Defining ALS core modules

At this point, the ALS modules will each contain at least one seed protein, and many will

contain multiple seed proteins. We consider the modules with multiple seed proteins (which

we know have some level of support for being ALS associated), as the most interesting to inves-

tigate further. The statistical significance of the number of seed proteins in each module is

assessed using Fisher’s Exact test, and we define two levels of high confidence modules (tier 1

and tier 2). By using this approach, we limit the impact of noise in the gene list from step 1, as

false positives on the list will represent a random selection of genes, which are unlikely to be

found in the same network, and therefore will not become significant in the statistical test.

Step 4: Biological annotation of the ALS network collection

The purpose of this step is to assess the biological function of each ALS module. Here, we

utilize a standard Gene Ontology (GO) overrepresentation analysis as the first step, followed

up by visualization of biological processes found to be significantly associated with the mod-

ules. Furthermore, a second overrepresentation analysis investigating disease associated pro-

teins in the modules is conducted and visualized. The data set of disease associated proteins is

generated using text mining (see step 1). Finally, the ALS core modules are manually inspected

by ALS experts in our team for further interpretation, and selected modules are presented in

details, and discussed in details in the results section.

Step 5: Visualization of networks

All networks and associated data are visualized using the open source program “Cytoscape”.

Notice, that we provide data bundles of pre-formatted / visualized networks in the form of

Cytoscape “session files” for download as part of the Supplementary Material. That allows for

visual inspection of the entire collection of networks without requiring in-depth knowledge of

the Cytoscape program.

Compiling the list of known ALS-associated genes

The dataset of known ALS-associated genes, was generated by combining information from

the sources listed below. The lists were selected in order to be as comprehensive and inclusive
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as possible in order to capture all reported ALS genes, and to allow for assessing the combined

evidence for each gene (genes supported by a few data sources would be considered less cer-

tain, compared to genes supported by many). Entries were mapped to reviewed UniProt [20]

entries in order to facilitate analysis in the context of PPI networks. Entries that could not be

mapped (e.g. intergenic SNPs) were omitted from the analysis.

Amyotrophic Lateral Sclerosis online Database (ALSoD). ALSoD [21] is a repository

combining information genotype, phenotype and geographical information.

Data was downloaded from ALSoD on May 27th 2014. The dataset consisted of 114 genes,

out of which 111 could be mapped to 111 reviewed UniProt proteins.

ALSGene. ALSGene is a database of genes associated with ALS through GWAS. The

ALSGene “Top Results” dataset [22] was downloaded on May 27th 2014. The dataset consists

of 22 genetic polymorphisms, out of which 17 were mapped to genes. All 17 genes could be

mapped to reviewed UniProt proteins.

Genotator. Genotator [23] combines data from 11 external sources to provide informa-

tion on human diseases.

All data associated with “Amyotrophic Lateral Sclerosis” was downloaded from Genotator

on April 30th 2014. The dataset consists of 294 loci, out of which 289 genes could be mapped to

289 reviewed UniProt proteins.

Genetic Association Database (GAD). GAD contains genetic associations from complex

diseases.

The entire dataset from GAD [24, 25] was downloaded on May 2nd 2014. Afterwards all

genes associated with “Amyotrophic Lateral Sclerosis” (and subcategories) were extracted

yielding a dataset consisting of 275 loci, out of which 226 could be mapped to 228 reviewed

UniProt proteins.

HuGE Navigator, GWAS. The full gene level GWAS [26] dataset was downloaded from

the HuGE Navigator website on May 1st 2014. Each line containing the text string “Amyotro-

phic lateral sclerosis” was extracted yielding a dataset of 76 records which after redundancy

reduction and removal of intergenic regions gave rise to a list of 46 genes, out of which 43

could be mapped to reviewed UniProt proteins.

Furthermore, a list of genes in the 200kb regions surrounding ALS-associated SNPs was

downloaded on May 6th 2014. Following redundancy reduction 101 genes were indicated, out

of which 97 could be mapped to reviewed UniProt proteins.

The 200kb region list was combined with the gene level list to yield a final list of 118

proteins.

HuGE Navigator, Gene prospector. A dataset of all genes associated to “Amyotrophic

Lateral Sclerosis” was downloaded from the HuGE Navigator website on May 1st 2014 via the

“Gene Prospector” search interface [27]. The dataset consisted of 194 genes, out of which 191

could be mapped to reviewed UniProt proteins. In total 224 UniProt proteins were indicated

due to mapping of HLA-B to multiple allelic variants.

Text mining. Finally, we used the InBio Know [28] text-mining solution from Intomics

(see the text mining section below for details) to build a list of genes significantly associated

with ALS based on the May 2014 set of PubMed abstracts. The list consisted of 164 proteins

(already based on UniProt IDs thus no further mapping was needed).

Combined ALS-associated list. All lists of ALS gene/protein associations were aggregated

to yield a total list of 656 proteins–see S1 Table.

ALS-associated genes added since 2014 data survey. An updated dataset of ALS associ-

ated genes were downloaded from ALSoD and HuGE Navigator Genopedia on April 27, 2020.

Genes were mapped to UniProt IDs. A new round of text mining was conducted to identify

new proteins associated with ALS in the scientific literature.
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A total of 10 and 91 new proteins (i.e. not present in the ALS-databases at the time of the

original data survey) were found in ALSoD and HuGE Navigator Genopedia, respectively,

while 61 new proteins were identified through text mining. Due to overlap between gene sets

from the three resources, a total set of 140 unique proteins were found to be associated with

ALS since May 2014 (S2 Table).

Proteins present in ALS core modules were tested for overrepresentation of new ALS-asso-

ciated proteins using a Fisher’s exact test.

For the remaining databases no new datasets were obtained. The ALSGene database has

not been updated since 2011 and Genotator and GAD databases have been discontinued.

Generating ALS-associated PPI networks

The PPI resource inBio Map/InWeb_IM [13] was chosen as the source of PPIs for building a

comprehensive collection of ALS related networks. Briefly, inBio Map is a large, robust, high

confidence database of inferred human physical PPIs gathered from multiple databases of

experimental evidence. Human PPIs were obtained from the February 2014 version of inBio

Map. Low confidence interactions were filtered out using a confidence score cutoff of 0.1,

resulting in 130,746 high confidence interactions between 11,900 proteins.

The ALS network collection was built by considering all first order networks around the

ALS-associated proteins (the aggregated inclusive list, across all datasets, we consider these the

“seed proteins”), then pruning the networks for over-connected (proteins with a high number

of interactions outside the current network), and finally merging all networks with a high

degree of overlap. This yielded a collection of 282 networks with the size distribution shown in

S1 Fig. This collection of networks is also available as a Cytoscape [29] data file as part of the

supplementary materials.

Defining ALS core modules

From the full set of 282 networks, we define the sub-set of networks significantly enriched in

ALS-associated genes/proteins as the set of ALS core modules. Each of the modules in the

core set, is more likely to be close to known ALS biology, and has been investigated further

with regards to both molecular biology as well as overlap with genes/proteins associated with

other diseases, that significantly share these core modules with ALS.

The set of five modules significant after Bonferroni correction are in the following termed

’Tier 1’, while the remaining modules significant only after the less strict Benjamini-Hochberg

correction are termed ’Tier 2’. Tier 1 and Tier 2 are collectively referred to as the ‘ALS core

modules’.

Biological annotation of the ALS network collection

We investigated the biology represented in each of the ALS-associated disease modules using

two lines of evidence: 1) overrepresentation of Gene Ontology [30, 31] ‘Biological processes’

terms and 2) overlap with other diseases.

In both cases of overrepresentation analysis, the gene/protein identifiers were extracted

from the individual ALS-associated modules and used as the study set in the analysis and the

entire human interactome as the background set. Fisher’s Exact test was used to test for over-

representation of GO terms/diseases among the network proteins. The significance threshold

was adjusted for multiple testing using Bonferroni correction.

After GO annotation 3 filtering steps were applied to select the most relevant GO terms rep-

resenting each disease module:
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1. GO term must be ‘minimal’. When a p-value for a GO term has been calculated, it is com-

pared to the p-values for all child GO terms. The p-value is then said to be "minimal" if it is

less than all the p-values for all the child GO terms (or if the GO term does not have any

children).

2. GO term overrepresentation must be significant after Bonferroni correction (pcorr < 0.05)

3. GO term must contain < 1000 genes

GO terms were manually curated by biological experts, to remove very generic GO terms

(e.g. GO:0022402, “cell cycle process” or GO:0000077 “DNA damage checkpoint”), or irrele-

vant GO terms based on a biological assessment, resulting in a total of 182 GO terms being

overrepresented in the top 26 modules. To reduce the redundancy inherently present in the

GO hierarchy (some GO terms have a high degree of overlap, or multiple GO terms can

describe the same biology), the 182 GO terms were then manually collected into GO biological

classes based on their labels. GO classes were furthermore collected into GO super-classes rep-

resenting broad biological classes or functions (S3 Table).

Visualization of networks

All visualizations of disease modules, including the visualization of protein-level metadata

(known ALS-associated genes/proteins, biological categories) were performed using Cytoscape

[29].

Text mining of diseases co-mentioned with ALS

The inBio Know text mining software suite [28] was used to find associations between 1) dis-

eases vs. genes and 2) diseases vs. diseases in PubMed abstracts. Manually curated synonyms

for all human genes/proteins as well as synonyms for all Disease Ontology [32, 33] diseases

were used.

The text mining software was used as follows:

1. For each item of interest (e.g. a human disease) all matches in PubMed for any of its curated

synonyms were recorded. Multiple hits in a single PubMed entry would be counted as one.

From this the background frequency in the entire pool of PubMed abstract was calculated.

2. For pairs of items of interest (e.g. a disease and a gene/protein), the number of abstracts co-

mentioning the terms was counted, and enrichment over background frequencies

(observed / expected) was calculated using Fisher’s Exact test.

3. With-in each sub-study (e.g. human disease vs. all human genes/proteins), the significance

threshold was adjusted for multiple testing using Bonferroni correction.

Disease vs. disease comparison. An initial round of text mining to find diseases co-men-

tioned with ALS in PubMed abstracts was conducted, and from this we extracted all diseases

with at least one co-mentioning with ALS. The significance of each disease/ALS-association

was calculated using a Fisher’s exact test. From the total set of diseases, the top 50 most signifi-

cantly overrepresented hits with respect to the association with ALS were selected as the pool

of diseases to investigate further.

Disease vs. genes/proteins comparison. Each of the top 50 diseases identified above,

were text-mined for co-mentioning with human genes/proteins in PubMed abstracts (S4

Table). A p-value threshold of 10−10 was used to call a significant association between a disease

and a gene/protein—notice that this is even more restrictive that the standard Bonferroni
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correction of testing a theoretical maximum of up to 20,500 genes/proteins per disease

(p<2.4x10-6). The 10−10 threshold corresponds to the high-confidence subset of disease/gene

associations in the inBio Know software suite.

Results

Overlap of ALS-associated genes in different data bases

A comprehensive analysis of 7 databases for canonical ALS-associated proteins, yielded 656 pro-

teins linked to ALS (Fig 2, S1 Table). There was a surprisingly low overlap between the ALS-

associated proteins obtained from the 7 sources we used to build the dataset (see Fig 2). Even

considering the diversity of the sources, this appears to indicate a level of uncertainty whether

these genes are truly associated with ALS. A set of only 29 proteins had a high level of agreement

in 5 out of 7 data sources (Table 1), indicating the most comprehensively studied subset of ALS

related genes. Among these genes are the known players of ALS pathology such as SOD1,

C9ORF72, TARDBP, as well as many less well-established genes, which are thought to consti-

tute additional risk factors for causation, modification or progression of ALS (for example

SQSTM1 and VCP [4]). Other putative ALS-associated genes are found only in one database or

in literature and their contribution to ALS pathogenesis needs to be studied further.

ALS-associated genes with network support

Without biological context, individual genes that are identified to be associated with ALS may

be useful for diagnosis but do not contribute to the understanding of the molecular pathophys-

iology and the subsequent search for prevention or treatment [34]. However, if these genes are

part of networks which are significantly enriched in ALS-associated proteins, it can help to

reinforce the evidence for more weakly supported proteins. To investigate this further, we eval-

uated a collection of 282 PPI network modules for overrepresentation of ALS-associated pro-

teins (see Methods for details). 26 ALS modules were significantly enriched for ALS-associated

Fig 2. Overlap between ALS resources. Overlap between proteins suggested to be ALS-associated. Panel A: Overlap between the 5 largest ALS databases. Panel

B: Overlap between the combined databases and the text mining-based list.

https://doi.org/10.1371/journal.pone.0268159.g002
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Table 1. ALS-associated genes/proteins supported by 5 or more resources.

Resource Protein information

Gene name ALSGene

(n = 17)

ALSoD

(n = 111)

GAD

(n = 224)

Genotator

(n = 289)

HuGE

GWAS

(n = 118)

HuGE

GeneProspector

(n = 224)

Text

Mining

(n = 164)

UniProt entry Protein name

C9ORF72 • • • • • • • CI072_HUMAN Protein C9orf72

DPP6 • • • • • • DPP6_HUMAN Dipeptidyl

aminopeptidase-like

protein 6

ITPR2 • • • • • • ITPR2_HUMAN Inositol

1,4,5-trisphosphate

receptor type 2

KIFAP3 • • • • • • KIFA3_HUMAN Kinesin-associated protein

3

SOD1 • • • • • • SODC_HUMAN Superoxide dismutase

[Cu-Zn]

UNC13A • • • • • • UN13A_HUMAN Protein unc-13 homolog A

ALS2 • • • • • ALS2_HUMAN Alsin

ALS6, FUS • • • • • FUS_HUMAN RNA-binding protein FUS

ANG • • • • • ANGI_HUMAN Angiogenin

CHMP2B • • • • • CHM2B_HUMAN Charged multivesicular

body protein 2b

CST3 • • • • • CYTC_HUMAN Cystatin-C

DCTN1 • • • • • DCTN1_HUMAN Dynactin subunit 1

DYNC1H1 • • • • • DYHC1_HUMAN Cytoplasmic dynein 1

heavy chain 1

ELP3 • • • • • ELP3_HUMAN Elongator complex protein

3

FGGY • • • • • FGGY_HUMAN FGGY carbohydrate

kinase domain-containing

protein

HFE • • • • • HFE_HUMAN Hereditary

hemochromatosis protein

LIPC • • • • • LIPC_HUMAN Hepatic triacylglycerol

lipase

PON1 • • • • • PON1_HUMAN Serum paraoxonase/

arylesterase 1

PON2 • • • • • PON2_HUMAN Serum paraoxonase/

arylesterase 2

PON3 • • • • • PON3_HUMAN Serum paraoxonase/

lactonase 3

PRPH • • • • • PERI_HUMAN Peripherin

SMN2 • • • • • SMN_HUMAN Survival motor neuron

protein

SUSD1 • • • • • SUSD1_HUMAN Sushi domain-containing

protein 1

TARDBP • • • • • TADBP_HUMAN TAR DNA-binding

protein 43

VAPB • • • • • VAPB_HUMAN Vesicle-associated

membrane protein-

associated protein B/C

VCP • • • • • TERA_HUMAN Transitional endoplasmic

reticulum ATPase

VEGF,

VEGFA

• • • • • VEGFA_HUMAN Vascular endothelial

growth factor A

(Continued)
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proteins after multiple testing correction using the Benjamini-Hochberg procedure (q< 0.1).

Five of these were also significant after correcting for multiple testing using Bonferroni correc-

tion (p< 0.05/282). The set of five modules significant after Bonferroni correction are in the

following termed ’Tier 1’, while the remaining 21 modules are termed ’Tier 2’. Tier 1 and Tier

2 modules are collectively referred to as ‘ALS core modules’.

36 ALS-associated genes/proteins are supported by Tier 1 modules (Table 2). Nine of these

proteins were only mentioned in one source, often found only by text mining. The link to Tier

1 ALS core modules strengthens the likelihood that these genes are indeed ALS-relevant genes.

Further 108 genes/proteins have Tier 2 support for a total of 144 genes/proteins having Tier 1/

2 network support (see S1 Table for full list).

An effort to identify new ALS-associated proteins through a combination of text mining

and database searches revealed a set of 140 proteins not present in the initial data survey (S2

Table). 17 (12.1%) new proteins are found in one or more Tier1 + Tier2 disease modules,

which is a significant overlap (p = 0.03).

ALS network collection

The collection of all 282 ALS-associated PPI networks, offers the opportunity to investigate the

biology of networks closely associated with ALS related genes, as well as a framework for map-

ping experimental data (e.g. gene expression data) to the networks. The networks are available

for download as a Cytoscape session file as part of the supplementary materials. A separate

Cytoscape session is available for download containing only the ALS core modules, with Tier

1 vs. Tier 2 clearly marked in the overview. Furthermore, it contains all metadata and graphical

styles needed to generate the visualization of the disease modules shown in this publication,

thus allowing for further exploration of the ALS core modules.

ALS core modules in overview

Investigating the spectrum of molecular biology represented in the 26 ALS core modules (Fig

3), by evaluating the Gene Ontology categories overrepresented in them, leads to the following

observations: Apoptosis is represented in most (19) of the modules, as is protein degradation
(19). A large proportion (19) of the modules are enriched for genes/proteins involved in pro-
tein- modification (15) or -localization (11). Axon guidance, and immune response are repre-

sented in 12 and 13 core modules, respectively.

Some GO terms were only represented in Tier 2 core modules and not in Tier 1 modules.

These include GO terms are centered around muscle, nervous system, synapse and glutamate,

which are classically linked to ALS.

Table 1. (Continued)

Resource Protein information

Gene name ALSGene

(n = 17)

ALSoD

(n = 111)

GAD

(n = 224)

Genotator

(n = 289)

HuGE

GWAS

(n = 118)

HuGE

GeneProspector

(n = 224)

Text

Mining

(n = 164)

UniProt entry Protein name

VPS54 • • • • • VPS54_HUMAN Vacuolar protein sorting-

associated protein 54

ZFP64 • • • • • ZF64A_HUMAN Zinc finger protein 64

homolog, isoforms 1 and 2

ZFP64 • • • • • ZF64B_HUMAN Zinc finger protein 64

homolog, isoforms 3 and 4

29 proteins found in > = 1 data source. 8 out of the most frequent proteins were found in one or more of the 26 ALS core modules.

https://doi.org/10.1371/journal.pone.0268159.t001
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Table 2. ALS-associated proteins in Tier 1 modules.

Resource Protein information

Gene name ALSGene

(n = 17)

ALSoD

(n = 111)

GAD

(n = 224)

Genotator

(n = 289)

HuGE

GWAS

(n = 118)

HuGE

GeneProspector

(n = 224)

Text

Mining

(n = 164)

Overlap UniProt entry Protein name

SOD1 • • • • • • 6 SODC_HUMAN Superoxide

dismutase [Cu-Zn]

DCTN1 • • • • • 5 DCTN1_HUMAN Dynactin subunit 1

ALS6, FUS • • • • • 5 FUS_HUMAN RNA-binding protein

FUS

LIPC • • • • • 5 LIPC_HUMAN Hepatic

triacylglycerol lipase

TARDBP • • • • • 5 TADBP_HUMAN TAR DNA-binding

protein 43

VCP • • • • • 5 TERA_HUMAN Transitional

endoplasmic

reticulum ATPase

APOE • • • • 4 APOE_HUMAN Apolipoprotein E

ATXN2 • • • • 4 ATX2_HUMAN Ataxin-2

SQSTM1 • • • • 4 SQSTM_HUMAN Sequestosome-1

MAPT • • • • 4 TAU_HUMAN Microtubule-

associated protein tau

UBQLN2 • • • • 4 UBQL2_HUMAN Ubiquilin-2

APOA4 • • • 3 APOA4_HUMAN Apolipoprotein A-IV

LPA • • • 3 APOA_HUMAN Apolipoprotein(a)

APOB • • • 3 APOB_HUMAN Apolipoprotein B-

100

APOC3 • • • 3 APOC3_HUMAN Apolipoprotein C-III

CCS • • • 3 CCS_HUMAN Copper chaperone

for superoxide

dismutase

CETP • • • 3 CETP_HUMAN Cholesteryl ester

transfer protein

CNTF • • • 3 CNTF_HUMAN Ciliary neurotrophic

factor

LDLR • • • 3 LDLR_HUMAN Low-density

lipoprotein receptor

LPL • • • 3 LIPL_HUMAN Lipoprotein lipase

RNF19A • • • 3 RN19A_HUMAN E3 ubiquitin-protein

ligase RNF19A

HNRNPA1 • • • 3 ROA1_HUMAN Heterogeneous

nuclear

ribonucleoprotein A1

CHGB • • • 3 SCG1_HUMAN Secretogranin-1

UBQLN1 • • • 3 UBQL1_HUMAN Ubiquilin-1

ARHGEF28,

RGNEF

• • 2 ARG28_HUMAN Rho guanine

nucleotide exchange

factor 28

P4HB • • 2 PDIA1_HUMAN Protein disulfide-

isomerase

BCL2 • 1 BCL2_HUMAN Apoptosis regulator

Bcl-2

CASP3 • 1 CASP3_HUMAN Caspase-3

DERL1 • 1 DERL1_HUMAN Derlin-1

(Continued)
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With a focus on the five Tier 1 core modules this analysis showed that most core modules

are representing apoptosis and most often linking it to protein degradation or core module

specific additional GO terms, for example core module 93 exclusively contains lipoprotein.

Based on the 50 diseases most significantly co-mentioned with ALS in PubMed abstracts

(Table 3) an overrepresentation analysis was performed. Disease-associated genes were then

overlapped with the ALS core modules to identify connections to other diseases. A total of 37

diseases were overlapping with at least 1 ALS core module (Fig 4).

From the matrix of disease overrepresentation in ALS core modules some clear trends are

seen. First of all, the well-known ALS comorbidity Dementia is strongly evident from the

matrix: Dementia, broad term (13 modules), the clinically closely associated Frontotemporal
Dementia (6 modules, 3 of which Tier 1) and Lewy Body Dementia (3 modules). Among the

group of other nervous system diseases, the following conditions are also associated with the

ALS core modules: Alzheimer’s Disease (12 modules of which 3 are in Tier 1), Parkinson’s Dis-
ease (8 modules), Huntington’s Disease (5 modules) and Muscular Atrophy (4 modules, 3 of

which are in the Tier 1 collection). The remaining diseases have 2 or fewer modules associ-

ated–including Multiple Sclerosis with only 1 module (184), being significantly associated. The

only other non-degenerative CNS-diseases being prominently represented by mostly overlap-

ping ALS core modules are neuroblastoma (10 modules) and toxic encephalopathy, which is

likely due to the many modules described by apoptosis GO terms and containing a significant

enrichment of brain-associated proteins. It is interesting to note, that motor diseases (such as

spastic paraplegia, paraplegia, and Friedreich’s ataxia) are not represented by any of the ALS

core modules, while muscle diseases, such as atrophic muscular disease, muscular atrophy,

myotonic dystrophy type 1 and inclusion body myositis are significantly represented by at

least one ALS core module.

ALS-Tier 1 core modules

The Tier 1 core modules were then investigated for known ALS disease biology and proteins

associated with other neurodegenerative diseases (Figs 5–9).

Table 2. (Continued)

Resource Protein information

Gene name ALSGene

(n = 17)

ALSoD

(n = 111)

GAD

(n = 224)

Genotator

(n = 289)

HuGE

GWAS

(n = 118)

HuGE

GeneProspector

(n = 224)

Text

Mining

(n = 164)

Overlap UniProt entry Protein name

HDAC6 • 1 HDAC6_HUMAN Histone deacetylase 6

HECW1 • 1 HECW1_HUMAN E3 ubiquitin-protein

ligase HECW1

HS3ST3A1 • 1 HS3SA_HUMAN Heparan sulfate

glucosamine 3-O-

sulfotransferase 3A1

MYLIP • 1 MYLIP_HUMAN E3 ubiquitin-protein

ligase MYLIP

NEFM • 1 NFM_HUMAN Neurofilament

medium polypeptide

PARK7 • 1 PARK7_HUMAN Protein deglycase DJ-

1

SORT1 • 1 SORT_HUMAN Sortilin

36 ALS-associated proteins present in at least of the five Tier 1 networks. A full list of ALS-associated proteins found in > = 1 of the ALS core modules is found in S1

Table.

https://doi.org/10.1371/journal.pone.0268159.t002
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Module 83 –very ALS specific, contains SOD1, links oxidative stress and protein folding,

(Fig 5).

The identification of causative mutations in SOD1 gene was the first evidence of genetically

inherited forms of ALS [35]. SOD1, with its many mutations is therefore the best studied

Fig 3. Relevant Gene Ontology categories overrepresented in ALS core modules. Top row: Module IDs–sorted on significance of ALS overrepresentation

(most significant to the left). Left: Significantly overrepresented Gene Ontology categories were manually collected in GO classes. GO class significance and

enrichment score is calculated as the geometric mean of the p-values and mean of the enrichment scores, respectively, for all contained GO categories. Right:

GO super-classes is a top-level descriptor for the GO classes and categories.

https://doi.org/10.1371/journal.pone.0268159.g003
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Table 3. Top 50 diseases most commonly co-mentioned with ALS in PubMed abstracts. List of the 50 diseases most commonly co-mentioned with ALS in scientific lit-

erature. Diseases have manually been categorized into ‘Disease types’ guided by the tree structure in Disease Ontology [32, 33]. ID: Disease Ontology ID. Abbreviation:

Short name for disease used in Figs 5–9. Name: Disease name in Disease Ontology. Occurences: Number PubMed abstracts mentioning disease. Co-mentionings: Number

of PubMed abstracts where both disease and ALS are mentioned. Overrep. ratio: Overrepresentation ratio of co-mentionings. P-value: Significance of hypergeometric test

of the overlap between disease and ALS. Disease type: Manual classification of diseases.

ID Abbreviation Name Occurrences Co-

mentionings

Overrep.

ratio

P-value Disease type

DOID:11949 CJD Creutzfeldt-Jakob disease 4,508 61 14.6 1.59E-

48

Brain disease

DOID:12680 PseudoBulbPalsy pseudobulbar palsy 392 22 60.5 7.41E-

32

DOID:12859 Chorea choreatic disease 3,001 38 13.7 7.75E-

30

DOID:5702 PleoLiposac pleomorphic liposarcoma 4,293 69 17.3 1.54E-

59

Cancer

DOID:3939 LipoCanc lipomatous cancer 4,378 69 17.0 5.59E-

59

DOID:769 NeuroBlast neuroblastoma 27,962 99 3.8 5.56E-

28

DOID:2476 HS Paraplegia hereditary spastic paraplegia 1,690 103 65.7 8.73E-

147

Central nervous system

disease

DOID:607 Paraplegia paraplegia 9,017 114 13.6 5.10E-

86

DOID:1307 Dementia dementia 136,817 2,639 20.8 ~0 Cognitive disorder

DOID:9255 FT Dementia frontotemporal dementia 5,737 1,217 228.8 ~0

DOID:12217 LB Dementia Lewy body dementia 3,916 81 22.3 4.24E-

78

DOID:5408 PBD Paget’s disease of bone 1,532 54 38.0 6.84E-

65

Connective tissue

disease

DOID:205 BoneHyp hyperostosis 6,705 54 8.7 5.47E-

32

DOID:4953 Poliomyelitis poliomyelitis 7,184 95 14.3 1.04E-

73

Infectious disease

DOID:4952 PPMSyn postpoliomyelitis syndrome 535 35 70.6 4.20E-

52

DOID:438 AIDNeuro autoimmune disease of the nervous system 14,913 189 13.7 1.10E-

141

Immune system disease

DOID:12842 GBSyn Guillain-Barre syndrome 6,675 106 17.1 5.36E-

90

DOID:437 MyaGrav myasthenia gravis 8,408 105 13.5 7.67E-

79

DOID:2033 ComDis communication disorder 26,572 129 5.2 9.33E-

50

Mental health

DOID:0060046 Aphasia aphasia 9,060 57 6.8 2.56E-

28

DOID:700 MitoMetaD mitochondrial metabolism disease 5,245 45 9.3 4.82E-

28

Metabolic disease

DOID:683 MotorNeu motor neuritis 1,915 139 78.3 2.97E-

208

Motor neuron disease

DOID:681 ProgBulbPalsy progressive bulbar palsy 432 97 242.2 1.37E-

196

DOID:0060161 SBMA Kennedy’s disease 787 96 131.6 6.91E-

167

DOID:678 ProgSupraPalsy progressive supranuclear palsy 2,782 119 46.1 7.26E-

151

Movement disease

(Continued)
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protein in this disease and has been linked to two main pathogenic mechanisms which are

thought to lead to ALS pathology. Both potential mechanisms are reflected in the underlying

biology represented in this network. Mutations in SOD1, a ubiquitously expressed peroxide

dismutase, have been linked to oxidative stress, either by a gain of function of this catabolic

enzyme or also as a direct regulator of the NADPH dependent oxidation of RAC1 [36]. The

network contains many other proteins playing part in the oxidative stress response, therefore

Table 3. (Continued)

ID Abbreviation Name Occurrences Co-

mentionings

Overrep.

ratio

P-value Disease type

DOID:767 MuscAtrophy muscular atrophy 14,482 897 66.8 ~0 Muscle tissue disease

DOID:3429 IncBodyMyositis inclusion body myositis 1,525 88 62.2 1.52E-

123

DOID:11722 MyoDystT1 myotonic dystrophy type 1 3,772 74 21.2 7.35E-

70

DOID:11723 DuchMuscDys Duchenne muscular dystrophy 7,844 82 11.3 4.30E-

56

DOID:12858 HD Huntington’s disease 11,696 642 59.2 ~0 Neurodegenerative

diseaseDOID:14330 PD Parkinson’s disease 69,957 1,725 26.6 ~0

DOID:10652 AD Alzheimer’s disease 92,611 1,658 19.3 ~0

DOID:2377 MS multiple sclerosis 49,375 686 15.0 ~0

DOID:2478 SC Degen spinocerebellar degeneration 8,342 232 30.0 1.35E-

249

DOID:1441 SC Ataxia spinocerebellar ataxia 7,104 211 32.0 4.70E-

233

DOID:11870 PickD Pick’s disease 976 65 71.8 7.94E-

96

DOID:9277 PC Degen primary cerebellar degeneration 1,134 48 45.7 1.14E-

61

DOID:12705 FR Ataxia Friedreich ataxia 2,119 56 28.5 2.50E-

60

DOID:10595 CMTD Charcot-Marie-Tooth disease 8,334 647 83.7 0 Neuromuscular disease

DOID:3602 ToxEnceph toxic encephalopathy 26,094 293 12.1 1.44E-

204

Nervous system disease

DOID:12697 LockedInSyn locked-in syndrome 5,900 72 13.2 6.12E-

54

DOID:913 AtroMuscD atrophic muscular disease 5,802 575 106.9 ~0 Peripheral nervous

systemDOID:5214 DemyelinPN demyelinating polyneuropathy 3,391 69 22.0 2.59E-

66

DOID:5213 CIDMPRN chronic inflammatory demyelinating

polyradiculoneuropathy

2,061 51 26.7 1.14E-

53

DOID:4308 PR Neuropathy polyradiculoneuropathy 9,689 74 8.2 1.09E-

41

DOID:2491 SP Neuropathy sensory peripheral neuropathy 3,520 41 12.6 1.12E-

30

DOID:11162 Resp. Failure respiratory failure 57,385 418 7.9 1.53E-

220

Respiratory system

disease

DOID:2733 Skin Atrophy skin atrophy 12,885 80 6.7 1.16E-

38

Skin disease

DOID:318 ProgMusc

atrophy

progressive muscular atrophy 303 141 501.9 ~0 Spinal cord disease

DOID:0050881 IBMPFD inclusion body myopathy with Paget disease of

bone and frontotemporal dementia

105 26 267.1 3.84E-

55

Syndrome

https://doi.org/10.1371/journal.pone.0268159.t003
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the main GO term associated with this network is oxidative stress (Fig 5B). Alternatively, muta-

tions in SOD1 have been reported to induce its misfolding and aggregation (GFER, CCS,

PDIA2) and thus to lead to loss of function [37]. Protein misfolding elicit a number of cellular

mechanisms to protect the cell against the accumulations of aggregates. Representative of these

rescue mechanisms are the large number of heat shock chaperones (for example HSPH1,

HSPA2-6, DNAJB2) [38], where PARK7 is by itself redox sensitive. Ubiquitin ligases are also

present in the proteasomal pathways (HECW1, STUB1, RNF19a). In the Tier 1 collection,

module 83 is the most specific to ALS and shows minimal overlap with other neurological dis-

eases. Changes in SOD1 associated function leading to a concomitant deficit in proteostasis

may therefore be a unique feature of ALS pathology and its close relative frontotemporal

dementia.

Module 196 Represented also in muscular atrophy, linked to protein degradation and apo-

ptosis (F)

Represented also in muscular atrophy, linked to protein degradation and apoptosis (Fig 6)

Module 196 is centered around HSPB1 (HSP27), which has a variety of functions relevant

to ALS. This network shows a molecular link to HSPB1 to the crystallin chaperones, which are

ZN2+ dependently activated and upregulated in neurological diseases [39]. Crystallin

Fig 4. Disease overlap matrix for ALS core modules. Top row: Module IDs–sorted on significance of ALS

overrepresentation (most significant to the left), and Tier 1 / Tier 2 subsets indicated. Right side: Disease description:

Disease Ontology ID, name (truncated to 35 letters), number of genes/proteins associated to the disease via text

mining. Only diseases with a least 20 associated genes/proteins included in this figure. Left: Disease categories as

defined in Table 3.

https://doi.org/10.1371/journal.pone.0268159.g004
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chaperones are also associated with myopathies consistent with their abundant expression in

muscle where they stabilize Desmins [40]. HSPB1 oligomerization induced by stress, also TNF

induced inflammatory stress. The TNF induced apoptotic signaling pathway is activated

through MAPKAP, where HSPB1 deactivates DAXX [41]. Apart from its role in apoptosis,

HSPB1 is also important in the proper function of proteasomes and can modulate reactive

oxygen species. With this focus on responses to oxidative (and inflammatory stress) this net-

work remains specific for ALS and with its interactive link to the crystallin chaperones makes

the muscle particularly sensitive to dysregulation. This is reflected in the link of this network

to muscular atrophy and Charcot Marie Tooth disease (Fig 6) another neuropathy which is

characterized by progressive muscular loss and genetic link to HSPB1 [42].

Module 93 Represented also in Alzheimer’s disease, linked to lipoproteins and lipid metabo-
lism (Fig 7)

Module 93 is the only Tier 1 network significantly linked to lipid metabolism (Fig 7, panel

B) through the presence lipoprotein receptors (LPRx), which are part of the cholesterol path-

way genes as well as the APO protein family. Lipids and Lipoproteins are implicated in a

whole range of biological process, where they are involved as energy substrates, building

Fig 5. Module 83 –Protein folding and oxidative stress. Panel A: thick red border: gene/protein annotated to be ALS-associated on any of the 7 lists. Large

red label: gene/protein with GWAS evidence. Triangular shaped nodes: receptors (UniProt keyword). Node colors indicate subcellular location (UniProt

keywords): Blue = Nuclear, Green = Secreted, Purple = conflicting nuclear/secreted, cyan = neither nuclear nor secreted (likely cytosolic). Panel B: Gene

Ontology overrepresentation analysis. Panel C: Thick border: ALS-associated (as panel A), Colored node: Disease-associated gene/protein.

https://doi.org/10.1371/journal.pone.0268159.g005
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blocks, structural machinery and bioactive molecules [43]. In ALS, and AD, lipid metabolism

has been thought to underlay denervation, mitochondrial dysfunction, excitotoxicity neural

transport, cytoskeletal defect and impaired neurotransmitter release [43]. In the context of

ALS, the energy metabolism, in particular, may have increased needs and in muscle a switch

from glucose to lipid energy has been described [44], as well as changes in glycosphingolipids

[45]. In addition, the brain strongly depends on fatty acid oxidation [46]. High fat and keto-

genic diet in animals prolonged survival, while caloric restriction was detrimental in SOD1

transgenic mice [47, 48]. Therapeutically, this hypothesis has been tested with a high fat diet in

a small clinical trial, which suggests that nutritional intervention needs to be followed up [49].

The high number of APO and LRP proteins in this network potentially drives the signifi-

cant association with Alzheimer’s Disease, for which genotype of APOE is the main risk factor.

While APOE in Alzheimer has been proposed to play a role in many processes [50], we sug-

gest, based on this ALS core module, that its role in CNS lipid homeostasis is similar in ALS

and AD, The use of high fat diets in AD has been discussed controversially, however.

Module 128 –Represented in many neurodegenerative diseases linked to protein metabo-

lism and apoptosis (Fig 8).

Fig 6. Module 196 –apoptosis and oxidative stress related. Panel A: thick red border: gene/protein annotated to be ALS-associated on any of the 7 lists. Large

red label: gene/protein with GWAS evidence. Triangular shaped nodes: receptors (UniProt keyword). Node colors indicate subcellular location (UniProt

keywords): Blue = Nuclear, Green = Secreted, Purple = conflicting nuclear/secreted, cyan = neither nuclear nor secreted (likely cytosolic). Panel B: Gene

Ontology overrepresentation analysis. Panel C: Thick border: ALS-associated (as panel A), Colored node: Disease-associated gene/protein.

https://doi.org/10.1371/journal.pone.0268159.g006
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Module 128 represents a large network that contains a wide range of proteins. It is overlap-

ping with 83 (SOD1, HDAC6, BCL2, SQSTM1)) as well as with 196 (SNCA, MAPT) as well as

with 21 (HDAC6, SQSTM1, TARDP). The high degree of disease overrepresentation in this

network may be due to the fact that it is the only network that has neuronal function associated

proteins, such as the GABA receptors (GABAx), Glutamate receptors (GRIA1,3, GRIN2a) and

neuronal related growth factors (NGF) and the microtubular system (HTT, MAPs). Interest-

ingly, however, it is not associated with multiple sclerosis, suggesting that the dysfunction seen

in the clinical presentation of MS is more strongly driven by a different mechanism such as

immune dysfunction.

Similar to the other networks, this network contains proteins involved in ubiquitination

(KEAP, TRIMs). As diseases are often caused by disturbance of homeostatic functions, these

stress networks are found in many diseases activated, which may make this network so impor-

tant also in non-degenerative diseases, such as neuroblastoma.

Module 21 –Represented in many neurodegenerative diseases, highest density of ALS

genes, but little significant biology (Fig 9).

Fig 7. Module 93 –lipid metabolism related. Panel A: thick red border: gene/protein annotated to be ALS-associated on any of the 7 lists. Large red label:

gene/protein with GWAS evidence. Triangular shaped nodes: receptors (UniProt keyword). Node colors indicate subcellular location (UniProt keywords):

Blue = Nuclear, Green = Secreted, Purple = conflicting nuclear/secreted, cyan = neither nuclear nor secreted (likely cytosolic). Panel B: Gene Ontology

overrepresentation analysis. Panel C: Thick border: ALS-associated (as panel A), Colored node: Disease-associated gene/protein.

https://doi.org/10.1371/journal.pone.0268159.g007
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This network is almost exclusively made up of ALS-associated genes. It directly links many

ALS-risk genes (HDAC6, VCP, HNRNPA1, SQSTM1, ATXN2) into the same network with

the major causative genetic mutations (TARDBP and FUS). In fact, mutations in most of the

proteins in this network have been proposed to be linked in one or the other way to ALS. This

may strengthen the importance of these genes in the overall ALS pathogenesis [51]. This mod-

ule functionally links many ALS-associated genes into one network which may partly explain

why such a large variety of mutations and risk factors lead to the same pathological and clinical

features. This network links the two major pathogenetic theories about ALS that are currently

discussed: defects in RNA processing [52] and proteasomal malfunction. Dysfunctional

mRNA processing, in addition to loss of function of these transcripts, may lead to an overload

Fig 8. Module 128 –stress and apoptosis related. Panel A: thick red border: gene/protein annotated to be ALS-associated on any of the 7 lists. Large red label:

gene/protein with GWAS evidence. Triangular shaped nodes: receptors (UniProt keyword). Node colors indicate subcellular location (UniProt keywords):

Blue = Nuclear, Green = Secreted, Purple = conflicting nuclear/secreted, cyan = neither nuclear nor secreted (likely cytosolic). Panel B: Gene Ontology

overrepresentation analysis. Panel C: Thick border: ALS-associated (as panel A), Colored node: Disease-associated gene/protein.

https://doi.org/10.1371/journal.pone.0268159.g008
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of the protein degradation system and thus to cellular dysfunction, independent of the aggre-

gate per se. The finding that TDP-43 (the protein product of TARDBP), is also involved in low

molecular weight neurofilament processing and aggregation [53], represents a very interesting

insight into how general biological principles can become organ-, here neuron, specific pathol-

ogies. In recent years, many neurodegenerative diseases have been recognized and grouped as

proteinopathies. Apart from the RNA-related malfunction that comes with mutations of FUS

and TARDBP, some studies have recently suggested that these proteins contain prion like

structures [54], which makes them prone to seeding and aggregation with other proteins or

lead to dysfunction of the protein degradation pathway causing other proteins to aggregate

[55]. In particular TDP43 is also found aggregated in other neurodegenerative diseases [56].

This module is therefore strongly associated with other neurodegenerative diseases that have

protein deposits (Fig 9C).

Discussion

While there is a high rate of new genes that become described as potentially relevant to ALS-

disease pathogenesis, their role often remains unclear and confirmation is lacking. Network

Fig 9. Module 21 –weakly classified biology, strong disease overlap. Panel A: thick red border: gene/protein annotated to be ALS-associated on any of the 7

lists. Large red label: gene/protein with GWAS evidence. Triangular shaped nodes: receptors (UniProt keyword). Node colors indicate subcellular location

(UniProt keywords): Blue = Nuclear, Green = Secreted, Purple = conflicting nuclear/secreted, cyan = neither nuclear nor secreted (likely cytosolic). Panel B:

Gene Ontology overrepresentation analysis. Panel C: Thick border: ALS-associated (as panel A), Colored node: Disease-associated gene/protein.

https://doi.org/10.1371/journal.pone.0268159.g009
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analysis is one way to link individual proteins into functional networks. Being part of a func-

tional network with a biological relevance for ALS may strengthen the association of a

described ALS gene to the disease. In this study we identified 656 proteins that have previously

been associated with ALS. Of these, 144 genes were connected in 26 ALS core modules, sug-

gesting a functional association with ALS. Some of the previously less well described genes,

such as HDAC6 and SQSTM were shown to be part of the majority of the Tier 1 modules, link-

ing them closely to the well-known ALS genes TARDBP, FUS and SOD1.

Several studies have utilized PPI networks in order to understand the biological complexity

underlying ALS. In a 2017 study, Mao et al. [17] found proteins connected to known ALS-

causative genes in order to identify common downstream proteins. However, despite the

apparent overlap with our approach there are some key differences allowing us to reduce the

number of false-positive hits and home in on a much more specific biological interpretation.

Using a bottom-up approach, where networks are generated by including first-order neigh-

bors of the ALS associated proteins and merging highly overlapping networks, provides us

with a set of distinct disease modules with a well-defined biological annotation.

Another important difference is the consideration of local degree/global degree ratio in

order to handle the problem of over-connected proteins. Highly connected proteins (e.g.

UBC) will have a higher chance of showing up in any given network than less connected pro-

teins and are known to introduce noise in network analyses. Filtering out noisy proteins gives

a much clearer picture of the key proteins involved in any particular biological process (see

Introduction for further details).

A wide range of cellular processes have been implicated in ALS pathogenesis, as reviewed

recently [57]. These include neuronal-specific processes, including hyper- and hypo-excitabil-

ity, glutamate excitotoxicity, and neuronal branching defects [58], proteostasis pathways with

impairments in ubiquitin–proteasome systems, autophagy and lysosomal function as well as

dysfunction in the endoplasmic reticulum (ER) and mitochondria [59]. More recently, altered

RNA processing/metabolism, RNA splicing transcriptional defects have been shown to be

linked in particular to TARDBP [60]. Furthermore, dysregulation of cytoskeletal dynamics,

leading to impairment of vesicular trafficking including nuclear-cytoplasmic transport [61],

between ER and Golgi [62], as well as transport along axons [63] have been found to be part of

the ALS pathology.

The highly significant networks, represented in the Tier 1 and Tier 2 modules which we

presented in more detail in this study, capture many of these pathophysiological aspects of

ALS biology, in particular oxidative stress and proteostasis, but also other plausible biological

mechanisms with less research focus such as lipid metabolism (module 93) and neuron specific

functions such as neurotransmission and synapse (module 128). Lipid metabolism dysfunc-

tions as a driver of ALS pathology is currently much debated and aberrant lipid metabolism is

proposed to underlie denervation of neuromuscular junctions mitochondrial dysfunction,

excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced

neurotransmitter release [43]. The finding that one of our five ALS-core networks, one is

linked to lipid metabolism is strengthening this view on the disease and may support the initia-

tion of clinical trials investigating not only high fat diets, but also modulation of the balance

between fatty acids and glucose oxidation [44] and modulation of sphingolipids [64].

The emphasis on proteostasis (protein degradation, modification and folding), which is

part of all the presented networks and links genetic evidence (C9orf72, VCP, SQSTM, Dynac-

tin, TBK) to altered chaperone functions (HSPS, crystallins, module 196) and autophagy (lyso-

somal degradation, modules 21 and 128) is also very interesting. The proteostasis network is a

complex regulatory network that maintains protein homeostasis. It consists of several path-

ways that control protein biosynthesis, folding, trafficking, and degradation and responds to
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specific protein stress pathways such as the unfolded protein response (UPR), oxidative stress,

inflammatory stress with regulation of autophagic lysosomal pathways, chaperones and heat

shock response genes [59]. Therefore, dysregulation of this pathway can come therefore from

many disturbances associated with ALS. Network 196 is associated with the proteasome path-

way via HSPB1, which oligomerizes under oxidative stress, and TNF (regulation of an apopto-

tic response via DAXX) which links it to oxidative stress and inflammation. Network 21

contains FUS and TARDP, associating this network with RNA modifications and the autop-

hagy process, which is another component of protein homeostasis [65]. Most of the genetic

variations of ALS (C9orf72, TARDP and FUS) have recently been shown to be prone to aggre-

gation, with possible a prion like mechanisms in ALS [66]. Apart from the loss of proper func-

tion of these proteins, these self-propagating aggregations are further impacting the

proteasomal system [55]. Collapse of proper proteostasis due to failure to refold, degrade or

effectively sequester and compartmentalize aggregation-prone, misfolded or potentially toxic

proteins is detrimental to any cell type. Neuronal cells appear to be particularly vulnerable to

disturbances in proteostasis most probably because they are long-lived, large post-mitotic cells

that are not able to dilute out protein aggregates during cell divisions. In addition, the individ-

ual networks contain protein that are over expressed in particular cell types, such as neurobiol-

ogy associated proteins (module 128) microtubular proteins (module 128), or c (module 196),

which suggests that not only neurons suffer from disturbances in these systems but also mus-

cular cells, with high crystallin expression functionally linked to microtubular and intermedi-

ate filament integrity [67–69] may directly be impaired.

There are a few genes that are part of the majority of core modules. In particular HDAC6 is

found in 4 of the 5 Tier 1 networks, suggesting a central role in many biological pathways

underlaying ALS biology. HADC6 plays a role in RNA metabolism, cytoskeletal dynamics and

proteodynamics and its regulation in ALS is linked to FUS and TARDP [70]. Our networks

suggest an overlap between these molecular pathways making it difficult to identify a single

causative pathway. It is however remarkable that HDAC6, together with FUS and TARDP is

part of the novel core module 21, which is almost exclusively made up of ALS-associated

genes. While the biology of this network is only weakly classified, it suggests that mutations in

all these genes are leading to a highly overlapping pathomechanism. Recently, pharmacological

inhibition of HDAC6 has been shown to restore axonal transport defects in vitro and also ER

to Golgi transport by increased acetylation of α-tubulin [71]. Similarly, SQSTM and HSPH1

are found in 3 of the 5 core network modules.

This analysis was performed on the network level and therefore it is not limited to the previ-

ously identified ALS-associated proteins. The network modules also contain novel proteins

not previously associated with ALS and these proteins are candidates for being identified

involved in ALS-related processes as well.

An investigation of the proteins identified through an updated text mining and database

search revealed, that while none of the new proteins from ALSoD were found in the Tier 1 or

Tier 2 disease modules, 11 proteins from HuGE Navigator and 11 proteins identified through

text mining of the scientific literature were found in at least one of the Tier 1 or Tier 2 modules

(S2 Table). This finding further strengthens our approach and supports a functional role of

these new genes in ALS.

It is remarkable that most of the genes currently associated with ALS are found in the five

Tier 1 disease modules. This suggests that there is a functional link between these mutated pro-

teins, which leads to the common clinical phenotype of ALS, independent of the individual

mutations. In this context network 21 is highly interesting, as it suggests a direct link between

genes involved in RNA modifications and genes that are part of protein homeostasis, which is

currently the most discussed mechanism underlying the pathogenesis of ALS.
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TARDBP is a good example how deregulation of the proper function of a single protein is

linking to many intracellular pathways. In line with its nuclear and cytoplasmic functions

TDP-43 is pivotal in multiple cellular functions from RNA processing steps to misfolding and

granule formation in the cytoplasm. Its pathological translocation to the cytoplasm on the one

hand leads to a loss of nuclear function with dysregulated transcription, splicing, stabilization

and RNA transport downstream leading to a dysregulation of a large number of dependent

proteins. Its pathological presence in the cytoplasm on the other hand leads to a gain of func-

tion with formation of toxic aggregates (stress granules), an overload of the misfolded Protein

response leading to a proteinopathy, which is present in 95% of all ALS cases [72]. Along these

lines, this recent review puts the TARDP-linked proteinopathy in the center of a spectrum of

neurodegenerative diseases [73].

It is also interesting that C9orf72, which is frequently mutated in ALS, is not part of net-

work 21 or any of the other core networks. This could suggest that the gain of toxic function

due to the repeats in the intronic part of the C9orf72 gene resulting in the formation of Dipep-

tide Repeats (DPR) might be more prominent than the concomitant loss of physiological func-

tion of the C9orf72 protein in autophagy. In addition, this RNA repeats- and DPR-mediated

toxic mechanism is likely to be part of another biological process than the one covered by net-

work 21.

When interpreting the disease overlap of the modules (Fig 4), it is important to consider

that the genes associated with each disease were found using text mining of the scientific litera-

ture, and that the diseases investigated are known to often be mentioned in ALS related

abstracts (Table 3). In the case of this study, extra care must be taken since all 50 diseases we

used for comparison, were defined as the top 50 diseases most often being co-mentioned with

ALS. However, this will also be true for any study working with well-known associations such

as FD, AD, PD, HD and MS.

Following this word of caution, the most striking observation is actually the lack of overlap

with most of the top 50 diseases, as mentioned in the results section. For example, only a single

Tier 2 module has an overlap with MS biology, while 12, including 3 of the 5 Tier1 have an

overlap with AD. This indicates that the overlap matrix in Fig 4 is not just driven by a generic

overlap in literature between ALS and the top 50 diseases, but it represents a clear trend

towards the overlap with a specific subset of diseases.

Biologically, it is interesting that these core modules are so selectively represented in spe-

cific diseases. Oxidative stress shows a certain specificity to ALS (and associated FTD), while

only module 128, with its many neurobiology associated genes shows a broader overlap. The

modules often overlap with AD, either exclusively or together with other conditions, or they

show a representation with muscular atrophy. This is an important hint on how general cel-

lular processes may lead to specific diseases, and what pathways may be particularly vulnera-

ble in both muscle and neurons such as the crystallin chaperone system (module 196). An

interesting finding is the relatively high overlap of our core ALS networks in toxic encepha-

lopathy. Toxic encephalopathy is a heterogeneous clinical disease of brain dysfunction

caused by toxic substances of a wide variety [74]. MalaCards [75] reports several biological

pathways (perinuclear transport, neuronal projection and membrane raft proteins) as targets

of neurotoxic substances leading to clinical problem of encephalopathy. Many of these mech-

anisms are also central to ALS. This may support the speculation that pesticides and other

environmental toxins can lead to ALS, which has been suggested as an explanation for the

high incidence of ALS among military people and certain population groups as the Cha-

morro people of Guam through the exposure to the ß-methylamino-L-alanine (BMAA)

found in fishes [76].
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Conclusions

In the case of complex diseases, discovering and describing the molecular systems responsible

for the phenotype is extremely difficult, since a complex disease is not caused by a single gene,

but is rather a perturbation of a biological system. Since the disease-causing genetic factors dif-

fer between individuals, it is crucial to understand how they are connected. Network analysis

is an effective approach for investigating the functional interactions between molecules. Ana-

lyzing a comprehensive ALS dataset in context of protein-protein interactions allowed us to

get a unique top-level understanding of ALS biology. By consolidating the networks into mod-

ules with known players in focus, we were able to extract a comprehensive and rich set of ALS

modules.

When focusing on the five most significant modules (Tier 1), the represented biology is

covering the main hypothesis around the pathogenesis of ALS, including oxidative stress,

energy metabolism, proteasome dysfunctions and mRNA processing changes. Some of the

modules are generic and shared with other neurological diseases. These involve the functional

response to stress, be it oxidative or linked to protein- or energy metabolism. Many known

ALS mutations lead to a dysregulation of the proper production of proteins, potentially start-

ing at mRNA processing and resulting in a disturbed proteostasis, with a central role of

TARDP. As neurons may be particularly sensitive to these failures, several networks are part of

other neurodegenerative diseases (modules 128 and 21) and may be the molecular basis of a

proteinopathy spectrum of diseases from dementias to muscular atrophies. Other networks, in

particular the ones around SOD, are associated only with ALS (modules 83, 93 and 196). A fol-

low-up study including recently identified ALS-associated proteins found that the networks

we defined as “Core Modules” (Tier 1 and Tier 2) contained a significantly higher proportion

of new ALS genes than expected.
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