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Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers

for any daily need. At this stage, basic communication and environmental control may

not be possible even with commonly used augmentative and alternative communication

devices. Brain Computer Interface (BCI) technology allows users to modulate brain

activity for communication and control of machines and devices, without requiring a

motor control. In the last several years, numerous articles have described how persons

with ALS could effectively use BCIs for different goals, usually spelling. In the present

study, locked-in ALS patients used a BCI system to directly control the humanoid robot

NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of

water. Four ALS patients and four healthy controls were recruited and trained to operate

this humanoid robot through a P300-based BCI. A few minutes training was sufficient

to efficiently operate the system in different environments. Three out of the four ALS

patients and all controls successfully performed the task with a high level of accuracy.

These results suggest that BCI-operated robots can be used by locked-in ALS patients

as an artificial alter-ego, the machine being able to move, speak and act in his/her place.

Keywords: brain computer interface, locked-in syndrome, humanoid robot, amyotrophic lateral sclerosis,

environmental control

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease leading to progressive limb
muscle paralysis, dysarthria and dysphagia. Death frequently occurs within 3–5 years from onset,
mostly because of respiratory failure (Spataro et al., 2010).

To interact with the surrounding world, ALS patients with residual motor abilities can use
different devices, which amplify their minimal residual movements for communication, domotics,
and entertainment purposes (e.g., one-finger strength, puff, eye-blink or eye-tracking computer
system, etc.). However, given the relentless clinical decline, patients become quadriplegic and
anarthric in the advanced stages of the disease, a condition termed locked-in syndrome (LIS) (Smith
and Delargy, 2005). These patients often find muscle-based control systems fatiguing, and BCIs
could then provide a complementary means of communication (Leeb et al., 2011).

LIS patients are dependent on a caregiver for any daily need, with a dramatic impact on
their quality of life (Simmons et al., 2000). Many locked-in ALS patients even lose control of
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eye movements and any other voluntary motor function, thus
proceeding to a complete locked in syndrome (C-LIS). At this
stage, the patient remains fully conscious, but becomes unable to
effectively use any movement-driven device (De Massari et al.,
2013; Spataro et al., 2014).

A Brain Computer Interface (BCI) is an advanced
communication and control system that operates by directly
converting the brain’s activity (usually cortical electrical activity
recorded on the scalp or through electrodes implanted in cortical
neurons) into digital signals (Hochberg et al., 2012). BCI,
therefore, can allow LIS/C-LIS patients to spell and control their
environments (Wolpaw et al., 1991; Long et al., 2012).

In late-stage ALS, non-invasive BCIs have primarily been
developed for different spelling protocols. These spelling systems
often use the P300, an event-related potential (ERP) that
can reflect a person’s decision to count, press a button, or
otherwise pay attention to a “target” stimulus (Sutton et al., 1965;
Polich, 2004). Therefore, the P300 can be used in a BCI that
automatically detects which stimuli elicited a P300, and thus
which stimuli (such as letters) the user wants to communicate.
The P300 was first used in a BCI almost 30 years ago (Farwell
and Donchin, 1988), and has been validated in ALS patients
(Kübler et al., 2001; Sellers and Donchin, 2006; Nijboer et al.,
2008a; Fazel-Rezai et al., 2012; Marchetti and Priftis, 2014).
Surveys of ALS patients who used the system, and related work,
found that some patients were happy with the functionality
provided by the BCI, but many had concerns that included
robustness and flexibility (Kathner et al., 2015; Pasqualotto et al.,
2015). Patients wanted a system that could work outside of
laboratory settings, providing capabilities beyond spelling. Most
BCI research has been restricted to a laboratory setting, though
home use by locked-in patients has been validated (Vaughan
et al., 2006; Münßinger et al., 2010; Holz et al., 2015; McCane
et al., 2015). Furthermore, while some BCI spellers have made
a difference for patients, additional capabilities such as robot
control could provide more help with activities of daily living
(Zickler et al., 2009; Huggins et al., 2011; Blain et al., 2012). P300
BCIs have been successfully demonstrated for robot control in
healthy users (Bell et al., 2008; Escolano et al., 2012; Choi and Jo,
2013).

The present research focuses on the adoption of a humanoid
robot as a remote tool to act on behalf of LIS/C-LIS ALS patients.
We set up and tested a BCI-Robot platform that enabled locked-
in ALS patients to operate the robot NAO to move to a glass
of water, then grasp it. All research was conducted in an office-
like setting or patients’ bedsides, amidst real-world devices and
distractions.We show here that a ready-to-use, fairly inexpensive,
fast and flexible BCI-Robot system can could potentially provide
a useful tool for advanced ALS patients, thus improving their
interpersonal interactions and autonomy.

RESULTS

A BCI-Robot system was developed to allow ALS patients in a
locked-in state to control the humanoid robot NAO by directing
it to get a glass of water.

Motivation to Perform the BCI-Robot
Experiments
Both LIS ALS patients and controls were submitted to the
Questionnaire of Current Motivation (QCM) to verify their
interest in performing the BCI-robot experiments. As shown in
Table 1, there were no significant differences among the two
groups (i.e., ALS vs. healthy controls [HC]) in the median values
with interquartile ranges in the four domain of the questionnaire
(Interest: ALS 3.5 [3.0–4.75] vs. HC 4.5 [4.0–5.0], p = 0.34;
Mastery Confidence: ALS 3.5 [3.0–4.0], p = 0.34; Incompetence
fear: ALS 0 [0–1.5] vs. HC 1.0 [1.0–2.5], p= 0.20; Challenge ALS
4.0 [3.25–4.0] vs. 3.0 [2.25–3.75], p= 0.20].

The results of the QCM Questionnaire suggest that both LIS
ALS patients and HC were highly interested in the BCI-Robot
system, perceiving it as a real challenge. Moreover, all showed
a definite confidence that the BCI-robot device could be used
correctly, with minimal incompetence fear.

BCI Sessions
All healthy controls and patient 4 performed the experiments
in the BCI laboratory, whereas patients 1, 2, and 3 performed
the experiments at home. Patients 2 and 3 were bed-bound and
remained in a supine position throughout their participation
in the BCI experiments. The remaining participants were
seated throughout the BCI experiments. All subjects were
able to see the robot and the glass of water to grasp, which
were in the same relative position in both experimental
settings.

The experimental setup was divided in three sessions:
Calibration Session, Online Session, and Robotic Session. Each
session was divided in runs. Each run had two mental spellings.

The Calibration Session included 9 runs. The Online Session
included 10 blocks of two runs. The Robotic Session included
five blocks of two runs. Subjects got a 5 min break between each
session.

The threshold of correct commands selection used as trigger
for transition between calibration and online session was set
to 100% and the threshold of correct commands selection
for transition between online and robotic session was set
to 55%.

The Calibration Session is designed to acquire data from each
user to calibrate signal processing parameters accordingly. The
Calibration Session used a common spelling matrix to calibrate

TABLE 1 | Scores at QCM questionnaire for the four motivational domains.

Domain LIS ALS (n = 4) Healthy controls (n = 4) p*

Interest (1–5)# 3.50 (3.0–4.75) 4.5 (4.0–5.0) 0.34

Mastery confidence (1–4)# 3.50 (3.0–4.0) 2.50 (1.25–3.75) 0.34

Incompetence fear (1–5)# 0.0 (0.0–1.5) 1.0 (1.0–2.5) 0.20

Challenge (1–4)# 4.0 (3.25–4.0) 3.0 (2.25–3.75) 0.2

Answers to each question were given as yes/no and then computed as a binary 1/0. Data

are expressed as medians with interquartile ranges.

*Mann-Whitney Rank Sum Test.
#Range of scores for single domain.
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the P300-BCI. No feedback was provided during Calibration.
The text to be spelled (which was the word “BCI” in this study)
appeared at the top of the user interface letter by letter. Users had
to locate the letter in the user interface and mentally count the
number of times the corresponding item was flashed during the
task. The duration of each flashwas 125ms and the inter-stimulus
interval was 150 ms.

The resulting data was used to train the classifier for the
Online Session, which consists of 10 blocks of grasp and
give commands each, and presents only monitor feedback.
Each run consists of 15 sequences of flashes. In this task,
the user is asked to focus on the selected command.
The online feedback presented on the monitor consisted
of the expected icon (such as the grasp command) that
was outlined in green for a right command or red for a
wrong one.

The Robotic Session had five blocks, each with 15 sequences of
flashes, for each of the two high-level commands (give and grasp).
In this Session, the selected command is executed by the robot.
Feedback was also presented via the monitor in the same fashion
as the Online Session.

The accuracy threshold for a correct command selection was
set at 55%. All details are provided in the section material and
methods, where all hardware, software and parameters are full
detailed.

Table 2 shows the number of correctly selected commands
and the percent of success in the Online and Robot Sessions, as
well as the accuracy for patients and controls. The online session
showed that the number of correct commands, the percent
of success and accuracy did not significantly differ between
LIS ALS and HC (correct commands: p = 0.34; % success:
p = 0.25 and % accuracy: p = 0.6). Furthermore, the robot
session gave similar results (LIS, ALS vs. HC: correct commands,
p = 0.21; % success, p = 0.32 and % accuracy p = 0.9).
Supplemental e-TAB 2 lists the scores obtained by the individual
subjects.

TABLE 2 | Comparison between LIS ALS patients and healthy controls in

the number of correct commands (grasp or give; total commands: n = 20,

for the on-line session, and n = 10 for the robot session), percent of

success and percent accuracy.

LIS ALS (n = 4) Healthy controls (n = 4) p

ONLINE SESSION

Correct commands$ 19 (7.5–20) 20 (20–20) 0.34*

% success# 78.0 ± 38.85 100 ± 0.0 0.25**

% accuracy# 69.75 ± 15.8 74.5 ± 5.3 0.6**

ROBOT SESSION

Correct commands$ 9.0 (4.5–9.75) 10 (10–10) 0.21*

% success# 78.32 ± 30.4 100 ± 0.0 0.32**

% accuracy# 71.25 ± 17.3 72.4 ± 9.4 0.9**

Accuracy is defined as the ratio between the number of characters spelt correctly to the

total number of characters spelt.

Data are expressed as:$Median with interquartile ranges; #Mean ± Standard Deviation;

*Mann-Whitney rank sum test; **Student’s t-test.

User Satisfaction with the BCI-Robot
System
After each experiment, the ease of use, comfort, and efficacy of
the BCI-Robot Systemwere explored. These factors were assessed
through a 3 item self-administered questionnaire (Supplemental
e-TAB 3).

The questions were: “How easy it was to use the BCI-Robot
system?” “How comfortable it was to use the BCI-Robot system?”
and “How effective was the system in execution of the given
commands?” Patients and controls answered each question on
a 5-point Likert scale. With the exception of Patient 3, all the
participants judged the system easy-to-use and comfortable.
Overall, the respondents were very positive about the possibility
of directly controlling the robot’s movements (Table 3).

DISCUSSION

Neuromuscular disorders, such as ALS, spinal muscular
atrophies and muscular dystrophies, determine severe disability
and the consequent absolute dependence of the patients from
their caregivers. Many efforts have been focused on employing
BCIs to allow communication in this group of patients, with
meaningful results (Marchetti and Priftis, 2014). Here we
have demonstrated that target patients can also control an
autonomous mobile robot.

Our results show that a ready-to-use BCI-Robot system can
be effectively controlled by LIS ALS patients and healthy subjects.
Three out the four ALS patients and all the healthy controls were
able to complete the tasks, after minimal training. Only Patient 3
did not attain adequate performance in both online and robot
sessions. Inter-subject variability in EEG-BCI performance has
been reported (Guger et al., 2012), but the relationship with the
clinical or demographic variables is still not clear. Our study
explored some variables that might impact BCI performance, but
identifying the causes in more detail remains a matter for future
work.

The different experimental settings (office or home) did not
affect the performance of ALS patients in comparison to controls.
Notably, the online session, which can easily be performed in a
laboratory setting without using a real robot, yielded individual
performances comparable to the robot session. Consequently, the
ability of patients to use a BCI-robot system in home settings may
be reliably predicted after a short laboratory test. Furthermore,
performance remained quite stable through sessions (Sellers
et al., 2006a). That is, users do not develop a larger P300 because

TABLE 3 | Median scores of the self-administered questionnaire on

satisfaction of BCI use.

LIS ALS (n = 4) Healthy controls (n = 4) p*

Easiness 4.5 (2.5–5.0) 4.5 (2.25–5.0) 0.88

Comfort 4.5 (2.5–5.0) 3.5 (3.0–4.0) 0.48

Efficacy 5.0 (2.75–5.0) 4.0 (3.25–4.75) 0.48

Data are expressed as median with interquartile ranges.

*Mann-Whitney rank sum test.
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of training, nor exhibit a decline resulting from habituation,
which can occur in P300 experiments without feedback (Ravden
and Polich, 1998).

Motivation in this study was generally high, whereas user
satisfaction was related to the success in accomplishing the task.
Patient 3, the only participant who did not attain good control, as
also the only one who reported low satisfaction.

Motivation is important because it can affect P300 BCI
performance (Nijboer et al., 2008b, 2010; Kleih et al., 2010;
Baykara et al., 2016), and because the question of whether ALS
patients and related patients would be motivated to use a BCI has
been controversial (Nijboer et al., 2013). Our results relating to
motivation and satisfaction support the general consensus that
ALS patients might indeed want to use P300 BCIs, even given
their current limitations (Zickler et al., 2009; Huggins et al., 2011;
Blain et al., 2012).

There are very many future directions resulting from this
study. The robot can be programmed to:

- First, to move to different places, extending the presence of the
patient outside of his home/bedroom;

- Second, to show any location to the patient using its integrated
webcam, which the patient can orient;

- Third, to act in place of the patient, such as by getting needed
items.

Besides the economic benefit of reducing assistive needs,
the control of a robotic alter-ego would be of invaluable
psychological significance, restoring basic forms of
independence.

In the last few decades, humanoid robots have been shown to
be increasingly capable of emulating and interacting with people
(Waine and Parternack, 2011). Beyond helping with activities
of daily living, the possibility of fostering positive emotions
creates several potential applications in rehabilitation and care
for emerging robots (Diehl et al., 2012; Zannatha et al., 2013).
Future work might compare user satisfaction with a human
actuator.

A limitation of this study is the relatively low N-value (we
enrolled 4 LIS ALS patients and 4 controls), which makes the
statistical analysis not powerful. However, this is a pilot study and
it offers a clear-cut indication that the two groups did not differ
in the main performances. This can be further corroborated by
enlarging the LIS sample, which is matter of a future work.

A humanoid robot may symbolize the will of severely disabled
patients, and walk, act or speech in place of them. Patients could
overcome some boundaries of the disease, being represented in
different places with an autonomously controlled alter-ego robot
(Chella et al., 2009).

In conclusion, our study suggests that non-demented LIS
ALS patients can control a ready-to-use BCI-robot system
in a home environment, without extensive training. Since a
robot can be programmed to perform a broad spectrum of
functions, our results pave the way new application of BCIs
directed to improve the autonomy of severely disabled patients.
Since the applications of the humanoid robots are rapidly
expanding while costs are declining, this study may pioneer
the development of advanced robotic assistants and alter-egos

for severely disabled patients in home settings. Our ongoing
research will evaluate the effects of prolonged BCI use on patients’
performance.

MATERIALS AND METHODS

The study protocol was approved by our internal Ethics Review
Board. Participants or their legal guardians signed an informed
written consent.

Subjects
Four cognitively-intact LIS ALS patients and four healthy
controls were enrolled in this study. All ALS patients have been
regularly followed-up at our ALS Clinical Research Center. Three
had a spinal onset of the disease, one had a bulbar onset. Median
age at the time of the study was 38.5 years (IQR 28–61), and the
median education was 13 years (IQR 13–18). All patients were
in a LIS status (i.e., quadriplegic and anartric) and completely
dependent from caregivers for daily activities. Patients 2 and 3
were bed-bound, whereas patients 1 and 4 were able to hold
the seated position on a wheelchair. All patients preserved eye-
gaze movements and were able to communicate with an eye-
tracking computer device or alphabetic tables. Two patients
(2 and 3) were artificially ventilated through a tracheostomy
(ALSFRS-R: 0/48). Patients 1 and 4 had a mild respiratory
insufficiency, with intermittent use of non-invasive mechanical
ventilation by a mask (Patient 1 respiratory scores: Dyspnea 1,
Orthopnea 1, Respiratory insufficiency 3, total ALSFRS-R score
5/48; Patient 4 respiratory scores: Dyspnea 2, Orthopnea 1,
Respiratory insufficiency 3, total ALSFRS-R score 6/48). Median
diseases’s duration was 33 months (IQR: 21–38). No auditory or
visual defects were reported. Controls were four healthy subjects
(three females and one male), with a median age of 34.5 years
(IQR 32.5–35) and a median education of 18.5 years (IQR 18–
19). There were no significant differences between patients and
controls in the major demographic variables. Table 4 shows the
main demographic and clinical characteristics of the enrolled
subjects.

Assessment of Motivation
Before starting the BCI session, current motivation was assessed
through a modified version of the Questionnaire for Current
Motivation (QCM, Nijboer et al., 2010). The QCM includes 18
items exploring the four core domains of motivation (mastery
confidence, incompetence fear, interest, and challenge). In
the original QCM, each core domain includes a number of
statements and the subject answers using a 7-point Likert-type
scale. We adopted a brief version in which patients and controls
were asked to adopt a binomial answer (agree [1]/disagree [0])
to each statement (Supplemental e-TAB 1). Scores for each
domain were pooled and calculated as median with interquartile
ranges of the affirmative answers on the related statements.
Patients performed the questionnaire through their eye-tracking
computer device, whereas controls used a paper and pencil
version.
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TABLE 4 | Demographic and clinical characteristics of the LIS ALS patients and healthy controls.

Age Sex Education (years) Onset Duration (months) MV MV time (h/day) ALSFRS-R (normal = 48)

Patient 1 40 F 17 Spinal 30 NIV 8 5

Patient 2 71 M 13 Spinal 40 TMV 24 0

Patient 3 36 M 13 Bulbar 36 TMV 24 0

Patient 4 26 M 13 Spinal 12 NIV 8 6

Control A 29 F 17 N.A. N.A. N.A. N.A. 48

Control B 32 F 17 N.A. N.A. N.A. N.A. 48

Control C 24 M 17 N.A. N.A. N.A. N.A. 48

Control D 29 F 17 N.A. N.A. N.A. N.A. 48

MV, Mechanical Ventilation; N.A., not applicable; NIV, Non-Invasive Mechanical Ventilation; TMV, Tracheostomy Mechanical Ventilation.

The BCI-Robot System
The brain signal used in this BCI system was the P300
wave, a positive event-related potential (ERP) recorded through
electroencephalography (EEG) electrodes over the occipital-
parietal cortex. We developed an interface based on event-
related potentials (ERPs), a brain measured response to a specific
stimulus. In particular, we selected an ERP approach, called
oddball paradigm, based on Visual Evoked Potential to identify
infrequent visual stimuli that are of interest to the user. The
P300 is prominent approximately 300 ms after presentation of
the eliciting stimulus (Picton, 1992). In the typical oddball P300
BCI paradigm, infrequent target stimuli are randomly embedded
within a series of more frequent non-target stimuli (Farwell and
Donchin, 1988). The P300 amplitude depends on the target-to-
target interval (TTI) rather than stimulus rarity (Gonsalvez and
Polich, 2002). Thus, even a single-stimulus paradigmwithout any
non-target stimulus could elicit robust P300s (Allison and Polich,
2008).

The user interface is a 3 × 3 matrix (Sellers et al., 2006b),
in which each item represents a command for the robot. The
interface shows commands to control movement in different
directions (right, left, back, etc.) and commands to grasp and give
items. The robot’s hands on the screen correspond to the give
and grasp actions, while the six arrows correspond to different
movement commands (Figure 1). Each stimulus is represented
by a flashing image of a famous face, Albert Einstein, which
replace one of the symbol of the interface accordingly to the
oddball stimulus, to help engage the user and elicit more robust
ERPs (Kaufmann et al., 2012).

The real-time EEG was amplified, filtered and analyzed to
extract the P300 and other ERPs such as the N170 and N400f,
which can improve classification accuracy with presentation of
famous faces (Kaufmann et al., 2012).

The signal was then processed to extract features to be used

as inputs to the control system of the humanoid robot. Finally

the robot translates the command received from user through

the BCI in behaviors associated to grasping and giving back an

object. The robot starts in the wait state. When a command is

sent, the robot enter in wander mode to acquire the position
of the glass (grasp) or the user (give) with landmarks and

reaching it/him by the shortest path. After the object/user has
been reached, he acts accordingly to grasp or give state. In grasp

FIGURE 1 | The visual evoked potential (VEP) user interface. This

interface consists of six low-level commands, corresponding to the four

directions (forward, backward, left, and right) and two turn commands, and

two high-level commands, grasp and give, which enable the robot to

autonomously grasp and bring the glass.

state, the robot will bend over and take the glass, in give state
it will bend over and offers the glass to the user. This approach
relied on high-level, goal-oriented behavior in which most of
the work to accomplish the attended task is offloaded onto the
software (Allison et al., 2007; Wolpaw, 2007). That is, rather than
controlling the individual details of each stage of the task, the user
could simply convey the overall goal (such as getting water).

The six arrows on the monitor instead allowed low-level,
process-oriented control that could provide more flexibility in
different environments.

Figure 2 shows the BCI-robot system. The BCI architecture
is responsible for processing the raw EEG signals to determine
the user’s intent, then sending an ID associated with the selected
command through the network system to the robotic system.
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FIGURE 2 | The system architecture. The system consists of three main parts. The BCI architecture acquires EEG extract features and translates them into

commands. The Network System creates an interface to send the selected command to the robot, which could be in a remote location. The Robotic System is

composed of an AI Module which translates the received commands in actions of the Nao Robot.

There, a Finite State Machine generates the corresponding
sequence of behaviors to be actuated by the robot. In this way,
the command selected by the user is expressed as feedback by the
robot.

Neuropsychological Testing
Six LIS ALS patients and four healthy controls were submitted to
a short neuropsychological battery before enrollment.

(A) The Frontal System Behavioral Scale (FrSBe) provided
a measure of the frontal lobe-related syndromes as
apathy, disinhibition, and executive dysfunction; FrSBe was
administered in both individual and caregiver versions
(Grace and Malloy, 2001).

(B) The Neuropsychiatric Inventory (NPI) was used to assess
several psychiatric symptoms such as dysphoria, anxiety,
irritability/lability, etc. (Cummings et al., 1994).

(C) ALS Depression Inventory (ADI) (Hammer et al., 2008)
and the Beck Depression Inventory (BDI) (Beck and
Beamesderfer, 1974) were used to evaluate depressive
symptoms. All tests were administered in a computerized
version.

Two out of the six ALS patients that we tested showed
neuropsychological evidence of cognitive/behavioral impairment
and were thus excluded from the study. The neuropsychological
results in the remaining ALS patients and the controls were
within normal ranges. Thus, four patients and all screened
controls were enrolled.

Study Design
The goal of the study was to demonstrate the feasibility of a
BCI controlled humanoid robot for fulfilling users’ needs. We

TABLE 5 | Structure within each session.

Phase Trials Time (min)

Consent disclosure 10

QCM questionnaire 10

Preparation 8

Calibration 9 7

Pause 5

Online session 20 14

Pause 5

Robotic session 10 7

Cleaning 2

Questionnaire on satisfaction 10

designed a task to address a common need: getting a glass of
water and bringing it to the user. To evaluate the requirements
for training, all participants were new to BCIs. To assess efficacy
in real-world settings, three of the four ALS patients carried
out the experiment in their homes. The office setting used for
healthy controls had a similar spatial distribution of the key
components (i.e., the user with the BCI apparatus, the robot,
and the monitor). The complete BCI session, since consent
disclosure to the conclusion, was performed in a single day
and lasted less than 2 h. Table 5 summarizes the plan for each
session.

People with relevant cognitive and psychiatric disturbances
were excluded before enrollment. Assessment of motivation
before each session and the subjective evaluation of the procedure
at the end of the tasks added information on the user’s perception
of the BCI-robot usefulness.
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Subjects (i.e., patients and controls) performed two BCI
sessions: (a) an on-line session, without the robot, where all set
of commands are given in order to train the subject; (b) the robot
session, where commands given through BCI can make the robot
to move. For each session, the following variables were explored:
(i) the number of correct commands given through the BCI; (ii)
the percent of correct commands (% success); (iii) the percent of
accuracy of the P300 BCI, which is defined as the ratio between
the number of characters spelt correctly to the total number of
characters spelt.

BCI Calibration and Testing
During the experiment, all four control subjects and Patients 1
and 4 stayed in a seated position, whereas Patients 2 and 3 lay on
a bed. The monitor shown to the user was always placed 50 cm
from the user. We used the BCI2000 software package (Schalk
and Mellinger, 2010) to present the new interface to control the
robot, as well for data collection and online processing.

A network interface was developed to connect to the
robotic actuator, equipped with an intelligent system based on
Python programming language. All data acquired during the
Calibration Session were used to calibrate the parameters for
the Stepwise Linear Discriminant Analysis (SWLDA)1 classifier
(Krusienski et al., 2007) that was used in the subsequent phases
(Figure 3). After the Calibration Session, no further calibration
was performed.

Signal Acquisition and Processing
The EEG signals were recorded and digitalized at 256Hz, notched
at 50 Hz, and bandpass filtered between 1 and 60 Hz using
the g.USBamp (g.tec, Austria). Four electrodes were positioned
according to the International 10–20 standard system (Jasper,
1958) at Cz, P3, Pz, and P4. FPz was used as a ground, with a
reference on the right mastoid.

Data were decimated to 20 Hz and segmented in 600 ms
epochs from 0 to 600 ms after each flash.

The signals are acquired in blocks of 8 signals for
each electrode (sampleBlockSizee) at a frequency of 256 Hz
(SampleFrequency), so a new signal is acquired every 31.25 ms,
as described in the following Sample Acquisition equation.

Equation 1: Sample acquisition

sambleBlockSize

sambleFrequency
∗ 1, 000

ms

s
=

8

256
Hz ∗ 1, 000

ms

s
= 31.25 ms

The resulting signal is then decimated to 20 Hz.
A fourth order notch filter with a high pass of 48 Hz and a

low pass of 52 Hz is employed to suppress the signals in the
narrow band corresponding to the power line frequency which
interference is ubiquitous in EEG recordings, especially if taken

1The Stepwise Linear discriminant analysis (SWLDA) is a method used in pattern

recognition to find a linear combination of features that characterizes or separates

two or more classes of objects or events. The resulting combination may be used

as a linear classifier. The plan of separation of the two classes is represented by the

equation w0 +wTx = 0 where w0 is the intercept, W
T the slope and x the general

sample. Each element greater wo +wTx > 0 will be classified in a class (in figure

represented by circle) while elements lower than wo +wTx < 0 will be classified in

the other classes (in figure the class is represented by x).

FIGURE 3 | The linear discriminant analysis. The stimuli are classified into

two classes using the one-vs.-all paradigm. One class represents the selected

item (x in the figure), the other class (circle) represents all the other items. The

two classes are divided by a hyperplane that is the discriminant of the two

classes. The process is iterated over all the items to find the class with the

maximum distance from the hyperplane.

outside specially shielded rooms. fn is the cut off frequency,
RC is the time invariant circuit (R is the resistor and C is the
capacitance). In the following equation is reported theNotch filter
definition.

Equation 2: Notch filter

fn =
1

2πRC

An 8-th order Butterworth pass band filter is then used to reduce
the effects of the most frequent artifacts, typically due to blinking,
muscular movement, and teeth-grinding. The band pass filter
is a device that passes frequencies within a certain range and
rejects (attenuates) frequencies outside that range. G(jω) is the
frequency response of the filter. ω is the angular frequency in
radians per second and h is the number of poles in the filter. In the
following equation is reported the Butterworth Filter calculation.

Equation 3: Butterworth Filter

|G(jw)| =
1

√

1+ w2h

A Laplacian filter was introduced to reduce the effects of blurring
due to the distance between electrodes and from different users’
skull shapes. This filter decreased the value of each point t
by the weighted sum of four neighbor electrodes to develop a
representation of cortical activity. The resulting signal s′h(t)is
obtained as function of the original signal sh(t) at time t minus
the sum of signals obtained from each electrode si, where Si
represents all the electrodes, weighted by a weight factor wh,i

that has been set to ½. In the following equation is reported the
definition of the Laplacian Filter.

Equation 4: Laplacian Filter

s′h(t) = sh(t)−
∑

i∈Si

wh,isi(t)
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The final step of the filter chain consists in the application of
a temporal filter to modulate the signals in a domain in which
they could be best expressed. Since the P300 wave modulates the
filter over time, we averaged the signals over a number of epochs
proportional to the number of visual stimuli and we considered
each epoch as long as each sequence is. In Equation (5) is shown
the Time Filter.

Equation 5: Time Filter

s′h(t) =

∑

i∈t si(t)

Number Of Epochs

Classification Algorithms and Procedures
A SWLDA classifier was used to transform the extracted features
into control signals for the humanoid robot. The basic principle
consists of the identification of a hyperplane of separation
between data to represent different classes.

In particular, we used a technique known as “One-Versus
-Rest” (Tax and Duin, 2002). By assuming a normal data
distribution with the same covariance matrix for all classes, each
symbol is compared to the remaining ones to find the projection
that maximizes the distance between the class representing one
symbol from all the others. In this way, the selected symbol will
be the one with the maximum distance from the hyperplane of
separation with the remaining symbols.

The Robot System
The humanoid robot employed in the experiments is a NAO
produced by Aldebaran, France. NAO is a medium-sized
programmable humanoid robot equipped with microphones,
cameras, laser, sonar and bumpers. The system allows two modes
of control:

• A teleoperated mode allowing the user to move the robot in
six directions (forward, backward, turn left, turn right, rotate
right and rotate left);

• An autonomous mode based on a Finite State Machine
allowing the user to control the robot at the goal level (e.g.,
to grasp an object).

In teleoperated mode, the robot acts as an avatar of the user,
who perceives the environment through the robot camera and
guides the robot remotely. In autonomous mode, the robot
can plan its own sequence of actions to reach the indicated
goal.

We explored two scenarios (Figure 4): the bed scenario
(Patients 2 and 3) and office scenario (all controls and Patients
1 and 4). The bed scenario included a wooden board placed
horizontally over the bed so the robot could walk on it. In the
office scenario, the user sat in a chair, and the robot walked on a
desk. In both scenarios, the robot’s sensors detected the positions
of the user, glass, and all obstacles, as well as the edges of the board
or desk (to avoid to fall).

For each scenario, an autonomous system based on a
Finite State Machine was developed to implement two complex
actions:

• Grasp an object
• Give an object

Selecting the “grasp” command directs the robot to locate the
glass via a suitable marker, then find the shortest path to reach
the object. Next, it walks to the glass, then grasps it. Selecting
the “give” command directs the robot to bring the glass to the
user.

Statistical Analysis
All analyses were made using SIGMASTAT software package
(Systat Software Inc., San Jose, CA, USA). Variables were
expressed as median with interquartile ranges (IQR).
Non-parametric data comparisons were performed using
Mann–Whitney rank sum test. Parametric variables were

FIGURE 4 | The two scenarios in which the robot operated. In scenario 1, the user is in bed, and selects two commands: grasp to take the object and give to

bring it back. The robot will autonomously calculate the best path to accomplish the action. In scenario 2, the user sits on the table and controls the robot with low

level (Forward, turn left, forward, turn left) and high-level (grasp, give) commands.
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expressed as mean ± standard deviation, and analyzed with the
Student’s t-test. The proportion of positive answers to each factor
of a given domain of the QCM was analyzed with the Chi-square
test.

For all analyses, p-values < 0.05 were considered significant.
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