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Abstract

Whole genome sequencing represents a promising new technology for subtyping of bacte-

rial pathogens. Besides the technological advances which have pushed the approach for-

ward, the last years have been marked by considerable evolution of the whole genome

sequencing data analysis methods. Prior to application of the technology as a routine epide-

miological typing tool, however, reliable and efficient data analysis strategies need to be

identified among the wide variety of the emerged methodologies. In this work, we have com-

pared three existing SNP-based subtyping workflows using a benchmark dataset of 32 Sal-

monella enterica subsp. enterica serovar Typhimurium and serovar 1,4,[5],12:i:- isolates

including five isolates from a confirmed outbreak and three isolates obtained from the same

patient at different time points. The analysis was carried out using the original (high-cover-

age) and a down-sampled (low-coverage) datasets and two different reference genomes.

All three tested workflows, namely CSI Phylogeny-based workflow, CFSAN-based workflow

and PHEnix-based workflow, were able to correctly group the confirmed outbreak isolates

and isolates from the same patient with all combinations of reference genomes and data-

sets. However, the workflows differed strongly with respect to the SNP distances between

isolates and sensitivity towards sequencing coverage, which could be linked to the specific

data analysis strategies used therein. To demonstrate the effect of particular data analysis

steps, several modifications of the existing workflows were also tested. This allowed us to

propose data analysis schemes most suitable for routine SNP-based subtyping applied to

S. Typhimurium and S. 1,4,[5],12:i:-. Results presented in this study illustrate the impor-

tance of using correct data analysis strategies and to define benchmark and fine-tune

parameters applied within routine data analysis pipelines to obtain optimal results.
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Introduction

Efficient surveillance and outbreak detection are important to limit economic and health burden

of infectious diseases. A key component of infection control and prevention tasks performed by

the public health authorities worldwide is subtyping of microorganisms. Discrimination and

detailed characterisation of isolates belonging to the same species is necessary for detection and

investigation of outbreaks, including tracing of infection transmission events, finding infection

sources and describing the epidemiology behind the outbreaks. Moreover, classification of isolates

at sub-species level allows monitoring composition and dynamics of circulating microbial popula-

tions which is necessary, for example, for early detection of emerging pathogen subtypes and eval-

uation of the intended effects of public health measures such as vaccination.

During the last decade, there has been a continuous evolution of bacterial subtyping tech-

niques, moving from phenotypic methods such as serotype, phage-type and antibiogram

towards more informative, standardized and therefore portable molecular and genotypic

methods such as pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number of

tandem repeats analysis (MLVA) and multilocus sequence typing (MLST) [1]. Despite this

improvement, currently used subtyping technologies show multiple drawbacks, most impor-

tant being the fact that their discriminatory potential is in many cases not sufficient to differen-

tiate between closely related strains, compromising our ability to unambiguously detect

outbreaks and perform epidemiological investigation. The ongoing decrease of the cost and

turnaround time of the next-generation sequencing (NGS) technologies has made whole

genome sequencing (WGS) of isolates a viable option for replacing the current subtyping

technologies. Whole genome sequencing not only offers the highest level of resolution to dis-

criminate between isolates, but also allows extracting additional useful information e.g. for

prediction of antibiotic resistance [2–4] and serotype [5,6], and detection of virulence factors

[7,8]. This technology has already been applied for outbreak investigations and epidemiologi-

cal studies of important human pathogens [9–13] and is increasingly being used to subtype

some pathogens routinely in Europe [14].

One of the factors slowing down the wide routine implementation of WGS for daily surveil-

lance by public health institutes is the data analysis: extracting typing information from the

large number of short reads produced by the currently most used sequencing platforms is

non-trivial [15]. While the data acquisition protocol is relatively comparable for different

microorganisms, no single data analysis methodology suits all bacterial species given their dif-

ferent genomic diversity and population structures. The core genome MLST (cgMLST)- and

the single nucleotide polymorphism (SNP)-based approaches are the two most commonly

used principles for the retrieval of subtyping information from WGS data [16]. The cgMLST

assigns a sequence type based on the allele calls observed for each of>1000 of core genes pre-

defined in an organism-specific typing scheme. The cgMLST has shown to be very useful in

multiple typing efforts, it allows the global exchange of data and is easy to standardize but

depends on the availability of generally accepted and sustained typing schemes that are accessi-

ble through international databases for each individual pathogenic microorganism [17]. Cur-

rently cgMLST schemes are being developed and maintained for important human pathogens

[18–21], but such efforts will likely bypass the less significant species and subspecies. Typing

approaches based on SNPs on the other hand are more flexible as they do not require a prede-

fined scheme. Rather they infer phylogenies using all SNPs observed between the genomes of

the analysed isolates and a reference genome. SNP-based approaches provide an exceptionally

high subtyping resolution [19,22,23], but tend to be computationally demanding. Therefore, at

least currently, SNP-based subtyping is less suitable for characterisation of a large number of

distantly related isolates. It is more often being applied to distinguish between isolates that
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have been identified as closely related using subtyping methods such as k-mer and MLST

[24,25], or even cgMLST [16].

Typing results obtained by SNP-based identification tend to be less standardized as the

results largely depend on the used data processing strategies and parameter settings of the

applied workflows. For many human pathogens such as Salmonella enterica subsp. enterica
more than one SNP-based data analysis workflow have been described, some of them currently

being applied or tested for the use in routine settings in different larger public health research

centres and institutions [10,26–33]. As these approaches differ from each other in the underly-

ing strategies and tools, they are very likely producing an at least slightly different output. The

extent of such differences, as well as their practical implications for some important end-users

of the pipelines, namely the public health institutes, reference laboratories and centres and

hospitals have not been sufficiently investigated. Besides for public health, consequences of

actions taken based on WGS-based subtyping can have large economic and public image

implications for industry.

In this study we aimed at comparing data analysis tools for WGS-based typing of bacterial

isolates using the SNP-based principle. We tested three existing SNP-based typing methodologies

that have been used for subtyping of S. enterica subsp. enterica and compared their performance

using sequencing data from 32 S. enterica subsp. enterica serovar Typhimurium (S. Typhimur-

ium) and serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) isolates. S. Typhimurium belongs to the most

common foodborne pathogens worldwide [34], often causing outbreaks associated with con-

sumption of eggs, pork, beef and poultry meat [35]. In recent years, the added value of WGS for

epidemiological investigation of Salmonella has been demonstrated [10,36–39]. For the bench-

mark dataset, epidemiological information was available that was used to validate the results. We

compared the epidemiologic concordance and typing resolution of the different workflows, and

evaluated how these factors were affected by the coverage of the sequencing data, and the choice

of the reference genome. The observed differences were associated with the underlying workflow

architecture and used parameters. Taking into account the implication of these differences for

routine subtyping in a public health institution, guidelines for optimal workflow implementation

were designed and workflows with most suitable performance characteristics for routine SNP-

based subtyping with S. Typhimurium and S. 1,4,[5],12:i:- were identified.

Materials and methods

Isolates

32 isolates of S. Typhimurium and the S. Typhimurium-like S. 1,4,[5],12:i:- [40] were selected

from the collections of 2011, 2012 and 2013 of the Belgian National Reference Centre for Sal-
monella and Shigella (NRCSS) (Table 1). The selection included the following groups of differ-

ent epidemiological origin: (1) five S. 1,4,[5],12:i:- isolates involved in the same outbreak in a

day nursery in 2011, and previously characterized as phage type DT138 and MLVA profile 3-

13-11-NA-211, together with two S. Typhimurium out-group isolates sampled during the

same period as the outbreak; (2) seven S. 1,4,[5],12:i:- and S. Typhimurium isolates of identical

phage type, and with an identical or a frequently occurring MOL-PCR profile as observed for

the outbreak and out-group isolates; (3) three S. Typhimurium isolates obtained from the

same patient at different time points (not related to the outbreak, sampled over a period of

about 1.5 months); (4) 15 background S. 1,4,[5],12:i:- and S. Typhimurium isolates with fre-

quently occurring combinations of MOL-PCR profiles (15-1-1 and 15-3-1), phage types

(DT193 and DT120) and MLVA profiles (3-12-10-NA-211 and 3-13-11-NA-211) [41]. Phage

type and MLVA data were provided by the NRCSS and were collected as described by Wuyts

et al. [42]. Multiplex Oligonucleotide Ligation-PCR (MOL-PCR) data has been determined
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previously by Wuyts et al. [41]. Sequence type was determined from the WGS data using

MLST-1.8 Server from Centre of Genomic Epidemiology [43].

Genomic DNA purification and sequencing data acquisition

The isolates were grown overnight in brain-heart infusion (BHI) broth, and genomic DNA

was obtained from a single colony using Qiagen Genomic-tip 100/G kit according to the

Table 1. Overview and classical typing data of S. Typhimurium and S. 1,4,[5],12:i:- isolates in the study.

ID Serovar Isolation date MOL-PCR profile Phage type MLVA profile ST Additional information

11–0596 1,4,[5],12:i:- 15/01/2011 15-1-1 DT138 3-13-11-NA-211 ST-34 Outbreak

11–1163 1,4,[5],12:i:- 28/03/2011 15-1-1 DT138 3-13-11-NA-211 ST-34 Outbreak

11–1164 1,4,[5],12:i:- 28/03/2011 15-1-1 DT138 3-13-11-NA-211 ST-34 Outbreak

11–1165 1,4,[5],12:i:- 28/03/2011 15-1-1 DT138 3-13-11-NA-211 ST-34 Outbreak

11–1166 1,4,[5],12:i:- 26/03/2011 15-1-1 DT138 3-13-11-NA-211 ST-34 Outbreak

11–0600 Typhimurium 04/02/2011 15-3-1 RDNC 3-14-11-NA-211 ST-34 Out-group outbreak

11–1160 Typhimurium 10/04/2011 1.21×1018−2.58×1011−4199 DT104 3-14-18-14-311 ST-19 Out-group outbreak

S13BD00332 Typhimurium 02/03/2013 1.50×108−1.69×1011−1155 ND 3-14-14-5-311 ST-19 One patient

S13BD00591 Typhimurium 25/03/2013 1.50×108−1.69×1011−1155 ND 3-14-14-5-311 ST-19 One patient

S13BD00844 Typhimurium 19/04/2013 1.50×108−1.69×1011−1155 ND 3-14-14-5-311 ST-19 One patient

12–2003 1,4,[5],12:i:- 29/06/2012 15-1-1 DT120 3-12-10-NA-211 ST-34 Background��

12–2203 1,4,[5],12:i:- 11/07/2012 15-1-1 DT120 3-12-10-NA-211 ST-34 Background��

12–2460 1,4,[5],12:i:- 22/06/2012 15-1-1 DT120 3-12-10-NA-211 ST-34 Background��

12–2455 1,4,[5],12:i:- 26/07/2012 15-1-1 DT193 3-12-10-NA-211 ST-34 Background��

12–2599 1,4,[5],12:i:- 07/08/2012 15-1-1 DT193 3-12-10-NA-211 ST-34 Background��

12–2730 1,4,[5],12:i:- 14/08/2012 15-1-1 DT193 3-12-10-NA-211 ST-34 Background��

12–1558 1,4,[5],12:i:- 22/05/2012 15-1-1 DT193 3-13-11-NA-211 ST-34 Background��

12–2314 1,4,[5],12:i:- 17/07/2012 15-1-1 DT193 3-13-11-NA-211 ST-34 Background��

12–2379 1,4,[5],12:i:- 29/07/2012 15-1-1 DT193 3-13-11-NA-211 ST-34 Background��

12–3792 Typhimurium 08/10/2012 15-3-1 DT120 3-12-10-NA-211 ST-34 Background��

12–3907 Typhimurium 14/10/2012 15-3-1 DT120 3-12-10-NA-211 ST-34 Background��

12–3990 Typhimurium 23/10/2012 15-3-1 DT120 3-12-10-NA-211 ST-34 Background��

12–0084 Typhimurium 13/01/2012 15-3-1 DT193 3-12-10-NA-211 ST-34 Background��

12–0161 Typhimurium 21/01/2012 15-3-1 DT193 3-12-10-NA-211 ST-34 Background��

12–3663 Typhimurium 30/09/2012 15-3-1 DT193 3-12-10-NA-211 ST-34 Background��

12–3558 1,4,[5],12:i:- 25/09/2012 15-1-1 DT138 3-12-11-NA-211 ST-34 Background�

12–3582 1,4,[5],12:i:- 11/09/2012 15-1-1 DT138 3-12-11-NA-211 ST-34 Background�

12–3583 1,4,[5],12:i:- 11/09/2012 15-1-1 DT138 3-12-11-NA-211 ST-34 Background�

12–2984 1,4,[5],12:i:- 27/08/2012 15-1-1 RDNC 3-12-11-NA-211 ST-34 Background�

12–2998 1,4,[5],12:i:- Not known 15-1-1 RDNC 3-12-11-NA-211 ST-34 Background�

12–3067 1,4,[5],12:i:- 04/09/2012 15-1-1 RDNC 3-12-11-NA-211 ST-34 Background�

12–3444 Typhimurium 22/09/2012 1.21×1018−2.58×1011−4199 DT104 3-16-16-13-311 ST-19 Background�

Background: background isolates; MLVA: multiple-locus variable-number of tandem repeats analysis; MOL-PCR: multiplex oligonucleotide ligation-PCR; NA: absence

of a PCR amplicon in MLVA; ND: not determined as phage type was replaced by MLVA at the NRCSS; One patient: isolates obtained from one patient at different time

points; Outbreak: isolates related to an epidemiologically confirmed outbreak; Out-group outbreak: out-group isolates that were collected during the same period as the

outbreak and that were used in the original outbreak investigation; RDNC: reacts-but-does not confirm, used for isolates that give lysis reactions with the

bacteriophages, but these reactions do not match any of the patterns that define a certain phage type [44]; ST: sequence type

(�) background isolates of identical phage type, and with an identical or a frequently occurring MOL-PCR profile as observed for the outbreak and out-group isolates

(��) background isolates with frequently occurring combinations of MOL-PCR profiles, phage types and MLVA profiles.

https://doi.org/10.1371/journal.pone.0192504.t001
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manufacturer’s instructions. The sequencing was carried out at EMBL GeneCore facility on an

Illumina HiSeq 2000, obtaining 100 bp paired-end reads. Forty isolates were multiplexed on a

single lane. The raw reads used in this study have been deposited at the WIV-ISP—Salmonella,

Oct 03 ’17 BioProject at NCBI (PRJNA412988). Sequencing quality was uniformly high, with

mean PHRED scores laying above 34 for all samples.

Quality control of sequencing data

Prior to running the workflows, the quality of the sequencing data was analysed. First, general

statistics were collected using FastQC 0.11.4, a widely-used quality control application for data

generated on Illumina platform [45]. Second, we analysed the sequencing dataset using Quali-

map 2.2.1, a tool that produces descriptive statistics on mapped NGS data, allowing to detect

sequencing and/or mapping biases between the samples [46]. Therefore, raw reads were

mapped on the LT2 (NC_003197.1) and the SL1344 (NC_016810.1) reference genomes using

mem function of BWA 0.7.12 [47], upon which the produced bam files were analysed using

multi-sample BAM QC function of Qualimap applied at default parameters. This analysis indi-

cated that for isolates 11–0596, 12–1558, 12–2203, 12–3444, 12–3583, 12–3990, 12–2998,

S13BD00332, S13BD00844 and 12–3558, the fractions of genomic positions covered above a

given number of reads was lower compared to the values observed for isolates showing the

same average coverage (S1 and S2 Figs). This was not associated with the average coverage or

duplication rate (S1 Fig), and was likely caused by an uneven sequencing depth across the

genome (S2 Fig). Despite this issue, the fraction of any of the two reference genomes covered

with more than 10 reads exceeded 85% in all samples and therefore we considered data quality

to be acceptable for subtyping.

SNP-based typing

For each workflow the following main steps can be distinguished (1) read mapping: alignment

of the reads against a reference genome; (2) variant calling: identification of high-quality SNP

positions for each isolate; (3) SNP matrix construction: building of a dataset-wide SNP matrix

containing reliable genomic polymorphic sites; and (4) phylogenetic analysis: generation of a

phylogenetic tree from the concatenated SNP matrix positions (Fig 1). As differences between

workflows in the specificities of each of the steps are likely to affect typing results, when appli-

cable, we have performed additional tests to associate observed differences in performance to

the specificities of the workflow implementations, hereby focusing on the variant calling and

SNP matrix construction. While the read mapping is also highly influential for the typing out-

come, we believe that the effect of the read mapping step is difficult to evaluate separately from

the variant selection step as the parameters used during variant selection in a particular work-

flow are typically designed taking into account the specificities of the read mapping software.

CSI Phylogeny-based subtyping workflow. CSI Phylogeny-based subtyping (further

referred to as the CSI-based workflow) was performed using CSI Phylogeny-1.2 (https://cge.

cbs.dtu.dk/services/CSIPhylogeny-1.2, [26]), an online service for inferring phylogeny based

on WGS data, that is made available by the Centre of Genomic Epidemiology of the Technical

University of Denmark (DTU). After completion of the analysis, a newer version has become

available (1.4), but the differences in the final output between the versions are neglectable

(data not shown). The pipeline was run with default parameters. The raw reads were uploaded,

and the analysis was submitted with following parameters: a minimal depth at SNP positions

of 10 reads, a minimal relative depth at SNP positions of 10%, a minimal distance between

SNPs of 10 bp, a minimal Z-score of 1.96, a minimal SNP quality of 30 and a minimal read

mapping quality of 25. The Z-score expresses the confidence with which a base was called at a
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given position, with a Z-score of 1.96 corresponding to a p-value of 0.05. The minimal SNP

quality and the minimal read mapping quality are PHRED-based, and can be converted to

probabilities to respectively observe an incorrect SNP call or a wrong read alignment using the

general formula. The pipeline is described in Kaas et al. [26], and consists briefly of the follow-

ing steps: reads are mapped on the reference genome with BWA mem, and SNPs are called

with the mpileup tool from SAMTools [48]. The SNPs are filtered according to the submitted

parameters to retain high-quality instances (to this end, read depth is calculated with the geno-

meCoverageBed tool from BEDTools [49], read mapping quality is obtained from BWA mem,

and SNP quality is calculated with SAMTools). Next, a SNP matrix is constructed by evaluat-

ing all positions where a SNP was called in at least one of the isolates, and retaining positions

that meet the minimal depth check and the Z-score requirements in all isolates. Positions that

fail validation in at least one of the mappings are excluded from the SNP matrix. Retained posi-

tions are concatenated per isolate to create a multiple FASTA file that is used for phylogenetic

analysis.

PHEnix-pipeline based subtyping workflow. The PHEnix-pipeline for subtyping version

1.2, made available by Public Health England (PHE) was obtained from https://github.com/

phe-bioinformatics/PHEnix. The analysis (further referred to as the PHEnix-based workflow)

was performed as described by Ashton et al. [10]. Reads were quality-trimmed using Trimo-

matic 0.3 [50] and mapped to the reference with BWA 0.7.12 mem at default parameters.

Duplicate reads were marked with MarkDuplicates function of Picard-tools 2.0.1 [51]. The

reads were realigned with the IndelRealigner function of the GenomeAnanlysisTK (GATK)

3.4–46 toolbox [52] and BAM files were provided to the PHEnix-pipeline, where variant call-

ing was performed with UnifiedGenotyper tool from GATK, with a standard variant calling

confidence and a standard variant emitting confidence of 30 and the ploidy of the samples set

to 1. Raw SNPs were filtered, retaining high-quality variants showing a minimal mapping qual-

ity and a minimal genotype quality of 30, minimal read depth of 10 and a minimal allele fre-

quency of 90%. Genomic positions that did not satisfy these requirements were masked as

unknown state characters (N) in the consensus sequence. Next, a SNP matrix was constructed

Fig 1. Schematic representation of the tested SNP-based subtyping workflows. Left: data analysis steps of a SNP-based subtyping workflow; Right: details of variant

calling and SNP matrix construction steps of the tested SNP-based subtyping workflows. AF: allele frequency, COV: coverage, GQ: genotype quality, MQ: mapping

quality, Rel. COV: relative coverage.

https://doi.org/10.1371/journal.pone.0192504.g001
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using positions for which a SNP was found in at least one isolate, and that could be called in at

least 80% of the isolates. The selected positions were extracted and concatenated per isolate in

a multiple FASTA file for phylogenetic analysis.

Adapted PHEnix-based workflow using an alternative SNP matrix construction strat-

egy. In all of the tested workflows, the positions that are missing from the SNP matrix for

some of the isolates (e.g. because of an insufficient coverage of the reference genome or

because the region is absent from the genome of the tested isolate), are replaced by an

unknown state character (N). Because of the ease of implementation, another strategy is some-

times applied where the missing values are replaced by the reference values [53–56]. In order

to demonstrate the effect of this strategy, we have constructed a custom SNP-based subtyping

workflow, further called adapted PHEnix-based workflow, in which the variant selection pro-

cedure of the PHEnix-based workflow was combined with the SNP matrix construction step

where genomic positions that did not meet quality requirements were considered equal to ref-

erence values rather than being masked. All positions with a high-quality SNP in at least one of

the isolates were concatenated and the produced multiple FASTA file was used for phyloge-

netic tree construction.

CFSAN SNP Pipeline-based subtyping workflow. CFSAN SNP Pipeline-based subtyping

(further called the CFSAN-based workflow) was performed using a locally installed CFSAN

pipeline 0.6.1 [28], that has been released by the U.S. Food and Drug Administration (FDA).

The pipeline was run with the parameters applied by Wilson et al. [29] for subtyping of S. enter-
ica serotype Tennessee. Raw reads were provided as input of the pipeline, where they were

mapped to the reference with Bowtie 2.2.4 aligner at default parameters [57]. Read mapping sta-

tistics were gathered with mpileup function of SAMTools, using a minimal read mapping qual-

ity of 0 and a minimal base quality of 13. Next, a two-phase variant selection procedure was

applied where in the first phase SNPs were called with mpileup2snp tool from VarScan 2.3.9,

with a minimal average base quality of 15, a minimal read depth of 10 and a minimal allele fre-

quency of 100%. Positions with a SNP that fulfilled all these criteria in at least one of the isolates

were combined to a list. In the second phase, nucleotide states at the listed positions were re-

determined for all isolates, including those isolates for which the more stringent criteria from

the first phase were not fulfilled, using more relaxed rules: a) if there were less than 2 reads

mapped at a position, it was coded with the unknown state character (N); b) if different nucleo-

tides were observed at the position, the nucleotide with frequency larger than 50% was the con-

sensus call for that position; and c) in case that none of the called nucleotides had a frequency

larger than 50%, the position was coded with the unknown state character (N) for that particular

isolate. The two-phase SNP selection procedure used in this pipeline is necessary because when

applied to call SNPs in the first phase, VarScan returns a reference value when a position fails

any of the filters, and hence not enough information is present to call a state. During the second

phase, all relevant positions are re-evaluated to correct those which have erroneously been iden-

tified as reference values instead of missing values (N). The determined nucleotide states at all

of the listed positions were used to build a SNP matrix. The SNP matrix entries were

concatenated per isolate to obtain a multiple FASTA file for phylogenetic analysis.

Adapted CFSAN SNP Pipeline-based subtyping workflow. The adapted CFSAN-based

subtyping workflow included the same data analysis steps and parameters as the CFSAN-

based workflow except that the minimal alternative allele frequency threshold applied during

the first phase of the SNP selection procedure was changed from 100% to 90%, and the mini-

mal alternative allele frequency threshold applied during the second step of the SNP filtering

procedure was changed from 50% to 90%.

Reference genomes. The SNP-based subtyping procedures were carried out using two dif-

ferent closed reference genomes, namely S. Typhimurium LT2, which is most referred to in
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literature, and S. Typhimurium SL1344, which is described as reference genome for more viru-

lent strains like S. Typhimurium ST313 [58,59]. Both reference genomes belong to ST-19,

while the isolates from the tested dataset belong to ST-19 and ST-34. ST-19 and ST-34 make

both part of the eBurstGroup 1, thus differing from each other only by an allele call on a single

locus [60].

Phylogenetic trees. The phylogenies were inferred based on the obtained multiple

FASTA files with MEGA7 [61]. Model selection for maximum-likelihood phylogeny was per-

formed separately for each pipeline, and the optimal model was selected based on the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC, [62]). The maxi-

mum-likelihood phylogenetic trees were constructed with MEGA7-cc, using GTR model with

uniform evolution rate (which performed optimally for each dataset based on AIC and BIC),

with 100 bootstrap replicates and including all missing data sites (N).

SNP distance matrices. For CSI-, CFSAN- and adapted CFSAN-based workflows, the

SNP distance matrices were provided as pipeline output. For the PHEnix- and adapted PHE-

nix-based workflows, the matrices were created using a custom script. Thereby, the SNP

matrix positions were compared for each isolate pair, counting the number of equal recordings

and ignoring positions with masked values (N). When tested on the multiple fasta files pro-

duced by the CSI-, CFSAN- and adapted CFSAN-based workflows, the script returned the

same results as in the matrices provided in the pipeline output, thereby ruling out that the dif-

ferences observed between the workflows were due to differences in distance calculation.

Down-sampling. To generate the down-sampled dataset, reads were mapped on the LT2

reference genome using BWA 0.7.12 mem, and the average coverage was calculated for each

sample using the multi-sample BAM QC function of Qualimap 2.2.1. Based on the obtained

coverage values, a fraction of original reads was randomly selected for each isolate to obtain a

depth of 30X (S1 File). The resulting data was analysed with Qualimap to confirm that the

down-sampling procedure did not disturb the original distribution of the reads across the ref-

erence genome.

Discriminatory power and epidemiologic concordance. To evaluate the workflows, we

determined the epidemiologic concordance and the discriminatory power according to the

same strategy as described by Gaia et al. [63]. The values were calculated using the Ridom Epi-

Compare 1.0 tool (http://www3.ridom.de/epicompare/). Epidemiologic concordance, defined

as the fraction of pairs of epidemiologically related isolates that were assigned to the same type

[22], was calculated as the Wallace’s coefficient with the only subtyping category being the out-

break isolates [64]. The index of discriminatory power was calculated as Simpson’s index of

diversity [65,66]. For calculation of the discriminatory power index, the isolates were assigned

to different subtypes as soon as they differed from each other by at least one SNP position

included in the final SNP matrix. This approach, also applied by [22], allows to calculate the

highest possible resolution that can be obtained with a particular workflow, without being

bound by the on-going discussion about the genetic distance that is typically observed between

isolates of the same subtypes.

Results

Comparison of the three SNP-based WGS typing pipelines using the

original (high-coverage) dataset

Initially, the workflows were applied on the original dataset consisting of NGS data with

an average coverage of 175X and with the LT2 reference genome. As this coverage is much

higher than one would expect in a routine situation, this setting represents the ideal baseline

situation.
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Epidemiologic concordance and phylogenetic tree inference. The consistency of the

constructed phylogenetic trees was evaluated based on the correct co-clustering of the out-

break isolates, expressed as the epidemiologic concordance. Despite the different implementa-

tion specificities, the CSI-, PHEnix- and CFSAN-based workflows were all able to correctly

categorise the outbreak isolates using the high coverage dataset, giving an epidemiologic con-

cordance of 100% (Fig 2A–2C, Table 2). Also the isolates obtained from the same patient were

as expected co-clustered by each of the three workflows. The phylogenetic trees showed con-

siderable similarities, all retrieving besides the outbreak cluster two additional stable isolate

clusters (Fig 2, Table 2). Small differences between the methods were observed in the exact

positions of the isolates within the clusters, the relative positions of the clusters in the inferred

trees, and the positions of some S. Typhimurium isolates with the 15-3-1 MOL-PCR profile.

In contrast to the CSI-, PHEnix- and CFSAN-based workflows, in the phylogeny generated

with the adapted PHEnix-based workflow, one of the outbreak isolates, 11–0596, did not make

part of the outbreak cluster (S4 Fig), giving an epidemiologic concordance of 60% only. Also

the placement of non-outbreak isolates was different compared to the CSI-, PHEnix- and

CFSAN-based workflows. For instance, while the isolates 12–3990 and 12–2203 were closely

clustered with respectively isolates 12–3792 and 12–2003 in the trees produced by the CSI-,

PHEnix- and CFSAN-based workflows, in the tree created with the adapted PHEnix-based

workflow, the two isolates were placed near the root of the tree together with 11–0596.

Remarkably, these isolates that were placed together by the adapted PHEnix-based workflow

i.e. 12–3990, 12–2203 and 11–0596 were the ones that showed an uneven coverage as elabo-

rated in the quality control section of the Materials and Methods.

Discriminatory power and SNP distances between isolates. The CFSAN-based work-

flow retained the highest number of polymorphic sites, followed by the PHEnix- and the CSI-

based workflows (Table 2, Fig 3). Concordantly, the CFSAN-based workflow was able to dis-

criminate between all 32 analysed isolates, whereas for PHEnix- and the CSI-based workflows

a slightly lower number of observed subtypes was distinguished, and therefore a lower discrim-

inatory power was observed (Table 2). The decrease in discriminatory power was however rel-

atively low, and the overlapping confidence intervals of the discriminative power indices

indicated that inferred differences between the discriminative power coefficients were not sta-

tistically significant.

Examination of the number of SNP positions returned by each pipeline at the various data

analysis stages showed that the main differences between the PHEnix- and the CFSAN-based

workflows were due to both more stringent variant selection and SNP matrix construction

steps of the PHEnix-based workflow (S3 Fig, S1 Table). Because the CSI pipeline does not pro-

vide the output of the intermediate data analysis steps, the stringency of the variant selection

and SNP matrix construction steps could not be compared with those of the other pipelines.

The three tested workflows returned highly different SNP distances between outbreak iso-

lates (0–3, 1–3 and 2–14 SNPs for the CSI-, PHE- and CFSAN-based workflows, respectively)

and between the isolates obtained from the same patient (2–4, 3–6 and 12–22 SNPs for the

CSI-, PHE- and CFSAN-based workflows respectively) (Table 2, Fig 3). Besides the outbreak

isolates, the benchmark dataset showed to contain additional isolate pairs with mutual SNP

distances laying in the same range as the intra-outbreak SNP distances (Fig 3 and S7 Fig).

Most of such isolate pairs, including for instance the first (S13BD00332) and the second

(S13BD00591) isolate obtained from the same patient, were retrieved by all three workflows

(with 2, 3 and 12 SNPs for the CSI-, PHE- and CFSAN-based workflows, respectively). How-

ever, for some of such closely related isolate pairs the output of the workflows disagreed on the

inferred genetic distance relative to the inter-outbreak isolates, for example for 12–0161 and

12–3792 (2, 8 and 40 SNPs for the CSI-, PHE- and CFSAN-based workflows, respectively), for
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12–0161 and 12–3990 (2, 2 and 50 SNPs for the CSI-, PHE- and CFSAN-based workflows,

respectively) and to a lesser extent for the third (S13BD00844) and the first (S13BD00332) iso-

lates obtained from the same patient (2, 3 and 22 SNPs for the CSI-, PHE- and CFSAN-based

workflows, respectively).

Sensitivity of the WGS typing workflows to decreasing coverage

To test if the small differences observed between the pipelines using the high-coverage dataset

would become more pronounced using data with a lower coverage, we have down-sampled

the original dataset to obtain an average sequencing depth of 30X for each isolate and repeated

the analysis.

The epidemiologic concordance of the phylogenies generated by all the three subtyping

workflows still was 100% (S5 Fig, Table 2), with all outbreak isolates being correctly attributed

to an outbreak-specific cluster. Also the stably recurring (non-outbreak) clusters observed

with the original dataset were retrieved with the down-sampled dataset by all three workflows,

with the only exception being the inclusion of one extra isolate (12–2730) in one of such clus-

ters by the CFSAN-based workflow. For all three typing workflows, the trees generated with

the down-sampled dataset diverged slightly from those generated with the original dataset, but

the majority of the differences was situated at the branches with low bootstrap support.

Related to the discriminatory power, the workflows showed larger differences in their sensitiv-

ity towards the coverage changes. The CSI-based workflow showed the highest decrease in the

number of discriminated subtypes (being reduced from 28 to 23 with decreasing coverage), fol-

lowed by the PHEnix-based workflow which attributed the 32 isolates to 28 subtypes instead of 29,

and the CFSAN-based workflow which was still able to discern between all 32 isolates (Table 2).

The CSI-based pipeline showed the strongest reduction of the SNP matrix size (Table 2).

Examination of the SNP matrices revealed that this led to a near collapse of the otherwise dis-

tinct isolate groups, with the distances between some isolate pairs dropping from 10–12 SNP

positions to 4–6 positions only (S8 Fig). Exchange of the SNP matrix construction rules

between the different workflows and comparison of the sizes of the resulting SNP matrices

Fig 2. Phylogenetic tree generated with the tested SNP-based subtyping workflows. The workflows were run using the original dataset and LT2 as a reference

genome. (A) CSI-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based workflow. Isolates are coloured according to the MLVA-profile. The minimal and

maximal SNP distances observed between the five outbreak isolates and the three isolates obtained from the same patient are indicated near the clusters. The two

stably recurring groups of isolates mentioned in the text consist of (1) 12–3582, 12–3583, 12–2998, 12–2984, 12–3558, 12–3067 (yellow) and (2) 12–2314, 12–2460,

12–2599, 12–2455, 12–2379, 12–1558 (green and red). The trees are drawn to scale, with branch lengths measured in the number of substitutions per site. The scale

axis is provided below each tree. BS: bootstrap values.

https://doi.org/10.1371/journal.pone.0192504.g002

Table 2. Performance metrics of the tested SNP-based subtyping workflows.

CSI-based workflow PHEnix-based workflow CFSAN-based workflow

OD 30X OD 30X OD 30X

Epidemiologic concordance 100% 100% 100% 100% 100% 100%

SNP matrix size 999 537 1649 1056 2008 1732

Number of subtypes 28 23 29 28 32 32

DP 0.992 0.972 0.994 0.990 1.00 1.00

Confidence interval of DP 0.982–1.00 0.947–0.996 0.985–1.00 0.976–1.00 1.00–1.00 1.00–1.00

SNPs outbreak isolates 0–3 0–2 1–3 1–3 2–14 7–17

SNPs isolates from one patient 2–4 0 3–6 1–4 12–22 16–23

Performance metrics of the workflows were assessed using original dataset (OD) and dataset down-sampled to a 30X coverage (30X), with LT2 as a reference genome.

DP: discriminative power. SNPs outbreak isolates: minimal and maximal number of SNPs observed between the outbreak isolates. SNPs isolates from one patient:

minimal and maximal number of SNPs observed between isolates obtained from the same patient.

https://doi.org/10.1371/journal.pone.0192504.t002
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Fig 3. SNP distance matrices generated with the tested SNP-based subtyping workflows. The workflows were run using the original dataset and LT2 as a reference

genome. (A) CSI Phylogeny-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based workflow. Colours indicate pairwise SNP distances between isolates.

Outbreak isolates are shown in bold and isolates obtained from the same patient are underlined.

https://doi.org/10.1371/journal.pone.0192504.g003
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(PHEnix+CSI and CFSAN+CSI in S1 Table) showed that the increased sensitivity towards the

coverage of the CSI-based workflow resulted from both more stringent SNP selection and SNP

matrix construction.

While as expected the inter-isolate distances generally decreased for the low-coverage data-

set for all workflows, counterintuitively the SNP distances between closely related isolates

appeared to increase with decreasing coverage for the CFSAN-based workflow (Table 2, S8

Fig). The changes were in some cases large as from 3 to 17 SNPs. Detailed examination of the

positions responsible for the differences between the datasets revealed that the differences

mostly arose firstly because at some positions, the 50% allele frequency threshold utilized dur-

ing the second phase of variant selection was more often met for only one of the isolates with

low-coverage data while being either met or not met for both isolates with the high-coverage

dataset. Secondly, for a smaller fraction of the positions, isolate-specific SNPs were excluded

from the SNP list with the high-coverage dataset because of having a sequencing error in one

of the reads that mapped at that position, and thus not meeting the 100% allele frequency

threshold of the first phase of variant selection.

Adapting the CFSAN-based workflow by changing the allele frequency thresholds to more opti-

mal values alleviated the problem almost completely (S7 and S8 Figs). The adapted workflow

showed a 100% epidemiologic concordance, and a discriminatory power close to that of the PHE-

nix-based pipeline with both the high and the low coverage datasets (S1 Table, S4, S5, S7 and S8

Figs). SNP distances between the outbreak isolates were 1–3 SNPs for both the high-coverage and

the down-sampled datasets respectively, and the SNP distances between isolates from the same

patient were 3–5 and 4–5 SNPs for the high-coverage and the down-sampled datasets, respectively.

Estimation of the effect of the false positive SNPs on the calculation of

discriminative power

In order to assess to what extent the calculation of the discriminative power could be biased by

the appearance of false positive and/or false negative SNPs in the pipeline output, we have esti-

mated the SNP distances that are reported for identical isolates based on simulated replicate

datasets. Therefore, additional 30X datasets were created for five randomly chosen isolates

(11–0596, 12–2203, 12–3582, 12–3792, S13BD00591) by repeating the down-sampling proce-

dure. The initial 30X data of the 32 isolates was combined with the newly created data, and the

analyses were re-run.

The CSI-and the PHEnix-based workflows detected a SNP distance of 0 SNPs for any of the

five pairs of the simulated replicate isolates while the adapted CFSAN-based workflow detected

a distance of 1 SNP for one pair of replicate isolates out of five (S9 Fig). The original CFSAN-

based workflow in contrast reported relatively high distances between replicates, i.e. from 5 to

8 SNPs (S9 Fig). Taking into account this observation, for the CFSAN-based workflow the use

of one SNP as threshold to discriminate between isolates thus likely resulted in a noticeable

overestimation of its discriminatory power at 30X. Recalculating the discriminative power of

the CFSAN-based workflow applied on the down-sampled dataset with 9 SNP (i.e. higher than

the number of SNP different between replicates) positions as the minimal discrimination

threshold would result in drop of the discriminatory power index to 0.996 (30 subtypes) which

is indeed lower than what was observed at a discriminative threshold of 1.

Sensitivity of the WGS typing workflows towards the choice of the

reference genome

In order to compare the extent of the reference-specific effects between the tested subtyping

workflows, the described analyses were repeated with a second reference genome, SL1344. The
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topologies of the phylogenetic trees differed considerably from those observed with the LT2

genome (S10–S12 Figs) for all of the tested workflows. While with the LT2 reference, the S.

Typhimurium isolates with the 15-3-1 MOL-PCR profile were distributed throughout the tree,

they were now attributed to one or two separate clusters. The recurring non-outbreak clusters

discussed in the previous sections were stably retrieved by all pipelines and with both the origi-

nal, and the down-sampled datasets. While the outbreak isolates were placed closely together

in the trees generated with the CSI-, PHEnix-, CFSAN- and adapted CFSAN-based workflows,

they were in some cases not co-clustered within the same branch but located hierarchically rel-

ative to each other close to the root of the tree. Because subtypes used for calculation of epide-

miologic concordance were defined based on attribution of isolates to the same branch, such

positioning of outbreak isolates would compromise the concordance values. However, the

close relatedness of the outbreak isolates could still be clearly seen from the very short inter-

isolate SNP distances produced by the three workflows (S13–S15 Figs). In the tree generated

by the adapted PHEnix- based workflow, the genetic distances between the outbreak isolates,

namely between the 11–0596 and the other four, were considerably higher. Despite the fact

that all isolates showed a higher number of SNPs with SL1344 as a reference genome, the

observations on the discriminatory power made for the different pipelines and the two ana-

lysed datasets were similar for both reference genomes (S2 Table).

Discussion

Whole genome sequencing (WGS) is considered a very promising technology for subtyping of

bacterial isolates, and because of the decreasing costs and improving technology, it is predicted

to become an alternative to the subtyping methods currently applied in routine. Extraction of

subtyping information from WGS data, however, is still challenging, and emerging workflows

vary in their efficiency, discriminatory power, reproducibility, ease of interpretation and

requirements for the raw read data. In this study, we have compared three different workflows

for SNP-based subtyping of bacterial isolates using WGS data (original dataset and a down-

sampled dataset with lower coverage) of 32 S. enterica isolates as a test case. The approaches

were evaluated from the view point of a reference laboratory, and additional tests were carried

out to identify the aspects of the data analysis process that were responsible for the observed

inconsistencies between workflows.

From a technical point of view, all three tested workflows showed a 100% epidemiologic

concordance. However, their discriminative power and the SNP distances between isolates

appeared to be influenced differently by the sequencing coverage. These differences were asso-

ciated with the stringency of the data analysis steps used by the subtyping schemes, and the

resulting SNP matrix sizes. Indeed, the high coverage sensitivity of the CSI-based workflow

appeared to be caused by the used SNP matrix construction strategy which excludes all posi-

tions for which no data was available for at least one of the isolates in combination with rela-

tively stringent SNP selection parameters. While in theory the CSI Phylogeny pipeline allows

to set more relaxed SNP selection parameters than the ones applied in this study, the SNP

matrix construction rules cannot be changed. Also in several commercially available packages,

the same SNP matrix construction rule is fixed to the most conservative choice (CLC Geno-

mics Workbench, https://www.qiagenbioinformatics.com/), or suggested as a default (BioNu-

merics, http://www.applied-maths.com). However, both our study and Pettengill et al. [30]

demonstrate that SNP matrices that include a certain low percentage of missing values perform

better for phylogenetic inference, and might therefore be more preferred for routine subtyping

workflows. To avoid confusion, it should be noted that in the study performed by Pettengill

et al. [30], the term SNP matrix construction is used differently than in the current study. In
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the study of Pettengill et al. [30] it defines only the final step of the procedure, in which the

SNPs that have already undergone the population-wide SNP filtering are combined into a fasta

matrix. The original CFSAN-based workflow showed high epidemiologic concordance values

and a good discriminative power. However, because of the specificities of the SNP identifica-

tion procedure a number of false positive and/or false negative SNPs were present in the out-

put, resulting in an increase of the inter-isolate distances with a lowering coverage and a likely

overestimation of the true discriminative power. This issue could be solved by adapting the

alternative allele frequency threshold used during the two SNP selection phases. It should be

remarked that new versions of the CFSAN SNP pipeline (starting form 0.7.0), which became

available after completing the analysis, include an additional variant filtering option allowing

to remove SNPs located too close to other SNPs or to contig edges. Tests performed with

the latest version of the pipeline (1.0.1, data now shown) illustrated that such filters allow to

remove a large fraction of positions, but not all, that arise due to recombination and read map-

ping artefacts at imperfect repeat regions, having a positive effect on the number of incorrect

SNPs in the output of the pipeline. The adapted CFSAN workflow showed the smallest sensi-

tivity to the coverage changes, while still providing the correct output, which was due to the

least stringent parameters utilized during both the variant selection and the SNP matrix con-

struction steps that were applied therein. Among others, the implemented two-step variant

selection procedure used a minimal coverage threshold of only 2 reads for the second filtering

step. We believe based on these results that the performance of more conventional pipelines

that use a single-step SNP-selection procedure could also be improved by using a lower co-

verage threshold than the one usually applied, for instance 4–5 reads instead of 8–20 reads

[27,33,37,38,67–69]. Also the original PHEnix-based workflow returned good results both

with respect to epidemiologic concordance and the sensitivity to the changes of the sequencing

coverage of the dataset. Besides the original PHEnix-based workflow, we have tested a custom

modification of the workflow, the adapted PHEnix-based workflow, that utilized variation of a

SNP matrix construction strategy according to which genomic positions that do not meet SNP

filtering criteria, such as the minimal coverage, are considered as being equal to the reference

values. This strategy has been applied in different studies including some that are relatively

recent [53–56]. However, we illustrate that it can produce erroneous results for sequencing

samples with slightly lower quality characteristics, and should therefore be avoided.

From the point of view of the potential end-users of the pipelines in public health institutes,

i.e. taking into account the impact of the differences in parameter settings or analysis steps, the

PHEnix-based and the adapted CFSAN-based workflows performed optimally for routine sub-

typing of S. Typhimurium and S. Typhimurium-like strains. They indeed returned the most

reproducible and epidemiologically correct output at a high resolution for both high and low

sequencing coverage datasets. The CSI-based workflow also performed well with respect to the

clustering of the epidemiologically related isolates, and showed a good discriminative power at

a higher sequencing depth, but the discriminative power of the workflow was strongly affected

by decreasing coverage, as discussed above. The workflow would therefore pose more stringent

requirements for the quality of the sequencing data, preventing the analysis of the samples

with a lower quality or coverage that are occasionally generated in a routine situation. On itself,

a slightly lower discriminative power is not an issue for the routine subtyping workflows, as

long as the number of subtypes remains within a practical and useful range allowing to dis-

criminate between the epidemiologically related and unrelated isolates which was the case for

the CSI-based workflow. But a high variability of the SNP distances depending on the dataset,

such as the ones observed for the CSI-based workflow (and also the counter-intuitive changes

observed for the original CFSAN-based workflow), are in our regard very inconvenient, as

they can disturb the correct interpretation of the results. In general, SNP distances between
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closely related isolates were highly different for the different subtyping schemes. For instance

for the outbreak isolates, the SNP distances obtained from the CSI-based workflow were as

small as 0–3 SNPs with the high-coverage dataset and 0–2 with the low-coverage dataset, while

for the original CFSAN-based workflow, these values were as high as 2–14 and 7–17 SNPs,

respectively. Similarly, for the isolates obtained from the same patient, the CSI-based workflow

returned 2–4 SNPs with the high-coverage dataset and 0 SNPs with the low coverage dataset,

while the CFSAN-based workflow returned 12–22 and 16–23 SNPs, respectively. These obser-

vations imply that it will not be possible to define a single cut-off value for delineation of an

outbreak as it has been attempted in some studies [37,70]. For each workflow, the threshold

will need to be estimated separately and the variability of the observed SNP distances depend-

ing on the analysis settings will need to be investigated, and should be taken into account in

the decision-making process.

Finally, the tested workflows differ substantially in their implementation and the ease of

use, which is also an important factor for the end-users. The CSI Phylogeny pipeline is an

online tool with a graphical interface, which makes it very user-friendly. This is clearly an

advantage for non-bioinformatics expert users. The PHEnix and the CFSAN SNP pipelines, by

contrast, need to be installed locally in a Linux environment, and are command-line based.

Therefore, they require a certain level of bioinformatics expertise to use. While local installa-

tion and computational resources that are needed to run the PHEnix and the CFSAN SNP

pipelines might be regarded as a disadvantage, they also imply that the analysis will be carried

out in a controlled environment and will not depend on the availability of an external service.

Regarding these considerations, we feel that the CSI Phylogeny pipeline is suitable when SNP-

based subtyping analyses have to be carried out occasionally, while the other two workflows

could despite the high adoption threshold be considered as a more suitable option in case a

more frequent use is envisaged.

Conclusively, our study allowed selecting the approaches that are most suitable for routine

subtyping of S. Typhimurium and S. 1,4,[5],12:i:- in a public health institution. The obtained

knowledge can be used for the optimisation of SNP-based subtyping workflows of other patho-

genic species.
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mapping statistics were obtained from Qualimap reports of the raw reads mapped on LT2 and

SL1344 reference genomes, and re-plotted in R to improve visualization.

(TIFF)

S2 Fig. Original genome coverage plots generated by Qualimap with LT2 and SL1344 refer-

ence genomes.

(TIF)

S3 Fig. Comparison of CFSAN and PHEnix variant selection procedures.

(TIFF)

S4 Fig. Phylogenetic trees generated with the tested SNP-based subtyping workflows using

high-coverage dataset and LT2 as a reference genome. (A) CSI-based workflow, (B) PHE-

nix-based workflow, (C) adapted PHEnix-based workflow, (D) CFSAN-based workflow, (E)

adapted CFSAN-based workflow. Isolates are coloured according to the MLVA-profile. The

minimal and maximal SNP distances observed between the five outbreak isolates and the three

isolates obtained from the same patient are indicated near the clusters. The trees are drawn to

scale, with branch lengths measured in the number of substitutions per site. The scale axis is
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provided below each tree. BS: bootstrap values.

(TIF)

S5 Fig. Phylogenetic trees generated with the successful SNP-based subtyping workflows

using down-sampled dataset and LT2 as a reference genome. (A) CSI-based workflow, (B)

PHEnix-based workflow, (C) CFSAN-based workflow, (D) adapted CFSAN-based workflow.

Isolates are coloured according to the MLVA-profile. The minimal and maximal SNP dis-

tances observed between the five outbreak isolates and the three isolates obtained from the

same patient are indicated near the clusters. The trees are drawn to scale, with branch lengths

measured in the number of substitutions per site. The scale axis is provided below each tree.

BS: bootstrap values.

(TIF)

S6 Fig. Phylogenetic trees generated with the successful SNP-based subtyping workflows

using down-sampled dataset supplemented with replicate data and LT2 as a reference

genome. (A) CSI-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based workflow,

(D) adapted CFSAN-based workflow. The minimal and maximal SNP distances observed

between the five outbreak isolates and the three isolates obtained from the same patient are

indicated near the clusters. The trees are drawn to scale, with branch lengths measured in the

number of substitutions per site. The scale axis is provided below each tree. BS: bootstrap val-

ues.

(TIF)

S7 Fig. SNP distance matrices generated with the tested SNP-based subtyping workflows

using high-coverage dataset and LT2 as a reference genome. (A) CSI-based workflow, (B)

PHEnix-based workflow, (C) adapted PHEnix-based workflow, (D) CFSAN-based workflow,

(E) adapted CFSAN-based workflow. Values and colour codes in the SNP distance matrices

indicate pairwise SNP distances between isolates. Outbreak isolates are shown in bold and iso-

lates obtained from the same patient are underlined.

(TIF)

S8 Fig. SNP distance matrices generated with the successful SNP-based subtyping work-

flows using down-sampled dataset and LT2 as a reference genome. (A) CSI-based workflow,

(B) PHEnix-based workflow, (C) CFSAN-based workflow, (D) adapted CFSAN-based work-

flow. Values and colour codes in the SNP distance matrices indicate pairwise SNP distances

between isolates. Outbreak isolates are shown in bold and isolates obtained from the same

patient are underlined. For the CSI-based workflow, the distances between isolates 12–3582

and 12–3583 versus isolates 12–2984, 12–2998, 12–3067 and 12–3558 dropped from 10–12

SNP positions observed with the normal (high-coverage) dataset to 4–6 positions with the

down-sampled dataset. For the CFSAN-based workflow, the distances between isolates 12–

2984, 12–2998, 12–3067 and 12–3558 increased strongly (as far as from 3 to 17 SNPs) with the

down-sampled dataset compared to the original data.

(TIF)

S9 Fig. SNP distance matrices generated with the successful SNP-based subtyping work-

flows using down-sampled dataset supplemented with replicate data and LT2 as a refer-

ence genome. (A) CSI-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based

workflow, (D) adapted CFSAN-based workflow. Values and colour codes in the SNP distance

matrices indicate pairwise SNP distances between isolates. Outbreak isolates are shown in bold

and isolates obtained from the same patient are underlined.

(TIF)
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S10 Fig. Phylogenetic trees generated with the tested SNP-based subtyping workflows

using high-coverage dataset and Sl1344 as a reference genome. (A) CSI-based workflow, (B)

PHEnix-based workflow, (C) adapted PHEnix-based workflow, (D) CFSAN-based workflow,

(E) adapted CFSAN-based workflow. The minimal and maximal SNP distances observed

between the five outbreak isolates and the three isolates obtained from the same patient are

indicated near the clusters. The trees are drawn to scale, with branch lengths measured in the

number of substitutions per site. The scale axis is provided below each tree. BS: bootstrap val-

ues.

(TIF)

S11 Fig. Phylogenetic trees generated with the successful SNP-based subtyping workflows

using down-sampled dataset and SL1344 as a reference genome. (A) CSI-based workflow,

(B) PHEnix-based workflow, (C) CFSAN-based workflow, (D) adapted CFSAN-based work-

flow. The minimal and maximal SNP distances observed between the five outbreak isolates

and the three isolates obtained from the same patient are indicated near the clusters. The trees

are drawn to scale, with branch lengths measured in the number of substitutions per site. The

scale axis is provided below each tree. BS: bootstrap values.

(TIF)

S12 Fig. Phylogenetic trees generated with the successful SNP-based subtyping workflows

using down-sampled dataset supplemented with replicate data and SL1344 as a reference

genome. (A) CSI-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based workflow,

(D) adapted CFSAN-based workflow. The minimal and maximal SNP distances observed

between the five outbreak isolates and the three isolates obtained from the same patient are indi-

cated near the clusters. The trees are drawn to scale, with branch lengths measured in the num-

ber of substitutions per site. The scale axis is provided below each tree. BS: bootstrap values.

(TIF)

S13 Fig. SNP distance matrices generated with the tested SNP-based subtyping workflows

using high-coverage dataset and SL1344 as a reference genome. (A) CSI-based workflow,

(B) PHEnix-based workflow, (C) adapted PHEnix-based workflow, (D) CFSAN-based work-

flow, (E) adapted CFSAN-based workflow. Values and colour codes in the SNP distance matri-

ces indicate pairwise SNP distances between isolates. Outbreak isolates are shown in bold and

isolates obtained from the same patient are underlined.

(TIF)

S14 Fig. SNP distance matrices generated with the successful SNP-based subtyping work-

flows using down-sampled dataset and SL1344 as a reference genome. (A) CSI-based work-

flow, (B) PHEnix-based workflow, (C) CFSAN-based workflow, (D) adapted CFSAN-based

workflow. Values and colour codes in the SNP distance matrices indicate pairwise SNP dis-

tances between isolates. Outbreak isolates are shown in bold and isolates obtained from the

same patient are underlined.

(TIF)

S15 Fig. SNP distance matrices generated with the successful SNP-based subtyping work-

flows using down-sampled dataset supplemented with replicate data and SL1344 as a refer-

ence genome. (A) CSI-based workflow, (B) PHEnix-based workflow, (C) CFSAN-based

workflow, (D) adapted CFSAN-based workflow. Values and colour codes in the SNP distance

matrices indicate pairwise SNP distances between isolates. Outbreak isolates are shown in bold

and isolates obtained from the same patient are underlined.

(TIF)
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S1 Table. Performance metrics describing the output of tested SNP-based subtyping work-

flows and combinations thereof assessed using LT2 as a reference genome. Performance

metrics of the workflows were measured using original dataset (OD) and dataset down-sam-

pled to a 30X coverage (30X), with LT2 as a reference genome. ad. CFSAN-based workflow:

adapted CFSAN-based workflow. PHEnix + CSI, PHEnix + CFSAN, etc.: refer to a combina-

tion of the variant calling rules from the first mentioned workflow with the SNP matrix con-

struction rules of the second mentioned workflow. DP: discriminative power.

(DOCX)

S2 Table. Performance metrics describing the output of tested SNP-based subtyping work-

flows and combinations thereof assessed using SL1344 as a reference genome. Performance

metrics of the workflows were measured using original dataset (OD) and dataset down-sam-

pled to a 30X coverage (30X), with SL1344 as a reference genome. ad. CFSAN-based workflow:

adapted CFSAN-based workflow. PHEnix + CSI, PHEnix + CFSAN, etc.: refer to a combina-

tion of the variant calling rules from the first mentioned workflow with the SNP matrix con-

struction rules of the second mentioned workflow. DP: discriminative power.

(DOCX)

S1 File. Perl script used for down-sampling of the sequencing data.

(DOCX)
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